-
本文对近两年来有关淬火动力学过程中拓扑现象的研究做简要综述. 这些动力学拓扑现象被动力学过程中的衍生拓扑不变量保护, 与淬火前后体系的拓扑性质有密切关系. 基于人工量子模拟平台的高度可控性, 已在诸如超冷原子、超导量子比特、核磁共振、线性光学等众多物理体系中, 通过对人工拓扑体系动力学过程的调控, 观测到如动力学涡旋、动量-时间域的Hopf映射及环绕数、拓扑保护的自旋环结构、动力学量子相变、动量-时间斯格明子等诸多动力学拓扑现象. 其中某些拓扑结构还可以在非幺正动力学淬火过程中稳定存在. 这些研究将人们对拓扑物相的认识和研究从平衡态推广到非平衡动力学领域, 具有重要的科学价值.In this review, we discuss the recent progress on the study of dynamic topological phenomena in quench dynamics. In particular, we focus on dynamic quantum phase transition and dynamic topological invariant, both of which are hinged upon the existence of fixed points in the dynamics. Further, the existence of these fixed points are topologically protected, in the sense that their existence are closely related to static topological invariants of pre- and post-quench Hamiltonians. We also discuss under what condition these dynamic topological phenomena are robust in non-unitary quench dynamics governed by non-Hermitian Hamiltonians. So far, dynamic topological phenomena have been experimentally observed in synthetic systems such as cold atomic gases, superconducting qubits, and linear optics. These studies extend our understanding of topological matter to the non-equilibrium regime.
-
Keywords:
- topological phase /
- quench dynamics /
- dynamic topological invariant /
- ultracold atoms
[1] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[2] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar
[3] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar
[4] Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K, Weitenberg C 2016 Science 352 1091Google Scholar
[5] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar
[6] Song B, Zhang L, He C, Poon T F J, Haiiyev E, Zhang S, Liu X J, Jo G B 2018 Sci. Adv. 4 4748Google Scholar
[7] Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar
[8] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar
[9] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, Xue P 2017 Nat. Phys. 13 1117Google Scholar
[10] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar
[11] Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W, Xue P 2017 Phys. Rev. Lett. 119 130501Google Scholar
[12] Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar
[13] Chen Y, Zhai H 2018 Phys. Rev. B 98 245130
[14] Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar
[15] Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar
[16] Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar
[17] Caio M D, Cooper N R, Bhaseen M J 2015 Phys. Rev. Lett. 115 236403Google Scholar
[18] D’Alessio L, Rigol M 2015 Nat. Commun. 6 8336Google Scholar
[19] Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett. 118 185701Google Scholar
[20] Yang C, Li L, Chen S 2018 Phys. Rev. B 97 060304Google Scholar
[21] Gong Z, Ueda M 2018 Phys. Rev. Lett. 121 250601
[22] Zhang L, Zhang L, Niu S, Liu X J 2018 Science Bulletin 63 1385Google Scholar
[23] Zhang L, Zhang L, Liu X J 2018 arXiv: 1807.10782 [cond-mat.quant-gas]
[24] Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K, Weitenberg C 2018 Nat. Phys. 14 265Google Scholar
[25] Tarnowski M, Nur-Unal F, Flaschner N, Rem B S, Eckard A, Sengstock K, Weitenberg C 2017 arXiv:1709.01046 [cond-mat.quant-gas]
[26] Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S, Pan J W 2018 Phys. Rev. Lett. 121 250403
