搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究

王丹 邹娟 唐黎明

引用本文:
Citation:

氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究

王丹, 邹娟, 唐黎明

Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study

Wang Dan, Zou Juan, Tang Li-Ming
PDF
HTML
导出引用
  • 用氢对单层二维过渡金属硫化物(TMDs)进行功能化是调节单层TMDs电子性质的既有效又经济的方法. 采用密度泛函理论, 对单层TMDs (MX2 (M = Mo, W; X = S, Se, Te))的稳定性和电子性质进行理论研究, 发现在单层MX2的层间有一个比其表面更稳定的氢吸附位点. 当同阳离子时, 随着阴离子原子序数的增加, H原子与MX2层的结合越强, 氢化单层MX2结构越稳定; 相反, 同阴离子时, 随着阳离子原子序数的增加, H原子与MX2层的结合越弱. 氢原子从MoS2的表面经层间穿越到另一表面的扩散势垒约为0.9 eV. 氢化对单层MX2的电子特性也会产生极大的影响, 主要表现在氢化实现了MX2体系从无磁性到磁性体系的过渡. 表面氢化会使MX2层的带隙急剧减小, 而层间氢化使MX2的电子结构从半导体转变为金属能带.
    Chemical functionalization of two-dimensional transition metal dichalcogenides (TMDs) with hydrogen is an effective and economical method to synthesize monolayer TMDs and tune their electronic properties. We theoretically study the stabilities and electronic properties of chemisorbed H atoms on monolayer TMDs by using density-functional theory calculations. The result shows that there exists a more stable adsorption site in the layers of the monolayer MX2 (M = Mo, W; X = S, Se, Te) than its surface for hydrogen. In the case of the same cation, with the increase of the anion (X2−) atomic number, the stronger the bonding between the H atom and the MX2 layer, the more stable the structure of the hydrogenated monolayer MX2 is. However, in the case of the same anion, the binding between the H atom and the MX2 layer becomes weaker as the atomic number of the cations increases. H atoms passes through one surface of the MS2 to the other surface with a relatively small diffusion barrier of about 0.9 eV. So the H atoms can more easily go through the barrier. And for the H atom to go through the other monolayer MX2 (M = Mo, W; X = Se, Te), the diffusion barrier is about 1.2 eV. H atoms are difficult to pass through the barrier at this time. The singular diffusion behavior of H atoms in monolayer MX2 is conducible to understanding the stability of hydrogenated two-dimensional transition metal sulfide system. In addition, the surface hydrogenation and interlaminar hydrogenation have different effects on the electronic properties of monolayer MX2, and mainly manifest themselves in the fact that the surface hydrogenation induces spontaneous magnetism and sharply reduces the band gap, but still retains the semiconductor properties of the original monolayer MX2. However, interlaminar hydrogenation enables monolayer MX2 to directly realize the transition from semiconductor to metal. Interlaminar hydrogenation monolayer MX2 (M = Mo, W; X = S, Se) make the system generating magnetism, while when the anion is Te2−, the magnetism almost disappears. These results can provide theoretical guidance in understanding hydrogen functionalization of MX2 layer, and also present a certain theoretical basis for realizing the application of MX2 in nano-electronic devices.
      通信作者: 唐黎明, lmtang@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674090, 11347022, 11447224)资助的课题.
      Corresponding author: Tang Li-Ming, lmtang@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674090, 11347022, 11447224).
    [1]

    Tang L P, Tang L M, Wang D, Deng H X, Chen K Q 2018 J. Phys.: Condens. Matter 30 465301Google Scholar

    [2]

    Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417Google Scholar

    [3]

    Wang D, Tang L M, Jiang X X, Tan J Y, He M D, Wang X J, Chen K Q 2018 Adv. Electron. Mater. DOI: 10.1002/aelm.201800475

    [4]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [5]

    Schwierz F, Pezoldt J, Granzner R 2015 Nanoscale 7 8261Google Scholar

    [6]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [7]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [8]

    Zhang W, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Lee Y H, Chu C W, Wei K H, Kuo J L, Li L J 2011 ACS Nano 5 7517Google Scholar

    [9]

    Flores M Z, Autreto P A, Legoas S B, Galvao D S 2009 Nanotechnology 20 465704Google Scholar

    [10]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401Google Scholar

    [11]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [12]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [13]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mark K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [14]

