搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

940 nm垂直腔面发射激光器的设计及制备

于洪岩 尧舜 张红梅 王青 张杨 周广正 吕朝晨 程立文 郎陆广 夏宇 周天宝 康联鸿 王智勇 董国亮

引用本文:
Citation:

940 nm垂直腔面发射激光器的设计及制备

于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮

Design and fabrication of 940 nm vertical-cavity surface-emitting lasers

Yu Hong-Yan, Yao Shun, Zhang Hong-Mei, Wang Qing, Zhang Yang, Zhou Guang-Zheng, Lü Zhao-Chen, Cheng Li-Wen, Lang Lu-Guang, Xia Yu, Zhou Tian-Bao, Kang Lian-Hong, Wang Zhi-Yong, Dong Guo-Liang
PDF
HTML
导出引用
  • 利用PICS3D计算得到InGaAs/GaAsP应变补偿量子阱的增益特性, 得到量子阱的各项参数, 再通过传输矩阵理论和TFCalc膜系设计软件分别仿真出上下分布式布拉格反射镜的白光反射谱. 采用金属有机化合物气相沉积技术外延生长了垂直腔面发射激光器结构, 之后通过干法刻蚀、湿法氧化以及金属电极等芯片技术制备得到8 ${\text{μm}}$氧化孔径的VCSEL芯片. 最终, 测试得到其光电特性实现室温下阈值电流和斜效率分别为0.95 mA和0.96 W/A, 在6 mA电流和2 V电压下输出功率达到4.75 mW, 并测试了VCSEL的高温特性.
    A high slope efficiency vertical-cavity surface-emitting laser (VCSEL) is described. The InGaAs/GaAsP strain compensated multiple quantum wells (MQWs) are designed by PICS3D. The wavelength redshift occurs due to the thermal effect, the lasing wavelength of MQWs is designed to be around 928 nm. The active region consists of five compressively strained 4.4 nm thick In0.16Ga0.84As quantum wells separated and surrounded by 6.2 nm thick GaAs0.88P0.12 tensile strained compensation layers to obtain the high quantum efficiency and ensure the stress release. Subsequently, the MQWs are grown by metal-organic chemical vapor deposition (MOCVD) and the photoluminescence (PL) spectrum is measured using an Nd:YAG laser (532 nm excitation), of which the peak wavelength is approximately 928 nm and the full width at half maximum is nearly 17.1 nm. The resonant cavity is surrounded by p- and n-DBRs. The n-DBRs are designed to be a 28-period AlAs/Al0.12Ga0.88As and 3.5-period Al0.90Ga0.10As/Al0.12Ga0.88As, and the p-DBR is designed to be a 23-period Al0.90Ga0.10As/Al0.12Ga0.88As. The thickness of each a material is $\lambda/4n$ ($\lambda$ = 940 nm, n represents refractive index), and 20 nm graded layer is inserted in the interface between two types of materials. The p-/n-DBRs’ experiment PL reflection spectra (using a white illuminant) are carried out, the central wavelength is around 938.7 nm, and the reflectivity values of p-/n-DBRs are nearly 99.0% and 99.7%, respectively. The VCSELs are grown by MOCVD technique, and treated by dry etching, wet oxidation, metal electrode technology and other processes. In the process of dry etching, the top mesa is treated by inductively coupled plasma with BCl3 and Cl2 chemistry. In order to expose the oxide layer the wet oxidized process is carried out, and the etching depth is nearly 3500 nm. An oxidation furnace is heated for 15 min prior to oxidation. Then the oxide aperture is shaped by the wet nitrogen oxidation furnace at 425 °C with an N2 flow of 200 sccm, and the oxide rate is approximately 0.40 ${\text{μm}}$/min for A0.98Ga0.02As. The diameter of oxide aperture is made into an 8 ${\text{μm}}$ diameter. In the process of metal electrode technology, AuGeNi alloy is sputtered on the top surface to form p-type ohmic contact, and Ti/Pt/Au is evaporated on the back surface of substrate to form an n-type ohmic contact. Rapid thermal annealing at 350 °C in a nitrogen atmosphere is carried out subsequently to obtain a good-quality ohmic contact. Finally, we test the VCSELs’ L-I-V characteristics and spectra in different areas. In area 1, room-temperature lasing at around 940 nm is achieved with a threshold current of 0.95 mA, a slope efficiency of 0.96 W/A, and an output power of 4.75 mW. In area 2, threshold current is 1 mA, a slope efficiency is 0.81 W/A at 25 °C and threshold current is 1.9 mA, slope efficiency is 0.57 W/A at 25 °C. The output power values reach up to 3.850 mW and 2.323 mW at 25 °C and 80 °C, respectively.
      通信作者: 尧舜, yaoshun_bjut@126.com
      Corresponding author: Yao Shun, yaoshun_bjut@126.com
    [1]

