搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制

史久林 许锦 罗宁宁 王庆 张余宝 张巍巍 何兴道

引用本文:
Citation:

水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制

史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道

Enhanced stimulated Raman scattering by suppressing stimulated Brillouin scattering in liquid water

Shi Jiu-Lin, Xu Jin, Luo Ning-Ning, Wang Qing, Zhang Yu-Bao, Zhang Wei-Wei, He Xing-Dao
PDF
HTML
导出引用
  • 为提高液体介质中受激拉曼散射的输出能量, 提出了通过温度调控来抑制受激布里渊散射的方法, 设计了532 nm多纵模宽带脉冲激光泵浦的受激拉曼散射发生系统, 测量了不同温度下水中前向受激拉曼散射及后向受激布里渊散射的输出能量, 分析了水温、泵浦激光线宽及热散焦效应对受激拉曼散射输出能量影响的物理机制. 实验结果表明: 通过降低水温可实现对受激布里渊散射过程的有效抑制, 同时减小热散焦效应带来的光束畸变, 从而有效提高受激拉曼散射的输出能量. 研究结果对液体介质中的受激拉曼散射多波长转换具有重要意义.
    Stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are two kinds of emblematic inelastic scattering processes resulting from the interaction of high-intensity laser with matter. Generally, competition between SBS and SRS is a common phenomenon in many substances. In liquid or high-pressure gas, if a single longitudinal mode laser is used as a pump source, both SBS and SRS can be excited, but the SBS will become very strong due to higher gain and optical phase conjugation. In comparison, the SRS gain is typically 2 orders of magnitude smaller than the SBS gain so that most of the pump laser energy is spent on the SBS and the SRS is greatly suppressed. To improve the output energy of SRS in liquid medium, a method of suppressing the SBS process by controlling temperature of medium is proposed. The SRS generation system using broadband pulse laser of 532 nm in wavelength as a pumping source is designed, the output energy of forward SRS (FSRS) and backward SBS (BSBS) in water with different temperatures are measured, and the physical mechanisms of the influences of water temperature, pumping linewidth and thermal defocusing on the output energy of SRS are analyzed. The experimental results indicate that by reducing the water temperature, the SBS process can be significantly suppressed, and the beam distortion caused by thermal defocusing effect can be reduced, thus effectively improving the output energy of SRS. Unlike the single longitudinal mode laser, when the pump source is handled in multiple longitudinal modes with a wide linewidth, the gain of FSRS is higher than that of the backward SRS (BSRS). Meanwhile, since the SBS gain coefficient is restricted by the linewidth of the pump laser, the FSRS process is dominant and both backward SBS and BSRS are significantly suppressed. It is necessary to state that none of the influence of backward SRS, self-focusing, optical breakdown and other non-linear effects on the output energy of SRS is considered in this paper, and only the effectiveness of reducing temperature to improve the energy output of forward SRS is verified from the perspective of temperature change. The results are of great significance for the multi-wavelength conversion of SRS in liquid medium.
      通信作者: 史久林, jiulinshi@126.com ; 何兴道, xingdaohe@126.com
    • 基金项目: 国家自然科学基金(批准号: 41776111, 41666004, 61865013, 41576033, 61665008)、江西省自然科学基金(批准号: 20171BAB202039, 20161BBH80036)、江西省杰出青年基金(批准号: 20171BCB23053)和航空基金(批准号: 2016ZD56007, 2016ZD56006)资助的课题.
      Corresponding author: Shi Jiu-Lin, jiulinshi@126.com ; He Xing-Dao, xingdaohe@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41776111, 41666004, 61865013, 41576033, 61665008), the Natural Science Foundation of Jiangxi Province, China(Grant Nos. 20171BAB202039, 20161BBH80036), the Distinguished Young Fund of Jiangxi Province, China (Grant No. 20171BCB23053) and the Aeronautical Science Foundation of China (Grant Nos. 2016ZD56007, 2016ZD56006).
    [1]

    Boyd R W 2008 Nonlinear Optics (Third Edition) (Burlington: Academic Press) pp 429-471

    [2]

    Penzkofer A, Laubereau A, Kaiser W 1979 Prog. Quant. Electron. 6 55Google Scholar

    [3]

    Pasiskevicius V, Fragemann A, Laurell F, Butkus R, Smilgevicius V, Piskarskas A 2003 Appl. Phys. Lett. 82 325Google Scholar

    [4]

    Kalosha V P, Herrmann J 2000 Phys. Rev. Lett. 85 1226Google Scholar

    [5]

    Findeisen J, Eichler H J, Kaminskii A A 1998 Nonlinear Optics 98: Materials, Fundamentals and Applications Topical Meeting (Cat. No. 98CH36244), USA, August 10-14, 1998 p381

    [6]

    黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡 2017 物理学报 66 244208Google Scholar

    Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao T D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208Google Scholar

    [7]

    Vasa N J, Hatada A, Nakazono S, Oki Y, Maeda M 2002 Appl. Opt. 41 2328Google Scholar

