-
激光外差是一种基于相干探测原理的高灵敏度光谱检测技术, 因其同时具有很高的光谱分辨能力, 被广泛应用于诸多研究领域. 在光谱测量过程中, 仪器线型函数对吸收谱线的平滑作用, 会对气体浓度的反演结果产生影响. 为了获取激光外差光谱仪的仪器线型函数, 基于激光外差原理和信号处理过程, 对影响仪器线型函数的射频滤波带宽和积分时间等参数进行了分析, 获得了仪器线型函数表达式. 利用自行建立的激光外差光谱仪, 多次测量了3.53
${\text{μm}}$ 波段内水汽、甲烷的吸收谱线, 分别将射频滤波频域响应函数和本文获得的仪器线型函数耦合进水汽、甲烷柱浓度的反演. 结果表明, 射频滤波带宽为30 MHz、积分时间分别为10 ms和100 ms时, 光谱仪的实际分辨率分别约为0.005 cm–1和0.025 cm–1; 使用仪器线型函数对积分时间为100 ms时测量的数据进行反演, 透过率残差平方和与甲烷吸收峰值处的残差分别减小16%和100%, 提高了气体浓度反演的准确度.Laser heterodyne is a kind of technique based on coherent detection with high sensitivity and spectral resolution for spectrum measurements. For these reasons, it has been widely used in many research fields, such as trace gases’ detection of earth’s or terrestrial planets’ atmosphere. However, when the laser heterodyne spectrometer is used for measuring the spectrum, the instrument line shape (ILS) function usually smooth the spectrum, which affects the inversion results of the gas column density. In previous researches, the radio frequency (RF) filter response function was usually used as the ILS, but recent studies indicated that the ILS without consideration of the influence of lock-in amplifier was not precise enough. In order to obtain the ILS function of the laser heterodyne spectrometer, the main factors which influence the ILS are analyzed, including the RF filter bandwidth, integral time and low-pass filter of lock-in amplifier, and the process is based on the principle of laser heterodyne technology and the flow of heterodyne signal processing. The presented ILS is the convolution of RF filter, wavelength variation in the integral time and the low-pass filter. In addition, for testing the effectiveness of the ILS in this paper, the laser heterodyne spectrometer which was built in our laboratory is used for the multiple measurement of the absorption of water vapor and methane in the band of 3.53${\text{μm}}$ and the column densities are retrieved with different ILS. The experimental results show that the actual resolutions of the laser heterodyne spectrometer are about 0.005 cm–1 and 0.025 cm–1 when the integral times are set to be 10 ms and 100 ms respectively. Furthermore, the RF filter response function and the ILS function presented in the paper are respectively used in the procedure of water vapor and methane inversion. The results show that when the ILS function used for the retrieval, the sum of squared residual reduces about 16% and the residuals at the peak of methane absorption reduces almost 100% compared with the scenario when using the RF filter function. Above all, the comprehensive analysis of the laser heterodyne spectrometer in this paper indicates that the ILS function is more precise than pioneering studies and this work will be helpful for retrieving the precise profiles of trace gases.-
Keywords:
- laser heterodyne /
- instrument line shape function /
- radio frequency filter /
- transmittance spectrum
[1] Sonnabend G, Krötz P, Schmülling F, Kostiuk T, Goldstein J, Sornig M, Stupar D, Livengood T, Hewagama T, Fast K, Mahieux A 2012 Icarus 217 856Google Scholar
[2] Ren Y, Hovenier J N, Higgins R, Gao J R, Klapwijk T M, Shi S C, Bell A, Klein B, Williams B S, Kumar S, Hu Q, Reno J L 2010 Appl. Phys. Lett. 97 161105Google Scholar
[3] Bernardo C J H 2001 Ph. D. Dissertation (Wollongong: University of Wollongong)
[4] Frey M, Hase F, Blumenstock T, Groß J, Kiel M, Tsidu G M, Schäfer K, Sha M K, Orphal J 2015 Atmos. Meas. Tech. 8 3047Google Scholar
[5] 熊伟, 施海亮, 俞能海 2015 光谱学与光谱分析 35 267Google Scholar
Xiong W, Shi H L, Yu N H 2015 Spectrosc. Spect. Anal. 35 267Google Scholar
[6] Taguchi M, Okano S, Fukunishi H, Sasano Y 1990 Geo. Res. Lett. 17 2349Google Scholar
[7] Fukunishi H, Okano S, Taguchi M, Ohnuma T 1990 Appl. Opt. 29 2722Google Scholar
[8] Weidmann D, Reburn W J, Smith K M 2007 Appl. Opt. 46 7162Google Scholar
[9] Weidmann D, Tsai T, Macleod N A, Wysocki G 2011 Opt. Lett. 36 1951Google Scholar
