搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实验优化设计Sr2MgSi2O7:Eu2+, Dy3+的合成及长余辉特性

刘盛意 张金苏 孙佳石 陈宝玖 李香萍 徐赛 程丽红

引用本文:
Citation:

实验优化设计Sr2MgSi2O7:Eu2+, Dy3+的合成及长余辉特性

刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红

Synthesis and long afterglow characteristics of Sr2MgSi2O7:Eu2+, Dy3+ by experimental optimization design

Liu Sheng-Yi, Zhang Jin-Su, Sun Jia-Shi, Chen Bao-Jiu, Li Xiang-Ping, Xu Sai, Cheng Li-Hong
PDF
HTML
导出引用
  • 为了得到最长有效余辉时间的Sr2MgSi2O7:Eu2+, Dy3+荧光粉, 应用二次通用旋转组合设计对实验进行全程优化, 建立了稀土离子掺杂浓度Eu2+, Dy3+和有效余辉时间的二元二次回归方程模型, 应用遗传算法计算得到有效余辉时间的理论最大值. 采用高温固相法合成了最优掺杂浓度Sr2MgSi2O7:0.5 mol%Eu2+, 1.0 mol%Dy3+的荧光粉, 在370 nm激发下观察到了465 nm的特征发射, 这归因于Eu2+的4f65d1—4f7跃迁. 测量了最优荧光粉的热释发光特性, 计算得到了陷阱深度为0.688 eV, 讨论了长余辉发光的特性.
    An optimization method is used to obtain the longest effective afterglow time in the rare earth ions doped long lasting phosphors. The effective afterglow time is defined as the time for the intensity to decays to 10% of the initial intensity. In this paper, we choose the Eu2+ and Dy3+ coped Sr2MgSi2O7 as the experimental objects. In order to obtain the longest effective afterglow time of Sr2MgSi2O7:Eu2+, Dy3+ phosphor, the experiment is optimized by quadratic general rotation combination design. The Sr2MgSi2O7:Eu2+, Dy3+ phosphor are synthesized via a solid-state reaction. The effective afterglow time is obtained by the afterglow decay curve. A binary quadratic regression equation model relating the rare earth ions Eu2+/Dy3+ doping concentrations to the effective afterglow time is established. The genetic algorithm is used to solve the equation. The optimal doping concentration of Eu2+ and Dy3+ are 0.5 mol% and 1.0 mol%, respectively. The theoretical maximum value of effective afterglow time is calculated to be 321 s. The phosphor with the optimal doping concentration Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+ are synthesized by the same method as that of synthesizing the frontal samples. The X-ray diffraction shows that the optimal sample prepared is of pure phase, and the doping ions have no effect on the lattice structure of the matrix. A characteristic emission at 465 nm due to the 4f65d1−4f7 transition of Eu2+is observed under the 370 nm excitation. The afterglow curve of the optimal sample is measured and the effective afterglow time is 333 s which has a good match with the theoretically calculated value of 321 s. The thermoluminescence spectrum of the optimal phosphor is measured, and the trap depth is calculated to be 0.688 eV according to the Chen’s model. Moreover, the long-lasting luminescence process of Eu2+ as the luminescence center of Sr2MgSi2O7 matrix is discussed in the energy level diagram.
      通信作者: 张金苏, melodyzjs@dlmu.edu.cn ; 孙佳石, sunjs@dlmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61604029, 11774042)、辽宁省自然科学基金(批准号: 2014025010, 20180510051)、中央高校基本科研业务费(批准号: DUT18LK48, 3132018239)、大连高层次人才创新支持计划(批准号: 2017RQ070)和大连海事大学教师发展专题(批准号: 2017JFZ04)资助的课题.
      Corresponding author: Zhang Jin-Su, melodyzjs@dlmu.edu.cn ; Sun Jia-Shi, sunjs@dlmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61604029, 11774042), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2014025010, 20180510051), the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT18LK48, 3132018239), the High-level Personnel in Dalian Innovation Support Program, China (Grant No. 2017RQ070), and the Dalian Maritime University Teacher Development Topic, China (Grant No. 2017JFZ04).
    [1]

    Chang C K, Mao D L, Shen J F, Feng C L 2003 J. Alloy. Compd. 348 224Google Scholar

    [2]

    Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993Google Scholar

    [3]

    梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒 2016 物理学报 65 170701Google Scholar