    [8]

    陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟 2013 物理学报 62 104213Google Scholar

    Chen W, Chen X G, Shi J L, He X D, Mo X F, Liu J 2013 Acta Phys. Sin. 62 104213Google Scholar

    [9]

    Woodbury E J, Ng W K 1962 Proc. Inst. Rad. Eng. 50 2367

    [10]

    Ganot Y, Bar I 2015 Appl. Phys. Lett. 107 131108Google Scholar

    [11]

    Ganot Y, Shrenkel S, Barmashenko B D, Bar I 2014 Appl. Phys. Lett. 105 061107Google Scholar

    [12]

    Helle M H, Jones T G, Penano J R, Kaganovich D, Ting A 2013 Appl. Phys. Lett. 103 121101Google Scholar

    [13]

    Shi J, Chen W, Mo X, Liu J, He X, Yang K 2012 Opt. Lett. 37 2988Google Scholar

    [14]

    Walsh C J, Villeneuve D M, Baldis H A 1984 Phys. Rev. Lett. 53 1445Google Scholar

    [15]

    Snow J B, Qian S X, Chang R K 1985 Opt. Lett. 10 37Google Scholar

    [16]

    Yehud L B, Belker D, Ravnitzki G, Ishaaya A A 2014 Opt. Lett. 39 1026Google Scholar

    [17]

    Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 108 717Google Scholar

    [18]

    He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410Google Scholar

    [19]

    Shi J, Ouyang M, Chen X, Liu B, Xu Y, Jing H, Liu D 2009 Opt. Lett. 34 977Google Scholar

    [20]

    Liu D, Shi J, Ouyang M, Chen X, Liu J, He X 2009 Phys. Rev. A 80 033808Google Scholar

    [21]

    Shi J L, Liu J, Li S J, Jian X, Jian L, Wei F, Ke Y, He X D 2011 J. Opt. 13 075201Google Scholar

    [22]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Pub.) pp 39-50

    [23]

    Colles M J 1969 Opt. Commun. 1 169Google Scholar

    [24]

    Richerzhagen B, Delacretaz G, Salathe R P 1996 Opt. Eng. 35 2058Google Scholar

    [25]

    Abbate G, Bernini U, Ragozzino E, Somma F 1978 J. Phy. D: Appl. Phys. 11 1167Google Scholar

  • 图 1  实验测量原理图

    Fig. 1.  Principle diagram of experimental measurement.

    图 2  (a)泵浦光时域轮廓; (b)水的受激拉曼散射归一化光谱图, 泵浦能量为100 mJ/Pulse

    Fig. 2.  (a) Temporal profile of pump leaser; (b) normalized SRS spectrum of distilled water at pump energy of 100 mJ/Pulse.

    图 3  不同温度下SRS输出能量随入射泵浦光能量变化

    Fig. 3.  Output energy of SRS versus the incident pump energy at different temperatures.

    图 4  不同温度下SBS输出能量随入射泵浦光能量变化

    Fig. 4.  Output energy of SBS versus the incident pump energy at different temperatures.

    图 5  入射泵浦能量为50 mJ时, 不同温度下水池出光口剩余泵浦光强度的远场分布轮廓 (a) 5 °C; (b) 35 °C

    Fig. 5.  Far-field profiles of intensity distribution of residual pump beam at the exit of the cell window at different temperatures,when the incident pump energy is 50 mJ/Pulse: (a) 5 °C; (b) 35 °C.

    图 6  入射泵浦能量为150 mJ时, 不同温度下的SRS输出光斑分布 (a) 5 °C; (b) 35 °C

    Fig. 6.  Facula profiles of SRS at different temperatures when the incident pump energy is 150 mJ/Pulse: (a) 5 °C; (b) 35 °C.

  • [1]

    Boyd R W 2008 Nonlinear Optics (Third Edition) (Burlington: Academic Press) pp 429-471

    [2]

    Penzkofer A, Laubereau A, Kaiser W 1979 Prog. Quant. Electron. 6 55Google Scholar

    [3]

    Pasiskevicius V, Fragemann A, Laurell F, Butkus R, Smilgevicius V, Piskarskas A 2003 Appl. Phys. Lett. 82 325Google Scholar

    [4]

    Kalosha V P, Herrmann J 2000 Phys. Rev. Lett. 85 1226Google Scholar

    [5]

    Findeisen J, Eichler H J, Kaminskii A A 1998 Nonlinear Optics 98: Materials, Fundamentals and Applications Topical Meeting (Cat. No. 98CH36244), USA, August 10-14, 1998 p381

    [6]

    黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡 2017 物理学报 66 244208Google Scholar

    Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao T D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208Google Scholar

    [7]

    Vasa N J, Hatada A, Nakazono S, Oki Y, Maeda M 2002 Appl. Opt. 41 2328Google Scholar

    [8]

    陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟 2013 物理学报 62 104213Google Scholar

