搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度梯度区域熔化作用下熔池迁移的元胞自动机模拟

方辉 薛桦 汤倩玉 张庆宇 潘诗琰 朱鸣芳

引用本文:
Citation:

温度梯度区域熔化作用下熔池迁移的元胞自动机模拟

方辉, 薛桦, 汤倩玉, 张庆宇, 潘诗琰, 朱鸣芳

Cellular automaton simulation of molten pool migration due to temperature gradient zone melting

Fang Hui, Xue Hua, Tang Qian-Yu, Zhang Qing-Yu, Pan Shi-Yan, Zhu Ming-Fang
PDF
HTML
导出引用
  • 本文采用耦合凝固和熔化效应的二维元胞自动机(cellular automaton, CA)模型, 对温度梯度区域熔化(temperature gradient zone melting, TGZM)效应引起的熔池在固液两相区中的迁移现象进行模拟研究. 模拟分析了抽拉速度、熔池初始位置、温度梯度和合金成分等因素对TGZM动力学的影响, 并将模拟结果与解析模型的预测结果进行比较验证. 通过模拟发现, 在温度梯度作用下, 熔池总是向着高温方向迁移; 当抽拉速度低于或高于临界抽拉速度时, 熔池朝向移动的液相线或固相线迁移; 对于给定的抽拉速度, 位于糊状区内临界位置以上的熔池会迁移进入液相, 而位于临界位置以下的熔池会逐步靠近固相线. 此外, 温度梯度越高, 合金成分越低, 熔池的迁移速度越快.
    Directional solidification is a common and important process in both scientific research and industrial practice. Owing to the presence of temperature gradients during directional solidification, local remelting and solidification in the mushy zone occurs, resulting in some typical phenomena such as temperature gradient zone melting (TGZM). The TGZM influences the solidifying microstructure and microsegregation significantly. In the present work, a two-dimensional (2D) cellular automaton (CA) model involving the mechanism of both solidification and melting is adopted to investigate the migration phenomena of molten liquid pools in the mushy zone due to the TGZM. The effect of pulling velocity, initial liquid pool position, temperature gradient, and alloy composition on the TGZM kinetics are studied. The simulation results are compared with the analytical predictions, and good agreement between two models is obtained. It is found that under a temperature gradient, the liquid pool always migrates towards the high temperature direction. When the pulling velocity is lower than the critical velocity, the liquid pool migrates through the liquidus into the bulk liquid and the time required for a liquid pool to reach the liquidus increases with pulling velocity increasing. On the other hand, when a pulling velocity higher than the critical value is adopted, the liquid pool moves towards the solidus and the time required for migrating liquid pool to reach the solidus decreases with pulling velocity increasing. For a given pulling velocity, the liquid pools located above the critical position move towards the liquidus, while the others gradually approach to the solidus. When a molten liquid pool migrates towards the liquidus, the migration velocity and liquid pool thickness are found to gradually increase, while the liquid pool composition decreases with time. Inversely, for the molten liquid pool that moves towards the solidus, the migration velocity and liquid pool thickness gradually decrease, while the liquid pool composition increases with time going by. The average migration velocity of liquid pool caused by the TGZM effect increases with temperature gradient increasing and alloy composition decreasing. The CA simulations provide an insight into the complicated interactions among the local temperature, solute distribution and diffusion, and the kinetics of local remelting and solidification in the TGZM process.
      通信作者: 朱鸣芳, zhumf@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51371051, 51501091)、中央高校基本科研业务费(批准号: 2242016K40008)和东南大学优秀博士论文培育基金(批准号: YBJJ1627)资助的课题.
      Corresponding author: Zhu Ming-Fang, zhumf@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371051, 51501091), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2242016K40008), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1627).
    [1]

    Rettenmayr M 2009 Int. Mater. Rev. 54 1Google Scholar

    [2]

    Pfann W G 1955 Trans. AIME 203 961

    [3]

