搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯过程回归的高分辨率光谱仪仪器轮廓建模

李布威 唐靓 陆彦婷 叶慧琪 韩建 翟洋 陈俊沅 肖东

引用本文:
Citation:

基于高斯过程回归的高分辨率光谱仪仪器轮廓建模

李布威, 唐靓, 陆彦婷, 叶慧琪, 韩建, 翟洋, 陈俊沅, 肖东

Instrumental Profile Modelling of a HighResolution Spectrograph based on Gaussian Process Regression

LI Buwei, TANG Liang, LU Yanting, YE Huiqi, HAN Jian, ZHAI Yang, CHEN Junyuan, XIAO Dong
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 类地系外行星的视向速度法探测要求新一代高分辨率天文光谱仪具备10cm/s以上的仪器测量精度。对高分辨率光谱仪的仪器轮廓进行准确建模和刻画,有望显著提高光谱仪波长定标精度,突破测量精度瓶颈。针对简单高斯模型无法准确表征实际光谱仪仪器轮廓的问题,本文提出一种基于高斯过程回归的高分辨天文光谱仪仪器轮廓精细建模方法,结合实测激光频率梳定标数据,对兴隆2.16米望远镜高分辨率光纤光谱仪的仪器轮廓进行了建模分析,并成功将相关仪器轮廓模型应用于光谱仪的波长定标,实现了波长定标精度和双通道一致性的提高。
    Aims : High-resolution spectrographs are central to modern exoplanet research and are particularly effective for detecting Earth-like planets whose radial velocity (RV) signals can be only a few tens of centimeters per second. Achieving this level of precision requires highly accurate wavelength calibration. A key factor in this process is the modeling of the instrumental profile (IP), which describes the response of the spectrograph to incoming light. The true IP of a high-resolution instrument is often complex. It may show asymmetry or extended wings and change across the detector because of optical aberrations, variations in fiber illumination, and environmental effects. These features lead to systematic errors in the measured line centers when traditional parametric models such as Gaussian functions are used, and they limit the achievable RV precision.
    Methods: This work introduces a non-parametric IP modeling method based on Gaussian Process Regression (GPR). The IP is treated as a smooth function with a flexible covariance structure instead of being constrained by a predefined analytic form. GPR learns both the global structure and small-scale features of the line shape directly from the data. Since the IP varies slowly across the detector, the method divides each spectral order into several consecutive spatial segments. Each segment is fitted independently, capturing local variations. The model includes measurement uncertainties and provides a probabilistic description of the IP. Adjacent segments are linked with smooth interpolation to ensure a continuous IP across the entire order. Model performance is evaluated using reduced chi-squared and root mean square error (RMSE), allowing quantitative assessment and comparison with traditional approaches.
    Results: The method is tested with laser frequency comb (LFC) exposures from the fiber-fed High Resolution Spectrograph (HRS) on the 2.16 m telescope at Xinglong Observatory. The LFC produces a dense and highly stable set of emission lines and is well suited for validating IP reconstruction. Three experiments show clear and consistent improvements. Using odd-numbered lines to predict evennumbered ones within a single exposure reduces the RMSE by 35.6% compared with a Gaussian model, showing better determination of line centers. Applying an IP model trained on one exposure to a later exposure reduces the RMSE by 42.5%, demonstrating improved stability when the model is transferred between exposures. A comparison between two channels in the same exposure shows a 37.1% improvement in calibration consistency, indicating reduced channel-tochannel systematics.
    Conclusions: The results show that GPR provides a more accurate description of the instrumental profile and its spatial variation than traditional parametric models. The improved reconstruction of the IP leads to more accurate line center measurements and a more stable and precise wavelength solution. This capability is important for pushing the RV precision of high-resolution spectrographs toward the centimeter-per-second level. GPR offers a promising approach for modeling instrumental profiles and supports the precision required for detecting Earth-like exoplanets.
  • [1]

    Queloz D, Mayor M, Udry S, Burnet M, Carrier F, Eggenberger A, Naef D, Santos N, Pepe F, Rupprecht G, Avila G, Baeza S, Benz W, Bertaux J-L, Bouchy F, Cavadore C, Delabre B, Eckert W, Fischer J, Fleury M, Gilliotte A, Goyak D, Guzman J C, Kohler D, Lacroix D, Lizon J-L, Megevand D, Sivan J-P, Sosnowska D, Weilenmann U 2001 J Messenger 105 1

    [2]