    Chen W, Chen X G, Shi J L, He X D, Mo X F, Liu J 2013 Acta Phys. Sin. 62 104213Google Scholar

    [9]

    Woodbury E J, Ng W K 1962 Proc. Inst. Rad. Eng. 50 2367

    [10]

    Ganot Y, Bar I 2015 Appl. Phys. Lett. 107 131108Google Scholar

    [11]

    Ganot Y, Shrenkel S, Barmashenko B D, Bar I 2014 Appl. Phys. Lett. 105 061107Google Scholar

    [12]

    Helle M H, Jones T G, Penano J R, Kaganovich D, Ting A 2013 Appl. Phys. Lett. 103 121101Google Scholar

    [13]

    Shi J, Chen W, Mo X, Liu J, He X, Yang K 2012 Opt. Lett. 37 2988Google Scholar

    [14]

    Walsh C J, Villeneuve D M, Baldis H A 1984 Phys. Rev. Lett. 53 1445Google Scholar

    [15]

    Snow J B, Qian S X, Chang R K 1985 Opt. Lett. 10 37Google Scholar

    [16]

    Yehud L B, Belker D, Ravnitzki G, Ishaaya A A 2014 Opt. Lett. 39 1026Google Scholar

    [17]

    Shi J, Tang Y, Wei H, Zhang L, Zhang D, Shi J, Gong W, He X, Yang K, Liu D 2012 Appl. Phys. B 108 717Google Scholar

    [18]

    He X, Tang Y, Shi J, Liu J, Cheng W, Mo X 2012 J. Mod. Opt. 59 1410Google Scholar

    [19]

    Shi J, Ouyang M, Chen X, Liu B, Xu Y, Jing H, Liu D 2009 Opt. Lett. 34 977Google Scholar

    [20]

    Liu D, Shi J, Ouyang M, Chen X, Liu J, He X 2009 Phys. Rev. A 80 033808Google Scholar

    [21]

    Shi J L, Liu J, Li S J, Jian X, Jian L, Wei F, Ke Y, He X D 2011 J. Opt. 13 075201Google Scholar

    [22]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2003 Stimulated Brillouin Scattering: Fundamentals and Applications (Bristol: Institute of Physics Pub.) pp 39-50

    [23]

    Colles M J 1969 Opt. Commun. 1 169Google Scholar

    [24]

    Richerzhagen B, Delacretaz G, Salathe R P 1996 Opt. Eng. 35 2058Google Scholar

    [25]

    Abbate G, Bernini U, Ragozzino E, Somma F 1978 J. Phy. D: Appl. Phys. 11 1167Google Scholar

  • [1] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射. 物理学报, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析. 物理学报, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [3] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [4] 张磊, 李金增. 水中受激布里渊散射脉冲的反常压缩. 物理学报, 2014, 63(5): 054202. doi: 10.7498/aps.63.054202
    [5] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [6] 李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威. 水的低频受激拉曼散射. 物理学报, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [7] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [8] 耿西钊, 哈斯乌力吉, 郭翔宇, 李杏, 林殿阳, 何伟明, 范瑞清, 吕志伟. 利用受激布里渊散射能量反射率测量液体介质运动黏度方法的研究. 物理学报, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [9] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法. 物理学报, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [10] 陈旭东, 石锦卫, 欧阳敏, 刘宝, 许艳霞, 史久林, 刘大禾. 光学单池中受激布里渊散射的双光束共轴放大. 物理学报, 2009, 58(7): 4680-4684. doi: 10.7498/aps.58.4680
    [11] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [12] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [13] 臧竞存, 谢丽艳, 李 晓, 张东香, 冯宝华. 钨酸锌晶体的受激拉曼散射和光致发光研究. 物理学报, 2007, 56(5): 2689-2692. doi: 10.7498/aps.56.2689
    [14] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [15] 王雨雷, 吕志伟, 何伟明, 张 祎. 一种大能量受激布里渊散射相位共轭镜的研究. 物理学报, 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
    [16] 哈斯乌力吉, 吕志伟, 李 强, 巴德欣, 张 祎, 何伟明. 受激布里渊散射介质光学击穿的研究. 物理学报, 2006, 55(10): 5252-5256. doi: 10.7498/aps.55.5252
    [17] 林殿阳, 高洪岩, 王双义, 蒋萧村, 吕志伟. 多纵模受激布里渊散射阈值. 物理学报, 2005, 54(9): 4151-4156. doi: 10.7498/aps.54.4151
    [18] 哈斯乌力吉, 吕志伟, 何伟明, 李 强, 巴德欣. 光学击穿对受激布里渊散射特性的影响. 物理学报, 2005, 54(12): 5654-5658. doi: 10.7498/aps.54.5654
    [19] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响. 物理学报, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [20] 张喜和, 王兆民, 万春明. 光纤-氮系统的受激拉曼散射. 物理学报, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
计量
  • 文章访问数:  7691
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-17
  • 修回日期:  2018-12-24
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回