搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性

陈颖 曹景刚 谢进朝 高新贝 许扬眉 李少华

引用本文:
Citation:

含双挡板金属-电介质-金属波导耦合方形腔的独立调谐双重Fano共振特性

陈颖, 曹景刚, 谢进朝, 高新贝, 许扬眉, 李少华

Resonance characteristics of independently tuned dual Fano of metal-dielectric-metal waveguide coupling square cavity with double baffles

Chen Ying, Cao Jing-Gang, Xie Jin-Chao, Gao Xin-Bei, Xu Yang-Mei, Li Shao-Hua
PDF
HTML
导出引用
  • 基于表面等离子激元在亚波长结构的传输特性, 设计了一种含双挡板金属-电介质-金属波导耦合两个方形腔的结构. 由F-P谐振腔产生的宽谱模式与两个方形谐振腔产生的两个窄谱模式发生干涉作用, 形成了独立调谐的双重Fano共振, 而且可以通过改变两个方形腔的大小及填充介质实现双重Fano共振的独立调谐. 基于耦合模理论, 定性分析了该结构产生双重Fano共振的机理. 利用有限元仿真的方法, 定量分析了结构参数对可独立调谐双重Fano共振和折射率传感特性的影响. 结果表明, 优化参数后该结构的灵敏度分别高达1020和1120 nm/RIU, FOM值分别高达3.59 × 105和1.17 × 106. 该结构可为超快光开关、多功能高灵敏度传感器和慢光器件的光学集成提供有效的理论参考.
    A metal-dielectric-metal (MDM) waveguide coupling two square cavities with double baffles is designed in this paper based on the transmission characteristics of surface plasmon polaritons in subwavelength structure. The independent tuning of the dual Fano resonance is implemented by the interference between the wide-spectrum mode generated by the F-P (Fabry Perot) cavity and the two narrow-spectrum modes generated by the two square cavities. Moreover, the independent tuning of the dual Fano resonance can be achieved by changing the sizes of the two square cavities and filling medium. The coupled-mode theory (CMT) is adopted to analyze the transmission characteristics of the dual Fano resonance. The structure is simulated by the finite element method to quantitatively analyze the influence of structural parameters on the independent tuning of the dual Fano resonance and the refractive index sensing characteristics. The proposed sensor yields respectively sensitivity higher than 1020 nm/RIU and 1120 nm/RIU and a figure of merit of 3.29 × 105 and 1.17 × 106 by optimizing the geometry parameters. This structure provides an effective theoretical reference in the optical integration of ultra-fast optical switches, multi-function high-sensitivity sensors and slow-light devices.
      通信作者: 陈颖, chenying@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61201112, 61475133)、河北省自然科学基金(批准号: F2016203188, F2016203245)、中国博士后基金(批准号: 2018M630279)、河北省高等学校科学技术研究项目(批准号: ZD2018243)资助的课题.
      Corresponding author: Chen Ying, chenying@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201112, 61475133), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2016203188, F2016203245), the China Postdoctoral Science Foundation (Grant No. 2018M630279), and the Scientific Research Foundation of the Higher Education Institutions of Hebei Province, China (Grant No. ZD2018243).
    [1]

    Yankovich A B, Verre R, Olsén E, Persson A E O, Trinh V, Dovner G, Käll M, Olsson E 2017 ACS Nano 11 4265Google Scholar

    [2]

    Zeng C, Cui Y D 2013 Opt. Commun. 290 188Google Scholar

    [3]

    Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf Z, Zhang S 2013 Light-Sci. Appl. 2 e70Google Scholar

    [4]

    Jankovic N, Cselyuszka N 2018 Sensors 18 1Google Scholar

    [5]

    Yan Z D, Wen X M, Gu P, Zhong H, Zhan P, Chen Z, Wang Z L 2017 Nanotechnol. 28 475203Google Scholar

    [6]

    Khatir M, Granpayeh N 2013 J. Lightwave Technol. 31 1045Google Scholar

    [7]

    陈颖, 罗佩, 田亚宁, 刘晓飞, 赵志勇, 朱奇光 2017 光学学报 37 0924002

    Chen Y, Luo P, Tian Y N, Liu X F, Zhao Z Y, Zhu Q G 2017 Acta Opt. Sin. 37 0924002

    [8]

    Fu H X, Li S L, Wang Y L, Song G, Zhang P F, Wang L L, Yu L 2018 IEEE Photonics J. 10 1

    [9]

    Chen Z, Yu L 2014 IEEE Photonics J. 6 1

    [10]

    Li C, Li S L, Wang Y L, Jiao R Z, Wang L L, Yu L 2017 IEEE Photonics J. 99 1

    [11]

