搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温辐射计热结构设计与分析

庄新港 刘红博 张鹏举 史学舜 刘长明 刘红元 王恒飞

引用本文:
Citation:

低温辐射计热结构设计与分析

庄新港, 刘红博, 张鹏举, 史学舜, 刘长明, 刘红元, 王恒飞

Design and analysis of thermo-structure for cryogenic radiometer

Zhuang Xin-Gang, Liu Hong-Bo, Zhang Peng-Ju, Shi Xue-Shun, Liu Chang-Ming, Liu Hong-Yuan, Wang Heng-Fei
PDF
HTML
导出引用
  • 低温辐射计利用低温超导下的电替代测量原理, 将光辐射计量溯源到可以精确测量的电参数测量, 是目前国际上光功率测量的最高基准. 本文实验研究了低温辐射计的热路结构, 系统分析了腔体组件与热链材料的热学特性对低温辐射计响应率和时间常数特性参数影响的机理. 在此基础上, 设计了由黑体腔、热链和支撑结构组成的热结构机械件, 搭建了低温辐射计特性参数测试系统, 并针对OHFC铜、6061铝、304不锈钢和聚酰亚胺四种不同热链材料测试了低温辐射计的时间常数和响应率, 时间常数跨度为23—506 s, 响应率跨度为 35.5—714.8 K/W. 结果表明, 在腔体组件确定的情况下, 通过调节热链的材料和结构, 可以实现对低温辐射计特性参数的调控. 实验结果对低温辐射计特性参数指标分配和指导下一代低温辐射计的研制具有一定参考价值.
    Absolute cryogenic radiometer is built based on a new theory of electrical-substitution measurement, which is for measuring the radiant power by using the equivalent electrical power and has recently served as a primary standard for radiant power measurements. This study aims to design and implement a cryogenic radiometers to measure the optical power in a range from $0.1\;{\text{μ}}{\rm{W}}$ to 2 mW, which can substitute for the imported products. Intensive experiments are performed to study the thermal circuit of cryogenic radiometer, and systematically analyze the influences of cavity assembly and heat link materials on the responsivity and thermal time constant of cryogenic radiometer. On this basis, the thermo-structure mechanical parts are developed, which are comprised of a blackbody cavity, heat link and heat sink. Both the heat sink and the blackbody cavity are made of OFHC copper that is plated with gold. All surfaces are highly polished and reflective to reduce any radiative effects. The absorptance of the cavity can reach up to 0.999995 at 633 nm. And then, a characteristic parameters’ test system of cryogenic radiometer is built. Through optimizing the temperature control system and improving the design of the heat sink, the standard deviation of the heat sink can be kept under 0.2 mK for 30 min. By using that test system, the responsivity and thermal time constant of cryogenic radiometer with four different kinds of heat link materials (OHFC copper, 6061 Al, SS304 stainless steel, and polyimide) are tested experimentally. The experimental results show that the responsivity and thermal time constant are 35.5 K/W and 23 s for OHFC copper, 318.9 K/W and 106 s for 6061 Al, 434.8 K/W and 297 s for SS304 stainless steel, 714.8 K/W and 506 s for polyimide. As the thermal conductivity of heat link material changes, the two parameters of responsivity and thermal time constant will simultaneously change significantly. The responsivity and thermal time constant are a pair of mutually constrained parameters, and temperature stability is an important parameter for designing the thermo-structure. After increasing the responsivity, it will not only significantly increase the measurement time and resource consumption, but also affect the temperature control stability, and hence limiting the measurement accuracy. All the test data indicate that the characteristic parameter of cryogenic radiometer can be adjusted by changing the material and structure of heat link. The obtained results will have a certain reference value for the index distribution of cryogenic radiometer characteristic parameters and designing the next generation of absolute cryogenic radiometers.
      通信作者: 庄新港, xingangzhuang@163.com
    • 基金项目: 国防技术基础(批准号: JSJL2016210A001)资助的课题.
      Corresponding author: Zhuang Xin-Gang, xingangzhuang@163.com
    • Funds: Project supported by the National Defense Science and Technology Foundation, China (Grant No. JSJL2016210A001).
    [1]

    Hoyt C C, Foukal P V 1991 Metrologia 28 163Google Scholar

    [2]

    Houston J M, Cromer C L, Hardis J E, Larason T C 1993 Metrologia 30 285Google Scholar

    [3]