    Fiebig C, Erbert G, Pittroff W, Wenzel H, Maaßdorf A, Einfeldt S, Tränkle G 2007 Proc. SPIE 6456 64560KGoogle Scholar

    [2]

    Berk Y, Karni Y, Klumel G, Dan Y 2011 The International Society for Optical Engineering San Francisco, USA, February 2–5, 2011 p7918

    [3]

    Grunnet-Jepsen A, Swaminathan K, Keselman L M 2017 US Patent 14998253

    [4]

    Moench H, Gronenborn S, Gu X, Gudde R, Herper M, Kolb J, Miller M, Smeets M, Weigl A 2017 SPIE Photonics West OPTO San Francisco, USA, February 2–7, 2017 p7

    [5]

    Wang T K, Su C Y 2017 US Patent 14841569

    [6]

    Barve A V, Yuen A 2017 US Patent 15638813

    [7]

    Zhou D L, Seurin J F, Xu G Y, Miglo A, Li D Z, Wang Q, Sundaresh M, Wilton S, Matheussen J, Ghosh C 2014 SPIE Photonics West OPTO San Francisco, USA, February 2–7, 2014 p14

    [8]

    Graham L A, Johnson R H, Guenter J K 2016 US Patent 14589392

    [9]

    Larsson A G, Haglund E P, Haglund E, Roelkens G, Gustavsson J, Baets R, Kumasi S 2017 Optical Fiber Communications Conference and Exhibition Los Angeles, USA, March 19–23, 2017 pW3E6

    [10]

    Pusch T, Lindemann M, Gerhardt N C, Hofmann M R, Michalzik R 2015 Electron. Lett. 51 1600Google Scholar

    [11]

    Gadallah A 2011 IEEE Photon. Technol. Lett. 23 1040Google Scholar

    [12]

    Haglund E, Gustavsson J S, Sorin W V, Bengtsson J, Fattal D, Haglund Å, Tan M, Larsson A 2017 Proc. SPIE 10113 101130BGoogle Scholar

    [13]

    Wang Z F, Ning Y Q, Li T, Cui J J, Zhang Y, Liu G G, Zhang X, Qin L, Liu Y, Wang L J 2009 IEEE Photon. Technol. Lett. 21 239Google Scholar

    [14]

    Li T, Ning Y Q, Sun Y F, Cui J J, Qin L, Yan C L, Zhang Y, Peng B, Liu G G, Liu Y, Wang L J 2007 Chin. Opt. Lett. 5 S156

    [15]

    李特, 宁永强, 孙艳芳, 崔锦江, 郝二娟, 秦莉, 套格套, 刘云, 王立军, 崔大复 2007 中国激光 34 641Google Scholar

    Li T, Ning Y Q, Sun Y F, Cui J, Hao E J, Qin L, Tao G T, Liu Y J, Wang L J, Cui D F 2007 Chin. J. Las. 34 641Google Scholar

    [16]

    吕朝晨, 王青, 尧舜, 周广正, 于洪岩, 李颖, 郎陆广, 兰天, 张文甲, 梁辰余, 张杨, 赵春风, 贾海峰, 王光辉, 王智勇 2018 光学学报 38 514001

    Lü Z C, Wang Q, Yao S, Zhou G Z, Yu H Y, Li Y, Lang L G, Lan T, Zhang W J, Liang C Y, Zhang Y, Zhao C F, Jia H F, Wang G H, Wang Z Y 2018 Acta Opt. Sin. 38 514001

    [17]

    周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇 2018 物理学报 67 104205Google Scholar

    Zhou G Z, Yao S, Yu H Y, Lü Z C, Wang Q, Zhou T B, Li Y, Lan T, Xia Y, Lang L G, Cheng L W, Dong G L, Kang L H, Wang Z Y 2018 Acta Phys. Sin. 67 104205Google Scholar

    [18]

    Yu H Y, Yao S, Zhou G Z, Wang Q, Lan T, Lü Z C, Li Y, Lang L G, Zhou T B, Cheng L W 2018 Opt. Quantum Electron. 50 171Google Scholar

    [19]

    Guo X, Dong J, He X Y, Hu S, He Y, Lü B S, Li C 2017 J. Appl. Phys. 121 133105Google Scholar

    [20]

    Adachi S 1998 J. Appl. Phys. 58 R1

    [21]

    Pearsall T P 1982 GaInAsP Alloy Semiconductors (New York: Wiley) p3

    [22]

    Chuang S L 2009 Physics of Photonic Devices (New York: Wiley) pp45–52

    [23]

    Surhone L M, Timpledon M T, Marseken S F 2010 Thin-film Optics (Hong Kong: Betascript) pp146–155

  • 图 1  MQWs材料增益特性曲线

    Fig. 1.  Material gain characteristics curve of MQWs.