    Wang D Q, Yu X L, Yu Q M 2013 Appl. Phys. Lett. 103 824

    [12]

    Artar A, Yanik A A 2011 Nano Lett. 11 3694Google Scholar

    [13]

    Wu C H, Khanikaev A, Shvets G 2011 Phys. Rev. Lett. 106 107403Google Scholar

    [14]

    Zhang Z D, Wang H Y, Zhang Z Y 2013 Plasmonics 8 797Google Scholar

    [15]

    Rakhshani M R, Mansouri-Birjandi M A 2016 IEEE Sens. J. 16 3041Google Scholar

    [16]

    Kim J, Soref R, Buchwald W R 2010 Opt. Express 18 17997Google Scholar

    [17]

    Zheng S, Ruan Z S, Gao S Q, Long Y, Li S M, He M G, Zhou N, Du J, Shen L, Cai X L, Wang J 2017 Opt. Express 25 25655Google Scholar

    [18]

    Guo Z C, Wen K H, Hu Q Y, Lai W H, Lin J Y, Fang Y H 2018 Sensors 18 1348Google Scholar

    [19]

    Lu H, Liu X, Mao D 2012 Phys. Rev. A 85 53803Google Scholar

    [20]

    Piao X J, Yu S, Koo S, Lee K 2011 Opt. Express 19 10907Google Scholar

    [21]

    Wu C, Ding H F, Huang T Y, Wu X, Chen B W, Ren K X, Fu S N 2017 Plasmonics 13 251

    [22]

    Wen K H, Hu Y H, Chen L, Zhou J Y, Liang L, Meng Z M 2016 Plasmonics 11 315Google Scholar

  • 图 1  结构示意图和透射光谱图 (a)含F-P腔的MDM波导耦合方形腔结构;(b)透射光谱;(c)相位图

    Fig. 1.  Schematic diagram and transmission spectrum: (a) MDM waveguide coupled square cavity structure with F-P cavity;(b) transmission spectrum; (c) phase diagram.

    图 2  Hz场分布 (a) FR1波峰处的Hz场分布;(b) FR1波谷处的Hz场分布;(c) FR2波峰处的Hz场分布;(d) FR2波谷处的Hz场分布

    Fig. 2.  The Hz field distribution: (a) The Hz field distribution at the peak of FR1; (b) the Hz field distribution at the dip of FR1; (c) the Hz field distribution at the peak of FR2; (d) the Hz field distribution at the dip of FR2.

    图 3  参数l1l2对传感特性的影响 (a)参数l1对FR1的影响;(b)参数l2对FR2的影响;(c)参数l1 = l2l1/l2对Fano共振线型的影响

    Fig. 3.  Influence of parameters l1 and l2 on sensing characteristics: (a) Influence of parameters l1 on the FR1; (b) influence of parameters l2 on the FR2; (c) influence of parameters l1 = l2 or l1/l2 on the Fano resonance.

    图 4  参数L1对传感特性的影响 (a)参数L1对FR1的影响;(b)参数L1对FR1的FOM值的影响;(c)参数L1对FR2的影响;(b)参数L1对FR2的FOM值的影响

    Fig. 4.  Influence of parameters L1 on sensing characteristics: (a) Influence of parameters L1 on the FR1; (b) influence of parameters L1 on the FOM value of FR1; (c) influence of parameters L1 on the FR2; (d) influence of parameters L1 on the FOM value of FR2.

    图 5  参数g1, g2和折射率n1, n2对传感特性的影响 (a)参数g1对FR1的影响;(b)参数g2对FR2的影响;(c)折射率n1对FR1的影响;(d)折射率n2对FR2的影响

    Fig. 5.  Influence of parameters g1, g2 and refractive index n1,n2 on sensing characteristics: (a) Influence of parameters g1 on the FR1; (b) influence of parameters g2 on the FR2; (c) influence of refractive index n1 on the FR1; (d) influence of refractive index n2 on the FR2.

  • [1]

    Yankovich A B, Verre R, Olsén E, Persson A E O, Trinh V, Dovner G, Käll M, Olsson E 2017 ACS Nano 11 4265Google Scholar

    [2]

    Zeng C, Cui Y D 2013 Opt. Commun. 290 188Google Scholar

    [3]

    Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf Z, Zhang S 2013 Light-Sci. Appl. 2 e70Google Scholar

    [4]

    Jankovic N, Cselyuszka N 2018 Sensors 18 1Google Scholar

    [5]

    Yan Z D, Wen X M, Gu P, Zhong H, Zhan P, Chen Z, Wang Z L 2017 Nanotechnol. 28 475203Google Scholar

    [6]

    Khatir M, Granpayeh N 2013 J. Lightwave Technol. 31 1045Google Scholar

    [7]