    Pepe F, Cristiani S, Rebolo R, Santos N C, Dekker H, Mègevand D, Zerbi F M, Affolter M, Cabral A, Molaro P, Di Marcantonio P, Abreu M, Aliverti M, Allende Prieto C, Amate M, Avila G, Baldini V, Bristow P, Broeg C, Cirami R, Coelho J, Conconi P, Coretti I, Cupani G, D’Odorico V, De Caprio V, Delabre B, Dorn R, Figueira P, Fragoso A, Galeotta S, Genolet L, Gomes R, González Hernández J I, Hughes I, Iwert O, Kerber F, Landoni M, Lizon J-L, Lovis C, Maire C, Mannetta M, Martins C, Monteiro M A, Oliveira A, Porretti E, Rasilla J L, Riva M, Tschudi S S, Santos P, Sosnowska D, Sousa S, Spanò P, Tenegi F, Toso G, Vanzella E, Viel M, Zapatero Osorio M R 2013 J Messenger 153 6

    [3]

    Mayor M, Queloz D 1995 Nature 378 355

    [4]

    Mignon L, Delfosse X, Bonfils X, Meunier N, Astudillo-Defru N, Gaisne G, Forveille T, Bouchy F, Lo Curto G, Udry S, Segransan D, Unger N, Lovis C, Santos N C, Mayor M 2024 Astron. Astrophys. 689 A32

    [5]

    Passegger V M, Suárez Mascareño A, Allart R, González Hernández J I, Lovis C, Lavie B, Silva A M, Müller H M, Tabernero H M, Cristiani S, Pepe F, Rebolo R, Santos N C, Adibekyan V, Alibert Y, Allende Prieto C, Barros S C C, Bouchy F, Castro-González A, D’Odorico V, Dumusque X, Di Marcantonio P, Ehrenreich D, Figueira P, Génova Santos R, Lo Curto G, Martins C J A P, Mehner A, Micela G, Molaro P, Nari N, Nunes N J, Pallé E, Poretti E, Rodrigues J, Sousa S G, Sozzetti A, Udry S, Zapatero Osorio M R 2024 Astron. Astrophys. 684 A22

    [6]

    Mayor M, Lovis C, Santos N C 2014 Nature 513 328

    [7]

    Pepe F, Ehrenreich D, Meyer M R 2014 Nature 513 358

    [8]

    Milaković D, Jethwa P 2024 Astron. Astrophys. 684 A38

    [9]

    Hao Z B, Ye H Q, Tang L, Hao J, Han J, Zhai Y, Xiao D 2022 Acta Opt. Sin. 42 0112002(in Chinese) [郝志博, 叶慧琪, 唐靓, 郝俊, 韩建, 翟洋, 肖东 2022 光学学报 42 0112002]

    [10]

    Hirano T, Kuzuhara M, Kotani T, Omiya M, Kudo T, Harakawa H, Vievard S, Kurokawa T, Nishikawa J, Tamura M, Hodapp K, Ishizuka M, Jacobson S, Konishi M, Serizawa T, Ueda A, Gaidos E, Sato B 2020 Publ. Astron. Soc. Jpn. 72 93

    [11]

    Schmidt T M, Bouchy F 2024 Mon. Not. R. Astron. Soc. 530 1252

    [12]

    Valenti J A, Butler R P, Marcy G W 1995 Publ. Astron. Soc. Pac. 107 966

    [13]

    Chamarthi S, Banyal R K, Sriram S 2018 Proc. SPIE 10702 1070275

    [14]

    Bechter E B, Bechter A J, Crepp J R, Crass J 2021 J. Astron. Telesc. Instrum. Syst. 7 035008

    [15]

    Seifahrt A, Bean J L, Kasper D, Stürmer J, Brady M, Liu R, Zechmeister M, Stefánsson G K, Montet B, White J, Tapia E, Mocnik T, Xu S, Schwab C 2022 Proc. SPIE 12184 121841G

    [16]

    Udem T, Holzwarth R, Hänsch T W 2002 Nature 416 233-237

    [17]

    Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D’Odorico S, Fischer M, Hänsch T W, Manescau A 2007 Mon. Not. R. Astron. Soc. 380 839

    [18]

    Zhao F, Curto G L, Pasquini L, Hernández J G, De Medeiros J, Martins B C, Leão I, Rebolo R, Mascareño A S, Esposito M 2021 Astron. Astrophys. 645 A23

    [19]