    Tang L P, Tang L M, Geng H, Yi Y P, Wei Z, Chen K Q, Deng H X 2018 Appl. Phys. Lett. 112 012101Google Scholar

    [15]

    Xue X X, Feng Y X, Liao L, Chen Q J, Wang D, Tang L M, Chen K Q 2018 J. Phys.: Condens. Matter 30 125001Google Scholar

    [16]

    颜送灵, 唐黎明, 赵宇清 2016 物理学报 65 077301Google Scholar

    Yan S L, Tang L M, Zhao Y Q 2016 Acta Phys. Sin. 65 077301Google Scholar

    [17]

    李立明, 宁锋, 唐黎明 2015 物理学报 64 227303Google Scholar

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303Google Scholar

    [18]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar

    [19]

    Lopezsanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [20]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [21]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar

    [22]

    Ning F, Wang D, Feng Y X, Tang L M, Zhang Y, Chen K Q 2017 J. Mater. Chem. C 5 9429Google Scholar

    [23]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [24]

    Li Q, Tang L, Zhang C, Wang D, Chen Q J, Feng Y X, Tang L M, Chen K Q 2017 Appl. Phys. Lett. 111 171602Google Scholar

    [25]

    Xu Y, Li Y, Chen X, Zhang C, Zhang R, Lu P 2016 AIP Adv. 6 075001Google Scholar

    [26]

    Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463Google Scholar

    [27]

    Chen J, Li S L, Xu Q, Tanaka K 2002 Chem. Commun. 16 1722Google Scholar

    [28]

    Cheng F Y, Chen J, Gou X L 2006 Adv. Mater. 18 2561Google Scholar

    [29]

    Karunadasa H I, Montalvo E, Sun Y, Majda M, Long J R, Chang C J 2012 Science 335 698Google Scholar

    [30]

    Mouri S, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944Google Scholar

    [31]

    Chhowalla M, Amaratunga G A 2000 Nature 407 164Google Scholar

    [32]

    Muratore C, Voevodin A A 2006 Surf. Coat. Technol. 201 4125Google Scholar

    [33]

    Stefanov M, Enyashin A N, Heine T, Seifert G 2008 J. Phys. Chem. C 112 17764Google Scholar

    [34]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [35]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar

    [36]

    Zou J, Tang L M, Chen K Q, Feng Y X 2017 J. Phys.: Condens. Matter 30 065001Google Scholar

    [37]

    Zhang W, Zhang Z, Yang W 2015 J. Nanosci. Nanotechnol. 15 8075Google Scholar

    [38]

    van der Marel D, Molegraaf H J A, Zaanen J, Nussinov Z, Carbone F, Damascelli H, Eisaki H, Greven M, Kes P H, Li M 2003 Nature 425 271Google Scholar

    [39]

    Sundberg P, Moyes R B, Tomkinson J 1991 Bull. Soc. Chim. Belg. 100 967Google Scholar

    [40]

    Lozada-Hidalgo M, Zhang S, Hu S, Kravets V G, Rodriguez F J, Berdyugin A, Grigorenko A, Geim A K 2018 Nat. Nanotechnol. 13 300Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [43]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [44]

    Koh E W K, Chiu C H, LimY K, ZhangY W, Pan H 2012 Int. J. Hydrogen Energy 37 14323Google Scholar

    [45]

    Özçelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

  • 图 1  单层MX2的结构模型及可能的H吸附位点示意图, 其中蓝色, 橙色和粉色分别表示阴离子(X2−)、阳离子(M4+)和氢原子; A—F表示氢原子可能的吸附位点

    Fig. 1.  Structural model and possible H adsorption sites of single-layer MX2. Blue, orange and pink balls correspond to anions (X2−), cations (M4+) and hydrogen atoms, respectively. A−F shows a possible adsorption site for hydrogen atom.

    图 2  单层MX2的稳定吸附位点结合能统计图

    Fig. 2.  Binding energy of the stable adsorption sites of single-layer MX2.

    图 3  氢原子穿过单层MX2的扩散势垒(扩散路径为从单层MX2表面D点穿过层间E点扩散到另一个表面D'点)

    Fig. 3.  Diffusion barrier of hydrogen atoms through a single layer of MX2. The diffusion path is from the D point of surface through the interlayer E point to the other surface D' point.