    庞伟伟, 郑小兵, 李健军, 史学舜 2014 大气与环境光学学报 9 138Google Scholar

    Pang W W, Zheng X B, Li J J, Shi X S 2014 J. Atmosph. Environ. Opt. 9 138Google Scholar

    [4]

    Liu C M, Shi X H, Chen H D, Liu Y L, Zhao K, Ying C P, Chen K F, Li L G 2016 Acta Phot. Sin. 45 0912002Google Scholar

    [5]

    Goebel R, Pello R, Köhler R, Haycocks P, Fox N 1996 Metrologia 33 177Google Scholar

    [6]

    Carter A C, Lorentz S R, Jung T M, Datla R U 2005 Appl. Opt. 44 871Google Scholar

    [7]

    Houston J M, Rice J P 2006 Metrologia 43 S31Google Scholar

    [8]

    Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2014 Rev. Sci. Instrum. 85 075105Google Scholar

    [9]

    Troussel P, Coron N 2010 Nucl. Instrum. Meth. A 614 260Google Scholar

    [10]

    Gamouras A, Todd A D W, Côté É, Rowell N L 2018 J. Phys. Conf. Ser. 972 012014Google Scholar

    [11]

    Yi X, Fang W, Luo Y, Xia Z, Wang Y 2016 IET Sci. Meas. Technol. 10 564Google Scholar

    [12]

    Tang X, Fang W, Wang Y P, Yang D J, Yi X L 2017 Optoelectron. Lett. 13 179Google Scholar

    [13]

    Zhao X, Zhao Y, Tang K, Zhao Y, Li F, Zheng L 2018 Rad. Dete. Technol. Meth. 2 32Google Scholar

    [14]

    Xu N, Lin Y, Gan H, Li J 2016 Proc. SPIE 10155 1015513Google Scholar

    [15]

    林延东, 吕亮, 白山 2011 光学学报 31 1212005

    Lin Y D, Lv L, Bai S 2011 Acta Opt. Sin. 31 1212005

    [16]

    李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏 2009 物理学报 58 6273Google Scholar

    Li J J, Zheng X B, Lu Y J, Xie P, Zou P 2009 Acta Phys. Sin. 58 6273Google Scholar

    [17]

    Pang W W, Zheng X B, Li J J, Shi X S, Wu H Y, Xia M P, Gao D Y, Shi J M, Qi T, Kang Q 2015 Chin. Opt. Lett. 13 051201Google Scholar

    [18]

    刘长明, 史学舜, 刘玉龙, 赵坤, 陈海东, 刘红博 2015 光电子·激光 26 667

    Liu C M, Shi X S, Liu Y L, Zhao K, Chen H D, Liu H B 2015 J. Optoelectron.·Laser 26 667

    [19]

    Shi X, Liu C, Liu Y, Yang L, Zhao K, Chen H 2015 Proc. SPIE 9449 94490UGoogle Scholar

    [20]

    杨世铭, 陶文铨 2006 传热学 (北京: 高等教育出版社) 第117页

    Yang S M, Tao W Q 2006 Heat Transfer (Beijing: Higher Education Press) p117 (in Chinese)

    [21]

    Prokhorov A V, Hanssen L M 2004 Metrologia 41 421Google Scholar

    [22]

    Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2009 Proc. SPIE 7298 72983YGoogle Scholar

    [23]

    张绪德, 欧阳峥嵘 2008 低温与超导 36 9Google Scholar

    Zhang X D, Ouyang Z Y 2008 Cryogenics and Superconductivity 36 9Google Scholar

    [24]

    Gentile T R, Houston J M, Hardis J E, Cromer C L, Parr A C 1996 Appl. Opt. 35 1056Google Scholar

    [25]

    Pearson D A, Zhang Z M 1999 Cryogenics 39 299Google Scholar

  • 图 1  低温辐射计热路示意图

    Fig. 1.  Schematic diagram of thermal circuit of cryogenic radiometer.

    图 2  零维问题传热模型

    Fig. 2.  Heat-transfer model of zero dimensional problem.

    图 3  热结构仿真和实物图 (a)黑体腔; (b)热链; (c)热结构

    Fig. 3.  Picture of thermal structure: (a) Blackbody cavity; (b) heat link; (c) heat sink.

    图 4  低温辐射计实物与特性参数测试原理图

    Fig. 4.  Picture of cryogenic radiometer and schematic for characteristic parameters test.