[10] Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar
[11] Wilson E L, Mclinden M L, Miller J H, Allan G R, Ott L E, Melroy H R, Clarke G B 2014 Appl. Phys. B 114 385Google Scholar
[12] Melroy H R, Wilson E L, Clarke G B, Ott L E, Mao J, Ramanathan A K, McLinden M L 2015 Appl. Phys. B 120 609Google Scholar
[13] 谈图 2015 博士学位论文 (合肥: 中国科学院安徽光学精密机械研究所)
Tan T 2015 Ph. D. Dissertation (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)
[14] 谈图, 曹振松, 王贵师, 汪磊, 刘锟, 黄印博, 陈卫东, 高晓明 2015 光谱学与光谱分析 35 1516Google Scholar
Tan T, Cao Z S, Wang G S, Wang L, Liu K, Huang Y B, Chen W D, Gao X M 2015 Spectrosc. Spect. Anal. 35 1516Google Scholar
[15] Blaney T G 1975 Space Sci. Rev. 17 691Google Scholar
[16] Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta A 60 1193Google Scholar
[17] Protopopov V V 2009 Laser Heterodyning (Berlin: Springer-Verlag) pp1−103
[18] Qi C, Huang Y Y, Zhang W S, Zhou D, Wang Y M, Zhu M 2016 IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society Florence, Italy, October 23−26, 2016 p883
[19] Remillard P A, Amorelli M C 1993 US Patent 52 10484 A
[20] 曹亚南, 王睿, 王贵师, 朱公栋, 谈图, 王晶晶, 刘锟, 汪磊, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 3626
Cao Y N, Wang R, Wang G S, Zhu G D, Tan T, Wang J J, Liu K, Wang L, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 3626
[21] 卢兴吉, 曹振松, 黄印博, 高晓明, 饶瑞中 2018 光学精密工程 26 1846
Lu X J, Cao Z S, Huang Y B, Gao X M, Rao R Z 2018 Optics Precis. Eng. 26 1846
-
-
[1] Sonnabend G, Krötz P, Schmülling F, Kostiuk T, Goldstein J, Sornig M, Stupar D, Livengood T, Hewagama T, Fast K, Mahieux A 2012 Icarus 217 856Google Scholar
[2] Ren Y, Hovenier J N, Higgins R, Gao J R, Klapwijk T M, Shi S C, Bell A, Klein B, Williams B S, Kumar S, Hu Q, Reno J L 2010 Appl. Phys. Lett. 97 161105Google Scholar
[3] Bernardo C J H 2001 Ph. D. Dissertation (Wollongong: University of Wollongong)
[4] Frey M, Hase F, Blumenstock T, Groß J, Kiel M, Tsidu G M, Schäfer K, Sha M K, Orphal J 2015 Atmos. Meas. Tech. 8 3047Google Scholar
[5] 熊伟, 施海亮, 俞能海 2015 光谱学与光谱分析 35 267Google Scholar
Xiong W, Shi H L, Yu N H 2015 Spectrosc. Spect. Anal. 35 267Google Scholar
[6] Taguchi M, Okano S, Fukunishi H, Sasano Y 1990 Geo. Res. Lett. 17 2349Google Scholar
[7] Fukunishi H, Okano S, Taguchi M, Ohnuma T 1990 Appl. Opt. 29 2722Google Scholar
[8] Weidmann D, Reburn W J, Smith K M 2007 Appl. Opt. 46 7162Google Scholar
[9] Weidmann D, Tsai T, Macleod N A, Wysocki G 2011 Opt. Lett. 36 1951Google Scholar
[10] Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar
[11] Wilson E L, Mclinden M L, Miller J H, Allan G R, Ott L E, Melroy H R, Clarke G B 2014 Appl. Phys. B 114 385Google Scholar
[12] Melroy H R, Wilson E L, Clarke G B, Ott L E, Mao J, Ramanathan A K, McLinden M L 2015 Appl. Phys. B 120 609Google Scholar
[13] 谈图 2015 博士学位论文 (合肥: 中国科学院安徽光学精密机械研究所)
Tan T 2015 Ph. D. Dissertation (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)
[14] 谈图, 曹振松, 王贵师, 汪磊, 刘锟, 黄印博, 陈卫东, 高晓明 2015 光谱学与光谱分析 35 1516Google Scholar
Tan T, Cao Z S, Wang G S, Wang L, Liu K, Huang Y B, Chen W D, Gao X M 2015 Spectrosc. Spect. Anal. 35 1516Google Scholar
[15] Blaney T G 1975 Space Sci. Rev. 17 691Google Scholar
[16] Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta A 60 1193Google Scholar
[17] Protopopov V V 2009 Laser Heterodyning (Berlin: Springer-Verlag) pp1−103
[18] Qi C, Huang Y Y, Zhang W S, Zhou D, Wang Y M, Zhu M 2016 IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society Florence, Italy, October 23−26, 2016 p883
[19] Remillard P A, Amorelli M C 1993 US Patent 52 10484 A
[20] 曹亚南, 王睿, 王贵师, 朱公栋, 谈图, 王晶晶, 刘锟, 汪磊, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 3626
Cao Y N, Wang R, Wang G S, Zhu G D, Tan T, Wang J J, Liu K, Wang L, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 3626
[21] 卢兴吉, 曹振松, 黄印博, 高晓明, 饶瑞中 2018 光学精密工程 26 1846
Lu X J, Cao Z S, Huang Y B, Gao X M, Rao R Z 2018 Optics Precis. Eng. 26 1846
计量
- 文章访问数: 8431
- PDF下载量: 78
- 被引次数: 0