[27] Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2018 arXiv:1806.09269 [cond-mat.stat-mech]
[28] Wang K, Qiu X, Xiao L, Zhan X, Bina Z, Yi W, Xue P 2019 Phys. Rev. Lett. 122 020501
[29] Tian T, Ke K, Zhang L, Lin L, Shi Z, Huang P, Lee C, Du J 2018 arXiv:1807.04483 [quant-ph]
[30] Xu X Y, Wang Q Q, Heyl M, Budich J C, Pan W W, Chen Z, Jan M, Sun K, Xu J S, Han Y J, Li C F, Guo G C 2018 arXiv:1808.03930 [quant-ph]
[31] Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W, Xue P 2018 arXiv:1808.06446 [quant-ph]
[32] Heyl M, Polkovnikov A, Kehrein S 2013 Phys. Rev. Lett. 110 135704Google Scholar
[33] Heyl M 2015 Phys. Rev. Lett. 115 140602Google Scholar
[34] Heyl M 2018 Rep. Prog. Phys. 81 054001Google Scholar
[35] Budich J C, Heyl M 2016 Phys. Rev. B 93 085416Google Scholar
[36] Huang Z, Balatsky A V 2016 Phys. Rev. Lett. 117 086802Google Scholar
[37] Vajna S, Dora B 2015 Phys. Rev. B 91 155127Google Scholar
[38] Zhou L W, Wang Q H, Wang H L 2018 Phys. Rev. A 98 022129Google Scholar
[39] Gu J, Sun K 2016 Phys. Rev. B 94 12511Google Scholar
[40] Qiu X, Deng T S, Guo G C, Yi W 2018 Phys. Rev. A 98 021601Google Scholar
[41] Qiu X, Deng T S, Hu Y, Xue P, Yi W 2018 arXiv:1806.10268[cond-mat.quant-gas]
[42] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar
[43] Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar
[44] Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar
[45] Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar
[46] Zhu B, Lu R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar
[47] Garrison J, Wright E 1988 Phys. Lett. A 128 177Google Scholar
[48] Brody D C 2014 J. Phys. A: Math. Theor. 47 035305Google Scholar
[49] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N, Luo L 2016 arXiv:1608.05061[cond-mat.quant-gas]
[50] Kohei K, Yuto A, Hosho K, Masahito U 2018 Phys. Rev. B 98 085116Google Scholar
-
图 1 Bloch球上的动力学演化 (a) 态矢量在Bloch球上绕
$ {h}^f $ 运动; (b) 动力学不动点对应于$ {h}^i\cdot {h}^f=\pm 1 $ ; (c) 临界点对应于$ {h} ^i\cdot {h}^f=0 $ . 实线代表$ {h}^i $ (绿色)与$ {h}^f $ (红色), 虚线代表态矢量; 假设初态处于$ H_k $ 基态上, 即$ t=0 $ 时态矢量与$ {h}^i $ 方向相反Fig. 1. Visualizing dynamics on the Bloch sphere: (a) State vector revolving around the
$ {h}^f $ axis; (b) illustration of fixed points when$ {h}^i\cdot {h}^f=\pm 1 $ ; (c) illustration of critical points with$ {h} ^i\cdot {h}^f=0 $ .图 4 非厄密SSH模型淬火中的典型动力学自由能
$ g(t) $ 与动力学拓扑序参量$ \nu^D(t) $ (a) 动力学自由能$ g(t) $ ; (b) 动力学拓扑序参量$ \nu^D(t) $ . 在非厄米淬火过程中存在两个临界时间尺度及两个动力学拓扑序参量Fig. 4. Dynamic free energy
$ g(t) $ and dynamic topological order parameter$ \nu^D(t) $ in the quench dynamics of non-Hermitian SSH model: (a) Dynamic free energy$ g(t) $ ; (b) dynamic topological order parameter$ \nu^D(t) $ . -
[1] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[2] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar
[3] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar
[4] Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K, Weitenberg C 2016 Science 352 1091Google Scholar
[5] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar
[6] Song B, Zhang L, He C, Poon T F J, Haiiyev E, Zhang S, Liu X J, Jo G B 2018 Sci. Adv. 4 4748Google Scholar
[7] Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar
[8] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar
[9] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C, Xue P 2017 Nat. Phys. 13 1117Google Scholar