    图 5  不同热链对应的低温辐射计响应曲线 (a) OFHC铜; (b) 6061铝; (c) SS304不锈钢; (d)聚酰亚胺

    Fig. 5.  Response curve of cryogenic radiometer with different heat links: (a) OFHC copper; (b) 6061 Al; (c) SS304; (d) polymide.

    表 1  不同热链对应的低温辐射计特性参数

    Table 1.  Characteristic parameters of cryogenic radiometer corresponding to different heat links

    热链材料T0/KT/K$\tau /$sR/K·W–1
    OFHC铜10.989711.02522335.5
    6061铝21.104621.4235106318.9
    304不锈钢18.368818.8036297434.8
    聚酰亚胺25.532226.247506714.8
    下载: 导出CSV
  • [1]

    Hoyt C C, Foukal P V 1991 Metrologia 28 163Google Scholar

    [2]

    Houston J M, Cromer C L, Hardis J E, Larason T C 1993 Metrologia 30 285Google Scholar

    [3]

    庞伟伟, 郑小兵, 李健军, 史学舜 2014 大气与环境光学学报 9 138Google Scholar

    Pang W W, Zheng X B, Li J J, Shi X S 2014 J. Atmosph. Environ. Opt. 9 138Google Scholar

    [4]

    Liu C M, Shi X H, Chen H D, Liu Y L, Zhao K, Ying C P, Chen K F, Li L G 2016 Acta Phot. Sin. 45 0912002Google Scholar

    [5]

    Goebel R, Pello R, Köhler R, Haycocks P, Fox N 1996 Metrologia 33 177Google Scholar

    [6]

    Carter A C, Lorentz S R, Jung T M, Datla R U 2005 Appl. Opt. 44 871Google Scholar

    [7]

    Houston J M, Rice J P 2006 Metrologia 43 S31Google Scholar

    [8]

    Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2014 Rev. Sci. Instrum. 85 075105Google Scholar

    [9]

    Troussel P, Coron N 2010 Nucl. Instrum. Meth. A 614 260Google Scholar

    [10]

    Gamouras A, Todd A D W, Côté É, Rowell N L 2018 J. Phys. Conf. Ser. 972 012014Google Scholar

    [11]

    Yi X, Fang W, Luo Y, Xia Z, Wang Y 2016 IET Sci. Meas. Technol. 10 564Google Scholar

    [12]

    Tang X, Fang W, Wang Y P, Yang D J, Yi X L 2017 Optoelectron. Lett. 13 179Google Scholar

    [13]

    Zhao X, Zhao Y, Tang K, Zhao Y, Li F, Zheng L 2018 Rad. Dete. Technol. Meth. 2 32Google Scholar

    [14]

    Xu N, Lin Y, Gan H, Li J 2016 Proc. SPIE 10155 1015513Google Scholar

    [15]

    林延东, 吕亮, 白山 2011 光学学报 31 1212005

    Lin Y D, Lv L, Bai S 2011 Acta Opt. Sin. 31 1212005

    [16]

    李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏 2009 物理学报 58 6273Google Scholar

    Li J J, Zheng X B, Lu Y J, Xie P, Zou P 2009 Acta Phys. Sin. 58 6273Google Scholar

    [17]

    Pang W W, Zheng X B, Li J J, Shi X S, Wu H Y, Xia M P, Gao D Y, Shi J M, Qi T, Kang Q 2015 Chin. Opt. Lett. 13 051201Google Scholar

    [18]

    刘长明, 史学舜, 刘玉龙, 赵坤, 陈海东, 刘红博 2015 光电子·激光 26 667

    Liu C M, Shi X S, Liu Y L, Zhao K, Chen H D, Liu H B 2015 J. Optoelectron.·Laser 26 667

    [19]

    Shi X, Liu C, Liu Y, Yang L, Zhao K, Chen H 2015 Proc. SPIE 9449 94490UGoogle Scholar

    [20]

    杨世铭, 陶文铨 2006 传热学 (北京: 高等教育出版社) 第117页

    Yang S M, Tao W Q 2006 Heat Transfer (Beijing: Higher Education Press) p117 (in Chinese)

    [21]

    Prokhorov A V, Hanssen L M 2004 Metrologia 41 421Google Scholar

    [22]

    Carr S M, Woods S I, Jung T M, Carter A C, Datla R U 2009 Proc. SPIE 7298 72983YGoogle Scholar

    [23]

    张绪德, 欧阳峥嵘 2008 低温与超导 36 9Google Scholar

    Zhang X D, Ouyang Z Y 2008 Cryogenics and Superconductivity 36 9Google Scholar

    [24]