    Schmidt T M, Molaro P, Murphy M T, Lovis C, Cupani G, Cristiani S, Pepe F A, Rebolo R, Santos N C, Abreu M, Adibekyan V, Alibert Y, Aliverti M, Allart R, Allende Prieto C, Alves D, Baldini V, Broeg C, Cabral A, Calderone G, Cirami R, Coelho J, Coretti I, D’Odorico V, Di Marcantonio P, Ehrenreich D, Figueira P, Genoni M, Génova Santos R, González Hernández J I, Kerber F, Landoni M, Leão A C O, Lizon J-L, Lo Curto G, Manescau A, Martins C J A P, Mègevand D, Mecheri A, Micela G, Modigliani A, Monteiro M, Monteiro M J P F G, Mueller E, Nunes N J, Oggioni L, Oliveira A, Pariani G, Pasquini L, Redaelli E, Riva M, Santos P, Sosnowska D, Sousa S G, Sozzetti A, Suárez Mascareño A, Udry S, Zapatero Osorio M R, Zerbi F 2021 Astron. Astrophys. 646 A144

    [20]

    Schmidt T M 2024 Proc. SPIE 13100 131004P

    [21]

    Robertson J G 2013 Publ. Astron. Soc. Aust. 30 e048

    [22]

    Hao Z B, Ye H Q, Han J, Tang L, Zhai Y, Xiao D, Zhu Y T, Zhang K, Wang L, Zhao G, Zhao F, Wang H J, Zheng J, Liu Y J, Wang J Q, Wei R Y, Yan Q Q 2020 arXiv:2005.07864 [astro-ph.IM]

    [23]

    Cai Y, Xu Z, Ji K 2020 Solar Physics 295 31

    [24]

    Meech A, Aigrain S, Brogi M, Birkby J L 2022 Mon. Not. R. Astron. Soc. 512 2604

    [25]

    Aigrain S, Foreman-Mackey D 2023 Annu. Rev. Astron. Astrophys. 61 329

    [26]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hänsch T W, Udem T 2009 Applied Physics B 96 251

    [27]

    Anderson J, King I R 2000 Publ. Astron. Soc. Pac. 112 1360

    [28]

    Fan Z, Wang H J, Jiang X J, Wu H, Li H B, Huang Y, Xu D W, Hu Z W, Zhu Y N, Wang J F, Komossa S, Zhang X M 2016 Publ. Astron. Soc. Pac. 128 1

    [29]

    Hao Z B, Ye H Q, Han J, Wu Y J, Zhai Y, Xiao D 2018 Publ. Astron. Soc. Pac. 130 125001

  • [1] 刘凡, 蒋渊丞, 郭华. 高分辨率磁共振二维扩散成像技术综述. 物理学报, doi: 10.7498/aps.74.20250235
    [2] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征. 物理学报, doi: 10.7498/aps.70.20210640
    [3] 钟志, 赵婉婷, 单明广, 刘磊. 远心同-离轴混合数字全息高分辨率重建方法. 物理学报, doi: 10.7498/aps.70.20210190
    [4] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率. 物理学报, doi: 10.7498/aps.70.20210731
    [5] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术. 物理学报, doi: 10.7498/aps.68.20190018
    [6] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中. 激光外差光谱仪的仪器线型函数研究. 物理学报, doi: 10.7498/aps.68.20181620
    [7] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, doi: 10.7498/aps.67.20180689
    [8] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统. 物理学报, doi: 10.7498/aps.66.074208
    [9] 焦亚音, 冉令坤, 李娜, 高守亭, 周冠博. 台风彩虹(2015)高分辨率数值模拟及涡旋Rossby波特征分析. 物理学报, doi: 10.7498/aps.66.089201
    [10] 魏宇童, 刘尚阔, 颜廷昱, 李祺伟. 偏振型干涉成像光谱仪谱线位置定标方法的研究. 物理学报, doi: 10.7498/aps.65.080601
    [11] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, doi: 10.7498/aps.64.219501
    [12] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, doi: 10.7498/aps.64.070704
    [13] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, doi: 10.7498/aps.64.114207
    [14] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, doi: 10.7498/aps.63.184209
    [15] 李军, 张友鹏. 基于高斯过程的混沌时间序列单步与多步预测. 物理学报, doi: 10.7498/aps.60.070513
    [16] 孙增国, 韩崇昭. 基于拖尾分布的高分辨率合成孔径雷达图像建模. 物理学报, doi: 10.7498/aps.59.998
    [17] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像. 物理学报, doi: 10.7498/aps.58.4610
    [18] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究. 物理学报, doi: 10.7498/aps.58.6596
    [19] 王震遐, 胡 均, 王玟珉, 俞国庆, 阮美龄. 石墨薄片弯曲度的高分辨率电子显微镜研究. 物理学报, doi: 10.7498/aps.47.1853
    [20] 朱德彰, 潘浩昌, 曹建清, 朱福英, 陈国明, 陈国樑, 杨絜, 邹世昌. 用高分辨率沟道背散射谱仪研究硅的低能氮离子氮化. 物理学报, doi: 10.7498/aps.39.96
计量
  • 文章访问数:  22
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-12

/

返回文章
返回