    图 4  氢原子稳定吸附在单层 MX2的电荷转移分布图(计算的电荷转移为MX2层E位点的转移情况, 箭头指示电荷转移的方向)

    Fig. 4.  Charge transfer profile of hydrogen atoms adsorbed on a single-layer MX2. The calculated charge transfer is the transfer of the E site of the MX2 layer, and the arrows indicate the direction of charge transfer.

    图 5  4 × 4单层MX2 (1L-MX2)超胞的能带结构图(费米能级用黑色虚线表述并设为0 eV)

    Fig. 5.  Band structures of 4 × 4 monolayer MX2 (1L-MX2) supercell. The fermi level is represented by dotted black line and set as 0 eV.

    图 6  表面氢化MX2能带结构图(蓝色和红色线分别表示自旋向上和自旋向下)

    Fig. 6.  Band structures of surface hydrogenation MX2. Blue and red correspond to spin-up and spin-down, respectively.

    图 7  层间氢化MX2能带结构图(蓝色和红色线表示自旋向上和自旋向下)

    Fig. 7.  Band structures of interlayer hydrogenation MX2. Blue and red correspond to spin-up and spin-down, respectively.

    表 1  氢原子吸附在单层MX2上的可能吸附位点(AS)的结合能, 及氢原子与阳离子(M4+ = Mo, W)的键长

    Table 1.  Binding energy of possible adsorption sites (AS) of hydrogen atoms adsorbed on single-layer MX2, and M—H (M4+ = Mo, W) bond lengths.

    ASBinding energy/eVM—H键长/Å
    ABCDEF
    MoS2−0.38−0.410.21−0.27−0.440.991.893
    MoSe2−0.19−0.16−0.26−0.30−0.910.471.950
    MoTe2−0.10−0.35−0.10−0.52−1.42−0.191.996
    WS2−0.09−0.160.30−0.06−0.261.581.901
    WSe2−0.01−0.090.50−0.18−0.800.691.970
    WTe20.09−0.05−0.64−0.45−1.39−0.182.005
    下载: 导出CSV
  • [1]

    Tang L P, Tang L M, Wang D, Deng H X, Chen K Q 2018 J. Phys.: Condens. Matter 30 465301Google Scholar

    [2]

    Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417Google Scholar

    [3]

    Wang D, Tang L M, Jiang X X, Tan J Y, He M D, Wang X J, Chen K Q 2018 Adv. Electron. Mater. DOI: 10.1002/aelm.201800475

    [4]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [5]

    Schwierz F, Pezoldt J, Granzner R 2015 Nanoscale 7 8261Google Scholar

    [6]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [7]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [8]

    Zhang W, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Lee Y H, Chu C W, Wei K H, Kuo J L, Li L J 2011 ACS Nano 5 7517Google Scholar

    [9]

    Flores M Z, Autreto P A, Legoas S B, Galvao D S 2009 Nanotechnology 20 465704Google Scholar

    [10]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401Google Scholar

    [11]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [12]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [13]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mark K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [14]

    Tang L P, Tang L M, Geng H, Yi Y P, Wei Z, Chen K Q, Deng H X 2018 Appl. Phys. Lett. 112 012101Google Scholar

    [15]

    Xue X X, Feng Y X, Liao L, Chen Q J, Wang D, Tang L M, Chen K Q 2018 J. Phys.: Condens. Matter 30 125001Google Scholar

    [16]

    颜送灵, 唐黎明, 赵宇清 2016 物理学报 65 077301Google Scholar

    Yan S L, Tang L M, Zhao Y Q 2016 Acta Phys. Sin. 65 077301Google Scholar

    [17]

    李立明, 宁锋, 唐黎明 2015 物理学报 64 227303Google Scholar

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303Google Scholar

    [18]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar

    [19]

    Lopezsanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [20]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [21]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111Google Scholar

    [22]

    Ning F, Wang D, Feng Y X, Tang L M, Zhang Y, Chen K Q 2017 J. Mater. Chem. C 5 9429Google Scholar

    [23]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [24]

    Li Q, Tang L, Zhang C, Wang D, Chen Q J, Feng Y X, Tang L M, Chen K Q 2017 Appl. Phys. Lett. 111 171602Google Scholar

    [25]