    Tiller W A 1963 J. Appl. Phys. 34 2757Google Scholar

    [4]

    Allen D J, Hunt J D 1976 Metall. Mater. Trans. A 7 767Google Scholar

    [5]

    Kinoshita K, Arai Y, Inatomi Y, Tsukada T, Miyata H, Tanaka R 2016 J. Cryst. Growth 455 49Google Scholar

    [6]

    Wang H, Li S, Li X, Zhong H 2017 J. Cryst. Growth 466 56Google Scholar

    [7]

    Ma X, Yoshikawa T, Morita K 2014 Sci. Adv. Mater. 6 1697Google Scholar

    [8]

    Shirzadi A A, Wallach E R 1999 Acta Mater. 47 3551Google Scholar

    [9]

    Nguyen-Thi H, Reinhart G, Buffet A, Schenk T, Mangelinck-Noel N, Jung H, Bergeon N, Billia B, Hartwig J, Baruchel J 2008 J. Cryst. Growth 310 2906Google Scholar

    [10]

    Buchmann M, Rettenmayr M 2005 J. Cryst. Growth 284 544Google Scholar

    [11]

    Bösenberg U, Buchmann M, Rettenmayr M 2007 J. Cryst. Growth 304 281Google Scholar

    [12]

    Löffler A, Reuther K, Engelhardt H, Liu D, Rettenmayr M 2015 Acta Mater. 91 34Google Scholar

    [13]

    Liu D M, Li X Z, Su Y Q, Peng P, Luo L S, Guo J J, Fu H Z 2012 Acta Mater. 60 2679Google Scholar

    [14]

    Liu D M, Li X Z, Su Y Q, Rettenmayr M, Guo J J, Fu H Z 2014 Appl. Phys. A 116 1821Google Scholar

    [15]

    Pan S Y, Zhang Q Y, Zhu M F, Rettenmayr M 2015 Acta Mater. 86 229Google Scholar

    [16]

    朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科 2016 金属学报 52 1297Google Scholar

    Zhu M F, Tang Q Y, Zhang Q Y, Pan S Y, Sun D K 2016 Acta Metall. Sin. 52 1297Google Scholar

    [17]

    陈瑞, 许庆彦, 柳百成 2014 物理学报 63 188102Google Scholar

    Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin . 63 188102Google Scholar

    [18]

    张云鹏, 林鑫, 魏雷, 王猛, 彭东剑, 黄卫东 2012 物理学报 61 228106Google Scholar

    Zhang Y P, Lin X, Wei L, Wang M, Peng D J, Huang W D 2012 Acta Phys. Sin. 61 228106Google Scholar

    [19]

    江鸿翔, 赵九洲 2011 金属学报 47 1099

    Jiang H X, Zhao J Z 2011 Acta Metall. Sin. 47 1099

    [20]

    Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741Google Scholar

    [21]

    Pan S, Zhu M 2010 Acta Mater. 58 340Google Scholar

    [22]

    李强, 李殿中, 钱百年 2004 物理学报 53 3477Google Scholar

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477Google Scholar

    [23]

    Wei L, Lin X, Wang M, Huang W D 2015 Chin. Phys. B 24 078108Google Scholar

    [24]

    Zhang Q Y, Fang H, Xue H, Pan S Y, Rettenmayr M, Zhu M F 2017 Sci. Rep. 7 17809Google Scholar

    [25]

    朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰 2018 金属学报 54 789Google Scholar

    Zhu M F, Xing L K, Fang H, Zhang Q Y, Tang Q Y, Pan S Y 2018 Acta Metall. Sin. 54 789Google Scholar

    [26]

    Zhang Q Y, Xue H, Tang Q Y, Pan S Y, Rettenmayr M, Zhu M F 2018 Comput. Mater. Sci. 146 20

    [27]