    Gentile T R, Houston J M, Hardis J E, Cromer C L, Parr A C 1996 Appl. Opt. 35 1056Google Scholar

    [25]

    Pearson D A, Zhang Z M 1999 Cryogenics 39 299Google Scholar

  • [1] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究. 物理学报, 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [2] 张坤, 罗涛, 王菲菲, 孙刚, 刘庆, 青春, 李学彬, 翁宁泉, 朱文越. 基于探空数据分析低云对大气折射率结构常数的影响. 物理学报, 2022, 71(8): 089202. doi: 10.7498/aps.71.20211792
    [3] 孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清. 干涉型红外光谱辐射计仪器线型函数仿真及校正. 物理学报, 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [4] 徐自强, 吴晓庆, 许满满, 毕翠翠, 韩永, 邵士勇. 海洋上空折射率结构常数廓线估算. 物理学报, 2021, 70(24): 244204. doi: 10.7498/aps.70.20211201
    [5] 孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国. 红外光谱辐射计探测器高阶非线性响应校正方法. 物理学报, 2021, 70(6): 060701. doi: 10.7498/aps.70.20201530
    [6] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性. 物理学报, 2019, 68(20): 208501. doi: 10.7498/aps.68.20190902
    [7] 于海童, 刘东, 杨震, 段远源. 用于热光伏系统的近场辐射光谱控制表面结构. 物理学报, 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [8] 杜延磊, 马文韬, 杨晓峰, 刘桂红, 于暘, 李紫薇. 无云情况下L波段微波辐射计快速大气校正方法. 物理学报, 2015, 64(7): 079501. doi: 10.7498/aps.64.079501
    [9] 何圣仲, 周国华, 许建平, 吴松荣, 陈利. 输出电容时间常数对V2控制Buck变换器的动力学特性的影响. 物理学报, 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [10] 施健康, 陆文, 严卫, 艾未华. 星载极化相关型全极化微波辐射计天线交叉极化校正技术(I): 天线温度方程推导. 物理学报, 2013, 62(7): 078402. doi: 10.7498/aps.62.078402
    [11] 陆文, 严卫, 艾未华, 施健康. 星载极化相关型全极化微波辐射计天线交叉极化校正技术 (II) : 校正试验. 物理学报, 2013, 62(7): 078403. doi: 10.7498/aps.62.078403
    [12] 姜祝辉, 游小宝, 肖义国. 高度计风速与辐射计风速的变分融合研究. 物理学报, 2013, 62(12): 129202. doi: 10.7498/aps.62.129202
    [13] 陆文, 严卫, 王蕊, 王迎强. 全极化微波辐射计姿态对观测亮温的影响及消除. 物理学报, 2012, 61(1): 018401. doi: 10.7498/aps.61.018401
    [14] 叶伏秋, 李科敏, 彭小芳. 低温下多通道量子结构中的弹性声子输运和热导. 物理学报, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [15] 韩勇, 刘燕文, 丁耀根, 刘濮鲲. 螺旋线慢波结构中界面热阻率的研究. 物理学报, 2009, 58(3): 1806-1811. doi: 10.7498/aps.58.1806
    [16] 李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏. 硅陷阱探测器在350—1064 nm波段的绝对光谱响应度定标. 物理学报, 2009, 58(9): 6273-6278. doi: 10.7498/aps.58.6273
    [17] 哈力木拉提, 阿 拜, 拜 山, 艾买提. p-n结二极管结区边界附近的交流电特性. 物理学报, 2008, 57(2): 1161-1165. doi: 10.7498/aps.57.1161
    [18] 何宝平, 郭红霞, 龚建成, 王桂珍, 罗尹虹, 李永宏. 浮栅ROM集成电路空间低剂量率辐射失效时间预估. 物理学报, 2004, 53(9): 3125-3129. doi: 10.7498/aps.53.3125
    [19] 汪六九, 朱美芳, 刘丰珍, 刘金龙, 韩一琴. 热丝化学气相沉积技术低温制备多晶硅薄膜的结构与光电特性. 物理学报, 2003, 52(11): 2934-2938. doi: 10.7498/aps.52.2934
    [20] 何宝平, 王桂珍, 周 辉, 龚建成, 罗尹虹, 姜景和. NMOS器件不同剂量率γ射线辐射响应的理论预估. 物理学报, 2003, 52(1): 188-191. doi: 10.7498/aps.52.188
计量
  • 文章访问数:  7143
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-21
  • 修回日期:  2019-01-07
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回