    图 2  MQWs的PL光谱

    Fig. 2.  The PL spectrum of MQWs.

    图 3  MQWs HRXRD曲线

    Fig. 3.  The HRXRD curve of MQWs.

    图 4  (a)p-DBRs PL反射谱; (b) n-DBRs PL反射谱

    Fig. 4.  (a) The PL reflection spectra of p-DBRs; (b) the PL reflection spectra of n-DBRs.

    图 5  VCSEL结构示意图

    Fig. 5.  Schematic diagram of VCSEL structure.

    图 6  VCSEL白光反射谱

    Fig. 6.  White light illuminant reflection spectrum of VCSEL.

    图 7  VCSEL台面和氧化孔径图片

    Fig. 7.  The SEM image of VCSEL mesa and oxide aperture.

    图 8  VCSEL金相显微镜图片

    Fig. 8.  Microscopy image of VCSEL chip.

    图 9  VCSEL外延片区域示意图

    Fig. 9.  Diagrammatic of VCSEL wafer.

    图 10  VCSEL区域1的L-I-V特性

    Fig. 10.  The L-I-V characteristics of VCSEL in area 1.

    图 11  室温下不同电流的光谱图

    Fig. 11.  Emission spectra for VCSELs at various injection current at room temperature.

    图 12  VCSEL的L-I-V特性曲线 (a)光功率特性; (b)电压电流特性; (c)阈值电流和斜效率随温度变化

    Fig. 12.  The L-I-V characteristics of VCSELs at various temperature: (a) Output power versus injection current; (b) voltage versus injection current; (c) the evolution of the threshold current and slope efficiency as a function of temperature.

    图 13  VCSEL远场光斑与发散角

    Fig. 13.  Far field spot and divergence angle of VCSEL.

  • [1]

    Fiebig C, Erbert G, Pittroff W, Wenzel H, Maaßdorf A, Einfeldt S, Tränkle G 2007 Proc. SPIE 6456 64560KGoogle Scholar

    [2]

    Berk Y, Karni Y, Klumel G, Dan Y 2011 The International Society for Optical Engineering San Francisco, USA, February 2–5, 2011 p7918

    [3]

    Grunnet-Jepsen A, Swaminathan K, Keselman L M 2017 US Patent 14998253

    [4]

    Moench H, Gronenborn S, Gu X, Gudde R, Herper M, Kolb J, Miller M, Smeets M, Weigl A 2017 SPIE Photonics West OPTO San Francisco, USA, February 2–7, 2017 p7

    [5]

    Wang T K, Su C Y 2017 US Patent 14841569

    [6]

    Barve A V, Yuen A 2017 US Patent 15638813

    [7]

    Zhou D L, Seurin J F, Xu G Y, Miglo A, Li D Z, Wang Q, Sundaresh M, Wilton S, Matheussen J, Ghosh C 2014 SPIE Photonics West OPTO San Francisco, USA, February 2–7, 2014 p14

    [8]

    Graham L A, Johnson R H, Guenter J K 2016 US Patent 14589392

    [9]

    Larsson A G, Haglund E P, Haglund E, Roelkens G, Gustavsson J, Baets R, Kumasi S 2017 Optical Fiber Communications Conference and Exhibition Los Angeles, USA, March 19–23, 2017 pW3E6

    [10]

    Pusch T, Lindemann M, Gerhardt N C, Hofmann M R, Michalzik R 2015 Electron. Lett. 51 1600Google Scholar

    [11]

    Gadallah A 2011 IEEE Photon. Technol. Lett. 23 1040Google Scholar

    [12]

    Haglund E, Gustavsson J S, Sorin W V, Bengtsson J, Fattal D, Haglund Å, Tan M, Larsson A 2017 Proc. SPIE 10113 101130BGoogle Scholar

    [13]

    Wang Z F, Ning Y Q, Li T, Cui J J, Zhang Y, Liu G G, Zhang X, Qin L, Liu Y, Wang L J 2009 IEEE Photon. Technol. Lett. 21 239Google Scholar

    [14]

    Li T, Ning Y Q, Sun Y F, Cui J J, Qin L, Yan C L, Zhang Y, Peng B, Liu G G, Liu Y, Wang L J 2007 Chin. Opt. Lett. 5 S156

    [15]