    Zhang Q Y, Fang H, Xue H, Tang Q Y, Pan S Y, Rettenmayr M, Zhu M F 2018 Scr. Mater. 151 28Google Scholar

    [28]

    Farup I, Drezet J M, Rappaz M 2001 Acta Mater. 49 1261Google Scholar

  • 图 1  SCN–0.3 wt.% ACE合金在$\scriptstyle V_{\rm p}=0.6\;{\text{μ}}{\rm m/s}$($\scriptstyle {\tilde y_0} = 0.05$)和G = 12°C/mm条件下, 迁移熔池位置随时间变化的CA模拟结果与解析模型[15]预测结果的比较

    Fig. 1.  Comparison of the CA simulation with the analytical prediction[15]regarding the time evolution of the location of a migrating liquid pool for a SCN–0.3 wt.% ACE alloy at $\scriptstyle V_{\rm p}=0.6\;{\text{μ}}{\rm m/s}$, $\scriptstyle{\tilde y_0} = 0.05$ and G = 12°C/mm.

    图 2  SCN–0.3 wt.%ACE合金在$\scriptstyle V_{\rm p}=0.6\;{\text{μ}}{\rm m/s}$($\scriptstyle{\tilde y_0} = 0.05$)和G = 12 °C/mm条件下, (a)熔池迁移速度和(b)熔池成分随时间变化的CA模拟和解析模型[15]预测结果的比较

    Fig. 2.  Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of (a) liquid pool velocity and (b) liquid pool composition for a SCN–0.3 wt.% ACE alloy at $\scriptstyle V_{\rm p}=0.6\;{\text{μ}}{\rm m/s}$, $\scriptstyle{\tilde y_0} = 0.05$ and G = 12°C/mm.

    图 3  SCN–0.3 wt.% ACE合金在$\scriptstyle V_{\rm p}=5\;{\text{μ}}{\rm m/s}$($\scriptstyle{\tilde y_0} = 0.65$)和G = 12 °C/mm条件下, 迁移熔池位置随时间变化的CA模拟结果与解析模型[15]预测结果的比较

    Fig. 3.  Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of the location of a migrating liquid pool for a SCN–0.3 wt.% ACE alloy at $\scriptstyle V_{\rm p}=5\;{\text{μ}}{\rm m/s}$, $\scriptstyle {\tilde y_0} = 0.65$ and G = 12 °C/mm.

    图 4  SCN–0.3 wt.%ACE合金在$\scriptstyle V_{\rm p}=5\;{\text{μ}}{\rm m/s}$($\scriptstyle {\tilde y_0} = 0.65$)和G = 12°C/mm条件下, (a)熔池迁移速度和(b)熔池成分随时间变化的CA模拟和解析模型[15]预测结果的比较

    Fig. 4.  Comparison of the CA simulation with the analytical prediction[15] regarding the time evolution of (a) liquid pool velocity and (b) liquid pool composition for a SCN–0.3 wt.% ACE alloy at $\scriptstyle V_{\rm p}=5\;{\text{μ}}{\rm m/s}$, $\scriptstyle {\tilde y_0} = 0.65$ and G = 12°C/mm.

    图 5  SCN–0.3 wt.% ACE合金在G = 12 °C/mm条件下, (a) Vp < Vp, cr时熔池从初始位置($\scriptstyle {\tilde y_0} = 0.05$)迁移到移动的液相线所需时间tl和(b) Vp > Vp, cr情况下熔池从初始位置($\scriptstyle {\tilde y_0} = 0.65$)迁移到移动的固相线所需时间ts随抽拉速度变化的CA模拟与解析模型[15]预测结果的比较

    Fig. 5.  Comparison of the CA simulations with the analytical predictions [15] regarding the times required for a liquid pool to reach (a) the moving liquidus from $\scriptstyle{\tilde y_0} = 0.05$ at Vp < Vp, cr and (b) the moving solidus from $\scriptstyle{\tilde y_0} = 0.65$ at Vp > Vp, cr as a function of the pulling velocity for a SCN–0.3 wt.% ACE alloy at G = 12 °C/mm.