    陈颖, 罗佩, 田亚宁, 刘晓飞, 赵志勇, 朱奇光 2017 光学学报 37 0924002

    Chen Y, Luo P, Tian Y N, Liu X F, Zhao Z Y, Zhu Q G 2017 Acta Opt. Sin. 37 0924002

    [8]

    Fu H X, Li S L, Wang Y L, Song G, Zhang P F, Wang L L, Yu L 2018 IEEE Photonics J. 10 1

    [9]

    Chen Z, Yu L 2014 IEEE Photonics J. 6 1

    [10]

    Li C, Li S L, Wang Y L, Jiao R Z, Wang L L, Yu L 2017 IEEE Photonics J. 99 1

    [11]

    Wang D Q, Yu X L, Yu Q M 2013 Appl. Phys. Lett. 103 824

    [12]

    Artar A, Yanik A A 2011 Nano Lett. 11 3694Google Scholar

    [13]

    Wu C H, Khanikaev A, Shvets G 2011 Phys. Rev. Lett. 106 107403Google Scholar

    [14]

    Zhang Z D, Wang H Y, Zhang Z Y 2013 Plasmonics 8 797Google Scholar

    [15]

    Rakhshani M R, Mansouri-Birjandi M A 2016 IEEE Sens. J. 16 3041Google Scholar

    [16]

    Kim J, Soref R, Buchwald W R 2010 Opt. Express 18 17997Google Scholar

    [17]

    Zheng S, Ruan Z S, Gao S Q, Long Y, Li S M, He M G, Zhou N, Du J, Shen L, Cai X L, Wang J 2017 Opt. Express 25 25655Google Scholar

    [18]

    Guo Z C, Wen K H, Hu Q Y, Lai W H, Lin J Y, Fang Y H 2018 Sensors 18 1348Google Scholar

    [19]

    Lu H, Liu X, Mao D 2012 Phys. Rev. A 85 53803Google Scholar

    [20]

    Piao X J, Yu S, Koo S, Lee K 2011 Opt. Express 19 10907Google Scholar

    [21]

    Wu C, Ding H F, Huang T Y, Wu X, Chen B W, Ren K X, Fu S N 2017 Plasmonics 13 251

    [22]

    Wen K H, Hu Y H, Chen L, Zhou J Y, Liang L, Meng Z M 2016 Plasmonics 11 315Google Scholar

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20232025
    [2] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振. 物理学报, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [3] 陈颖, 周健, 丁志欣, 张敏, 朱奇光. 亚波长介质光栅/MDM波导/周期性光子晶体中双重Fano共振的形成及演变规律分析. 物理学报, 2022, 71(3): 034202. doi: 10.7498/aps.71.20211491
    [4] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210855
    [5] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [6] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元. 物理学报, 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [7] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [8] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [9] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻. 物理学报, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [10] 杨傅子. 从plasmon到nanoplasmonics——近代光子学前沿及液晶在其动态调制中的应用. 物理学报, 2015, 64(12): 124214. doi: 10.7498/aps.64.124214
    [11] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式. 物理学报, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [12] 吴青峻, 吴凡, 孙理斌, 胡晓琳, 叶鸣, 徐越, 史斌, 谢昊, 夏娟, 蒋建中, 张冬仙. 基于表面等离子激元的超薄金属减色滤波器的研究. 物理学报, 2014, 63(20): 207801. doi: 10.7498/aps.63.207801
    [13] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [14] 黄茜, 张德坤, 熊绍珍, 赵颖, 张晓丹. 降低表面等离子激元寄生吸收损失的途径研究. 物理学报, 2012, 61(21): 217301. doi: 10.7498/aps.61.217301
    [15] 佟建波, 黄茜, 张晓丹, 张存善, 赵颖. 纳米Ag颗粒表面等离子激元对上转换材料光致发光性能影响的研究. 物理学报, 2012, 61(4): 047801. doi: 10.7498/aps.61.047801
    [16] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [17] 郑俊娟, 孙刚. 嵌入电介质小球的金属薄片的电磁波透射特性. 物理学报, 2010, 59(6): 4008-4013. doi: 10.7498/aps.59.4008
    [18] 张存喜, 王瑞, 孔令民. 太赫兹场辅助的单量子阱自旋共振输运. 物理学报, 2010, 59(7): 4980-4984. doi: 10.7498/aps.59.4980
    [19] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器. 物理学报, 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [20] 郑俊娟, 孙 刚. 周期排列的电介质小球所诱发的金属-电介质表面上的表面等离子激元的光学性质. 物理学报, 2005, 54(11): 5210-5217. doi: 10.7498/aps.54.5210
计量
  • 文章访问数:  6129
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2019-02-27
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回