    李特, 宁永强, 孙艳芳, 崔锦江, 郝二娟, 秦莉, 套格套, 刘云, 王立军, 崔大复 2007 中国激光 34 641Google Scholar

    Li T, Ning Y Q, Sun Y F, Cui J, Hao E J, Qin L, Tao G T, Liu Y J, Wang L J, Cui D F 2007 Chin. J. Las. 34 641Google Scholar

    [16]

    吕朝晨, 王青, 尧舜, 周广正, 于洪岩, 李颖, 郎陆广, 兰天, 张文甲, 梁辰余, 张杨, 赵春风, 贾海峰, 王光辉, 王智勇 2018 光学学报 38 514001

    Lü Z C, Wang Q, Yao S, Zhou G Z, Yu H Y, Li Y, Lang L G, Lan T, Zhang W J, Liang C Y, Zhang Y, Zhao C F, Jia H F, Wang G H, Wang Z Y 2018 Acta Opt. Sin. 38 514001

    [17]

    周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇 2018 物理学报 67 104205Google Scholar

    Zhou G Z, Yao S, Yu H Y, Lü Z C, Wang Q, Zhou T B, Li Y, Lan T, Xia Y, Lang L G, Cheng L W, Dong G L, Kang L H, Wang Z Y 2018 Acta Phys. Sin. 67 104205Google Scholar

    [18]

    Yu H Y, Yao S, Zhou G Z, Wang Q, Lan T, Lü Z C, Li Y, Lang L G, Zhou T B, Cheng L W 2018 Opt. Quantum Electron. 50 171Google Scholar

    [19]

    Guo X, Dong J, He X Y, Hu S, He Y, Lü B S, Li C 2017 J. Appl. Phys. 121 133105Google Scholar

    [20]

    Adachi S 1998 J. Appl. Phys. 58 R1

    [21]

    Pearsall T P 1982 GaInAsP Alloy Semiconductors (New York: Wiley) p3

    [22]

    Chuang S L 2009 Physics of Photonic Devices (New York: Wiley) pp45–52

    [23]

    Surhone L M, Timpledon M T, Marseken S F 2010 Thin-film Optics (Hong Kong: Betascript) pp146–155

  • [1] 李建军. 近800 nm波长张应变GaAsP/AlGaAs量子阱激光器有源区的设计. 物理学报, 2018, 67(6): 067801. doi: 10.7498/aps.67.20171816
    [2] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [3] 卢小可, 郭茂田, 苏建坡, 弓巧侠, 武进科, 刘建立, 陈明, 马凤英. 太赫兹波段介质微腔光学特性研究. 物理学报, 2013, 62(8): 084208. doi: 10.7498/aps.62.084208
    [4] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子. 物理学报, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [5] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型. 物理学报, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [6] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [7] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究. 物理学报, 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [8] 孟维欣, 郝玉英, 许慧侠, 王华, 刘旭光, 许并社. 基于一种新型有机金属配合物的量子阱结构有机电致白光器件的性能研究. 物理学报, 2011, 60(9): 098102. doi: 10.7498/aps.60.098102
    [9] 关宝璐, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 郭霞, 沈光地. 具有宽调谐范围的微纳光机电系统可调谐垂直腔面发射激光器研究. 物理学报, 2011, 60(3): 034206. doi: 10.7498/aps.60.034206
    [10] 屈媛, 班士良. 纤锌矿氮化物量子阱中光学声子模的三元混晶效应. 物理学报, 2010, 59(7): 4863-4873. doi: 10.7498/aps.59.4863
    [11] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [12] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [13] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [14] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [15] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [16] 佟存柱, 牛智川, 韩 勤, 吴荣汉. 1.3μm GaAs基量子点垂直腔面发射激光器结构设计与分析. 物理学报, 2005, 54(8): 3651-3656. doi: 10.7498/aps.54.3651
    [17] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [18] 卢励吾, 张砚华, 徐遵图, 徐仲英, 王占国, J.Wang, WeikunGe. 快速热处理对应变InGaAs/GaAs单量子阱激光二极管电子发射和DX中心的影响. 物理学报, 2002, 51(2): 367-371. doi: 10.7498/aps.51.367
    [19] 魏建华, 解士杰, 梅良模. 混合金属卤化物的超晶格与量子线特征. 物理学报, 2000, 49(11): 2254-2260. doi: 10.7498/aps.49.2254
    [20] 廉 鹏, 殷 涛, 高 国, 邹德恕, 陈昌华, 李建军, 沈光地, 马骁宇, 陈良惠. 新型多有源区隧道再生光耦合大功率半导体激光器. 物理学报, 2000, 49(12): 2374-2377. doi: 10.7498/aps.49.2374
计量
  • 文章访问数:  11800
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 修回日期:  2018-11-23
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回