    图 6  CA模拟的SCN–0.3 wt.% ACE合金在Vp = $ \scriptstyle 2.89\;{\text{μ}}{\rm m/s} $G = 12°C/mm的条件下 (相应的临界位置$\scriptstyle{\tilde y_{0, {\rm{cr}}}}$ = 0.5), 5个不同初始位置的熔池的迁移演化过程 (a) 2 s; (b) 20 s; (c) 37 s. 5个熔池的无量纲初始位置分别为${\tilde y_0}$ = 0.08, 0.3, 0.5, 0.6和0.75. $\scriptstyle\widetilde y$为无量纲液滴位置, y为液滴位置

    Fig. 6.  Simulated sequence of liquid pool migration for a SCN–0.3 wt.% ACE alloy at G = 12 °C/mm, $ \scriptstyle V_{\rm p}=2.89\;{\text{μ}}{\rm m/s} $ corresponding to $\scriptstyle {\tilde y_{0, {\rm{cr}}}}$ = 0.5: (a) 2 s; (b) 20 s; (c) 37 s. The dimensionless initial positions of the five liquid pools are $\scriptstyle {\tilde y_0}$ = 0.08, 0.3, 0.5, 0.6 and 0.75, respectively. $\scriptstyle \widetilde y$ is the dimensionless droplet position, y is the droplet position.

    图 7  CA模拟的SCN–0.3 wt.% ACE合金在Vp = 2.89 ${\text{μ}}$m/s和G = 12°C/mm条件下(相应的临界位置${\tilde y_{0, {\rm{cr}}}}$ = 0.5), 平均迁移速度随无量纲初始熔池位置的变化

    Fig. 7.  CA simulated average migrating velocity as a function of the dimensionless initial liquid pool position for a SCN–0.3 wt.% ACE alloy at G = 12°C/mm and Vp = 2.89 ${\text{μ}}$m/s, corresponding to ${\tilde y_{0, {\rm{cr}}}}$ = 0.5.

    图 8  CA模拟的SCN–0.3 wt.% ACE合金在不同温度梯度条件下, 熔池迁移速度随时间的变化 (a) $ V_{\rm p} = 0.6 \;{\text{μ}}{\rm m/s}$, $ {\tilde y_0}$ = 0.3, Vp < Vp, cr; (b) $ V_{\rm p} = 5{\text{μ}}{\rm m/s}$, $ {\tilde y_0} $ = 0.7, Vp > Vp, cr

    Fig. 8.  CA simulated time evolution of liquid pool velocity for a SCN–0.3 wt.% ACE alloy at different temperature gradients and (a) $ V_{\rm p} = 0.6{\text{μ}}{\rm m/s}$, $ {\tilde y_0}$ = 0.3, Vp < Vp, cr; (b) $ V_{\rm p} = 5{\text{μ}}{\rm m/s}$, ${\tilde y_0}$ = 0.7, Vp > Vp, cr.

    图 9  CA模拟的不同成分SCN–ACE合金熔池在G = 14°C/mm时迁移速度随时间的变化 (a) ${V_{\rm p} = 0.2 \;{\text{μ}}{\rm m/s}}$, ${\tilde y_0}$ = 0.4, Vp < Vp, cr; (b) $ V_{\rm p} = 6\;{\text{μ}}{\rm m/s}$, ${\tilde y_0}$ = 0.7, Vp > Vp, cr

    Fig. 9.  CA simulated time evolution of liquid pool velocity for SCN-ACE alloys at G = 14°C/mm, different compositions and (a) $ V_{\rm p} = 0.2 \;{\text{μ}}{\rm m/s}$, ${\tilde y_0}$ = 0.4, Vp < Vp, cr; (b) $ V_{\rm p} = 6\;{\text{μ}}{\rm m/s}$, ${\tilde y_0}$ = 0.7, Vp > Vp, cr.