    Xu Y, Li Y, Chen X, Zhang C, Zhang R, Lu P 2016 AIP Adv. 6 075001Google Scholar

    [26]

    Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463Google Scholar

    [27]

    Chen J, Li S L, Xu Q, Tanaka K 2002 Chem. Commun. 16 1722Google Scholar

    [28]

    Cheng F Y, Chen J, Gou X L 2006 Adv. Mater. 18 2561Google Scholar

    [29]

    Karunadasa H I, Montalvo E, Sun Y, Majda M, Long J R, Chang C J 2012 Science 335 698Google Scholar

    [30]

    Mouri S, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944Google Scholar

    [31]

    Chhowalla M, Amaratunga G A 2000 Nature 407 164Google Scholar

    [32]

    Muratore C, Voevodin A A 2006 Surf. Coat. Technol. 201 4125Google Scholar

    [33]

    Stefanov M, Enyashin A N, Heine T, Seifert G 2008 J. Phys. Chem. C 112 17764Google Scholar

    [34]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [35]

    Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610Google Scholar

    [36]

    Zou J, Tang L M, Chen K Q, Feng Y X 2017 J. Phys.: Condens. Matter 30 065001Google Scholar

    [37]

    Zhang W, Zhang Z, Yang W 2015 J. Nanosci. Nanotechnol. 15 8075Google Scholar

    [38]

    van der Marel D, Molegraaf H J A, Zaanen J, Nussinov Z, Carbone F, Damascelli H, Eisaki H, Greven M, Kes P H, Li M 2003 Nature 425 271Google Scholar

    [39]

    Sundberg P, Moyes R B, Tomkinson J 1991 Bull. Soc. Chim. Belg. 100 967Google Scholar

    [40]

    Lozada-Hidalgo M, Zhang S, Hu S, Kravets V G, Rodriguez F J, Berdyugin A, Grigorenko A, Geim A K 2018 Nat. Nanotechnol. 13 300Google Scholar

    [41]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [42]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [43]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [44]

    Koh E W K, Chiu C H, LimY K, ZhangY W, Pan H 2012 Int. J. Hydrogen Energy 37 14323Google Scholar

    [45]

    Özçelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

  • [1] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [2] 苗瑞霞, 王业飞, 谢妙春, 张德栋. 单空位缺陷对二维δ-InSe稳定性的影响. 物理学报, 2024, 73(4): 043102. doi: 10.7498/aps.73.20230904
    [3] 闫雅婷, 张景研, 李斌旗, 朱志立, 谷锦华. 碱金属碘化物和氢碘酸共添加低温制备高稳定的CsPbI3薄膜. 物理学报, 2021, 70(11): 118401. doi: 10.7498/aps.70.20201950
    [4] 范海龙, 陈明文. 磁场对二元合金凝固过程中糊状层稳定性的影响. 物理学报, 2021, 70(6): 066401. doi: 10.7498/aps.70.20201748
    [5] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [6] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [7] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [8] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] 邓发明. 强激光照射对2H-SiC晶体电子特性的影响. 物理学报, 2015, 64(22): 227101. doi: 10.7498/aps.64.227101
    [10] 高潭华. 表面氢化双层硅烯的结构和电子性质. 物理学报, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [11] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质. 物理学报, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [12] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [13] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [14] 陈海军, 李向富. 二维线性与非线性光晶格中物质波孤立子的稳定性. 物理学报, 2013, 62(7): 070302. doi: 10.7498/aps.62.070302
    [15] 薛丽, 易林. Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响. 物理学报, 2013, 62(13): 138801. doi: 10.7498/aps.62.138801
    [16] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [17] 郭向阳, 常本康, 王晓晖, 张益军, 杨铭. 反射式负电子亲和势GaN光电阴极的光电发射及稳定性研究. 物理学报, 2011, 60(5): 058101. doi: 10.7498/aps.60.058101
    [18] 陈海军, 李高清, 薛具奎. 变分法研究一维Bose-Fermi系统的稳定性. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [19] 王彦, 沈波, Dierre Benjamin, Sekiguchi Takashi, 许福军. 氢化作用对低能电子束辐照下GaN发光演变的影响. 物理学报, 2009, 58(11): 7864-7868. doi: 10.7498/aps.58.7864
    [20] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解. 物理学报, 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
计量
  • 文章访问数:  8958
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-27
  • 修回日期:  2018-12-05
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回