[10] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar
[11] Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W, Xue P 2017 Phys. Rev. Lett. 119 130501Google Scholar
[12] Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar
[13] Chen Y, Zhai H 2018 Phys. Rev. B 98 245130
[14] Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar
[15] Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar
[16] Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar
[17] Caio M D, Cooper N R, Bhaseen M J 2015 Phys. Rev. Lett. 115 236403Google Scholar
[18] D’Alessio L, Rigol M 2015 Nat. Commun. 6 8336Google Scholar
[19] Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett. 118 185701Google Scholar
[20] Yang C, Li L, Chen S 2018 Phys. Rev. B 97 060304Google Scholar
[21] Gong Z, Ueda M 2018 Phys. Rev. Lett. 121 250601
[22] Zhang L, Zhang L, Niu S, Liu X J 2018 Science Bulletin 63 1385Google Scholar
[23] Zhang L, Zhang L, Liu X J 2018 arXiv: 1807.10782 [cond-mat.quant-gas]
[24] Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K, Weitenberg C 2018 Nat. Phys. 14 265Google Scholar
[25] Tarnowski M, Nur-Unal F, Flaschner N, Rem B S, Eckard A, Sengstock K, Weitenberg C 2017 arXiv:1709.01046 [cond-mat.quant-gas]
[26] Sun W, Yi C R, Wang B Z, Zhang W W, Sanders B C, Xu X T, Wang Z Y, Schmiedmayer J, Deng Y J, Liu X J, Chen S, Pan J W 2018 Phys. Rev. Lett. 121 250403
[27] Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N, Fan H 2018 arXiv:1806.09269 [cond-mat.stat-mech]
[28] Wang K, Qiu X, Xiao L, Zhan X, Bina Z, Yi W, Xue P 2019 Phys. Rev. Lett. 122 020501
[29] Tian T, Ke K, Zhang L, Lin L, Shi Z, Huang P, Lee C, Du J 2018 arXiv:1807.04483 [quant-ph]
[30] Xu X Y, Wang Q Q, Heyl M, Budich J C, Pan W W, Chen Z, Jan M, Sun K, Xu J S, Han Y J, Li C F, Guo G C 2018 arXiv:1808.03930 [quant-ph]
[31] Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W, Xue P 2018 arXiv:1808.06446 [quant-ph]
[32] Heyl M, Polkovnikov A, Kehrein S 2013 Phys. Rev. Lett. 110 135704Google Scholar
[33] Heyl M 2015 Phys. Rev. Lett. 115 140602Google Scholar
[34] Heyl M 2018 Rep. Prog. Phys. 81 054001Google Scholar
[35] Budich J C, Heyl M 2016 Phys. Rev. B 93 085416Google Scholar
[36] Huang Z, Balatsky A V 2016 Phys. Rev. Lett. 117 086802Google Scholar
[37] Vajna S, Dora B 2015 Phys. Rev. B 91 155127Google Scholar
[38] Zhou L W, Wang Q H, Wang H L 2018 Phys. Rev. A 98 022129Google Scholar
[39] Gu J, Sun K 2016 Phys. Rev. B 94 12511Google Scholar
[40] Qiu X, Deng T S, Guo G C, Yi W 2018 Phys. Rev. A 98 021601Google Scholar
[41] Qiu X, Deng T S, Hu Y, Xue P, Yi W 2018 arXiv:1806.10268[cond-mat.quant-gas]
[42] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar
[43] Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401Google Scholar
[44] Bender C M 2007 Rep. Prog. Phys. 70 947Google Scholar
[45] Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar
[46] Zhu B, Lu R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar
[47] Garrison J, Wright E 1988 Phys. Lett. A 128 177Google Scholar
[48] Brody D C 2014 J. Phys. A: Math. Theor. 47 035305Google Scholar
[49] Li J, Harter A K, Liu J, de Melo L, Joglekar Y N, Luo L 2016 arXiv:1608.05061[cond-mat.quant-gas]
[50] Kohei K, Yuto A, Hosho K, Masahito U 2018 Phys. Rev. B 98 085116Google Scholar
计量
- 文章访问数: 8641
- PDF下载量: 206
- 被引次数: 0