    表 1  本文工作采用的物性参数[15,28]

    Table 1.  The physical parameters used in the present work[15,28].

    符号物理意义数值
    Dl/m2·s–1溶质在液相中的扩散系数1 × 10–9
    k平衡分配系数0.1
    ml/K·(wt.%)–1液相线斜率–2.8
    Tm/°C纯SCN的熔点58.081
    下载: 导出CSV
  • [1]

    Rettenmayr M 2009 Int. Mater. Rev. 54 1Google Scholar

    [2]

    Pfann W G 1955 Trans. AIME 203 961

    [3]

    Tiller W A 1963 J. Appl. Phys. 34 2757Google Scholar

    [4]

    Allen D J, Hunt J D 1976 Metall. Mater. Trans. A 7 767Google Scholar

    [5]

    Kinoshita K, Arai Y, Inatomi Y, Tsukada T, Miyata H, Tanaka R 2016 J. Cryst. Growth 455 49Google Scholar

    [6]

    Wang H, Li S, Li X, Zhong H 2017 J. Cryst. Growth 466 56Google Scholar

    [7]

    Ma X, Yoshikawa T, Morita K 2014 Sci. Adv. Mater. 6 1697Google Scholar

    [8]

    Shirzadi A A, Wallach E R 1999 Acta Mater. 47 3551Google Scholar

    [9]

    Nguyen-Thi H, Reinhart G, Buffet A, Schenk T, Mangelinck-Noel N, Jung H, Bergeon N, Billia B, Hartwig J, Baruchel J 2008 J. Cryst. Growth 310 2906Google Scholar

    [10]

    Buchmann M, Rettenmayr M 2005 J. Cryst. Growth 284 544Google Scholar

    [11]

    Bösenberg U, Buchmann M, Rettenmayr M 2007 J. Cryst. Growth 304 281Google Scholar

    [12]

    Löffler A, Reuther K, Engelhardt H, Liu D, Rettenmayr M 2015 Acta Mater. 91 34Google Scholar

    [13]

    Liu D M, Li X Z, Su Y Q, Peng P, Luo L S, Guo J J, Fu H Z 2012 Acta Mater. 60 2679Google Scholar

    [14]

    Liu D M, Li X Z, Su Y Q, Rettenmayr M, Guo J J, Fu H Z 2014 Appl. Phys. A 116 1821Google Scholar

    [15]

    Pan S Y, Zhang Q Y, Zhu M F, Rettenmayr M 2015 Acta Mater. 86 229Google Scholar

    [16]

    朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科 2016 金属学报 52 1297Google Scholar

    Zhu M F, Tang Q Y, Zhang Q Y, Pan S Y, Sun D K 2016 Acta Metall. Sin. 52 1297Google Scholar

    [17]

    陈瑞, 许庆彦, 柳百成 2014 物理学报 63 188102Google Scholar

    Chen R, Xu Q Y, Liu B C 2014 Acta Phys. Sin . 63 188102Google Scholar

    [18]

    张云鹏, 林鑫, 魏雷, 王猛, 彭东剑, 黄卫东 2012 物理学报 61 228106Google Scholar

    Zhang Y P, Lin X, Wei L, Wang M, Peng D J, Huang W D 2012 Acta Phys. Sin. 61 228106Google Scholar

    [19]

    江鸿翔, 赵九洲 2011 金属学报 47 1099

    Jiang H X, Zhao J Z 2011 Acta Metall. Sin. 47 1099

    [20]

    Zhu M F, Stefanescu D M 2007 Acta Mater. 55 1741Google Scholar

    [21]

    Pan S, Zhu M 2010 Acta Mater. 58 340Google Scholar

    [22]

    李强, 李殿中, 钱百年 2004 物理学报 53 3477Google Scholar

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477Google Scholar

    [23]

    Wei L, Lin X, Wang M, Huang W D 2015 Chin. Phys. B 24 078108Google Scholar

    [24]

    Zhang Q Y, Fang H, Xue H, Pan S Y, Rettenmayr M, Zhu M F 2017 Sci. Rep. 7 17809Google Scholar

    [25]

    朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰 2018 金属学报 54 789Google Scholar

    Zhu M F, Xing L K, Fang H, Zhang Q Y, Tang Q Y, Pan S Y 2018 Acta Metall. Sin. 54 789Google Scholar

    [26]

    Zhang Q Y, Xue H, Tang Q Y, Pan S Y, Rettenmayr M, Zhu M F 2018 Comput. Mater. Sci. 146 20

    [27]

    Zhang Q Y, Fang H, Xue H, Tang Q Y, Pan S Y, Rettenmayr M, Zhu M F 2018 Scr. Mater. 151 28Google Scholar

    [28]

    Farup I, Drezet J M, Rappaz M 2001 Acta Mater. 49 1261Google Scholar

  • [1] 梁经韵, 张莉莉, 栾悉道, 郭金林, 老松杨, 谢毓湘. 多路段元胞自动机交通流模型. 物理学报, 2017, 66(19): 194501. doi: 10.7498/aps.66.194501
    [2] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [3] 魏雷, 林鑫, 王猛, 黄卫东. 激光立体成形中熔池凝固微观组织的元胞自动机模拟. 物理学报, 2015, 64(1): 018103. doi: 10.7498/aps.64.018103
    [4] 韩日宏, 董文超, 陆善平, 李殿中, 李依依. 宏微观耦合模拟熔池不同区域中枝晶竞争生长过程. 物理学报, 2014, 63(22): 228103. doi: 10.7498/aps.63.228103
    [5] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响. 物理学报, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [6] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [7] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型. 物理学报, 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [8] 王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东. 液相对流对定向凝固胞/枝晶间距的影响. 物理学报, 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [9] 石玉峰, 许庆彦, 柳百成. 对流作用下枝晶形貌演化的数值模拟和实验研究. 物理学报, 2011, 60(12): 126101. doi: 10.7498/aps.60.126101
    [10] 梅超群, 黄海军, 唐铁桥. 城市快速路系统的元胞自动机模型与分析. 物理学报, 2009, 58(5): 3014-3021. doi: 10.7498/aps.58.3014
    [11] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织. 物理学报, 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [12] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [13] 梅超群, 黄海军, 唐铁桥. 高速公路入匝控制的一个元胞自动机模型. 物理学报, 2008, 57(8): 4786-4793. doi: 10.7498/aps.57.4786
    [14] 岳 昊, 邵春福, 陈晓明, 郝合瑞. 基于元胞自动机的对向行人交通流仿真研究. 物理学报, 2008, 57(11): 6901-6908. doi: 10.7498/aps.57.6901
    [15] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [16] 郭四玲, 韦艳芳, 薛 郁. 元胞自动机交通流模型的相变特性研究. 物理学报, 2006, 55(7): 3336-3342. doi: 10.7498/aps.55.3336
    [17] 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机NS和WWH交通流混合模型的研究. 物理学报, 2006, 55(12): 6275-6280. doi: 10.7498/aps.55.6275
    [18] 花 伟, 林柏梁. 考虑行车状态的一维元胞自动机交通流模型. 物理学报, 2005, 54(6): 2595-2599. doi: 10.7498/aps.54.2595
    [19] 牟勇飚, 钟诚文. 基于安全驾驶的元胞自动机交通流模型. 物理学报, 2005, 54(12): 5597-5601. doi: 10.7498/aps.54.5597
    [20] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟. 物理学报, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
计量
  • 文章访问数:  7720
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-23
  • 修回日期:  2018-12-05
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-20

/

返回文章
返回