    Mei Q F, Tang Y H, Mei X N, Liu H C, Liu Q, Yu Y, Li N Y, Gao H 2016 Acta Phys. Sin. 65 170701Google Scholar

    [4]

    彭玲玲, 曹仕秀, 赵聪, 刘碧桃, 韩涛, 李凤, 黎小敏 2018 物理学报 67 187801Google Scholar

    Peng L L, Cao S X, Zhao C, Liu B T, Han T, Li F, Li X M 2018 Acta Phys Sin. 67 187801Google Scholar

    [5]

    刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2018 物理学报 65 207801Google Scholar

    Liu W Q, Zhao K F, Wu W J, Bao F Q, Zhou B Q 2018 Acta Phys. Sin. 65 207801Google Scholar

    [6]

    Lindmayer J 1988 Solid State Technol. 31 135Google Scholar

    [7]

    Fan W H, Wang Y C, Xu H, Li D, Wei Z, Yang B Z, Niu L H 1999 J. Appl. Phys. 85 451Google Scholar

    [8]

    Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502Google Scholar

    [9]

    Yamashita S A, Ogawa N 1989 Phys. States Solidi B 118 89

    [10]

    Ou Y Y, Zhou W J, Liu C M, Lin L T, Brik G M, Dorenbos P 2018 J. Phys. Chem. C 122 2959Google Scholar

    [11]

    Yan J, Liu C M, Vlieland J, Zhou J B, Dorenbos P, Huang Y, Tao Y, Liang H B 2017 J. Lumin. 183 97Google Scholar

    [12]

    Liu F, Yan W, Chuang Y J, Zhen Z, Xie J, Pan Z 2013 Sci. Rep. 3 1554Google Scholar

    [13]

    Xu X, He Q, Yan L 2013 J. Alloy. Compd. 574 22Google Scholar

    [14]

    Wang J, Ma Q, Wang Y, Shen H, Yuan Q 2017 Nanoscale 9 6204Google Scholar

    [15]

    孙佳石, 李香萍, 李树伟, 吴金磊, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys Sin. 66 100201Google Scholar

    [16]

    田碧凝 2013 硕士学位论文 (大连: 大连海事大学)

    Tian B N 2013 M. S. Thesis (Dalian: Dalian Mar-itime University) (in Chinese)

    [17]

    任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第172—185页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp172–185 (in Chinese)

    [18]

    王志军, 刘海燕, 杨勇, 蒋海峰, 段平光, 李盼来, 杨志平, 郭庆林 2014 物理学报 63 077802Google Scholar

    Wang Z J, Liu H Y, Yang Y, Jiang H F, Duan P G, Li P L, Yang Z P, Guo Q L 2014 Acta Phys. Sin. 63 077802Google Scholar

    [19]

    何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第185—190页

    He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp185–190 (in Chinese)

    [20]

    翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 物理学报 62 203301Google Scholar

    Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys Sin. 62 203301Google Scholar

    [21]

    程仕平, 徐慧, 王德志, 王光君, 吴壮志 2007 稀有金属材料与工程 36 1933Google Scholar

    Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933Google Scholar

    [22]

    高大海, 罗军, 葛明桥 2013 化工新型材料 41 30Google Scholar

    Gao D H, Luo J, Ge M Q 2013 New Chem. Mater. 41 30Google Scholar

    [23]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862Google Scholar

    [24]

    Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845Google Scholar

    [25]

    石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014 光子学报 43 1116002

    Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002

    [26]

    Wu H, Hu Y, Chen L, Wang X 2011 J. Alloy. Compd. 509 4304Google Scholar

    [27]

    Chen R 1969 J. Appl. Phys. 40 570Google Scholar

    [28]

    张哲, 徐旭辉, 邱建备, 张新, 余雪 2014 光谱学与光谱分析 34 1486Google Scholar

    Zhang Z, Xu X H, Qiu J B, Zhang X, Yu X 2014 Spetroscopy Spectral Anal. 34 1486Google Scholar

    [29]

    齐智坚, 黄维刚 2013 物理学报 62 197801Google Scholar

    Qi Z J, Huang W G 2013 Acta Phys Sin. 62 197801Google Scholar

  • 图 1  Eu2+/Dy3+的余辉衰减曲线

    Fig. 1.  Afterglow attenuation curve of Eu2+/Dy3+.

    图 2  Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+和标准数据卡卡片JCPDS#75-1736的XRD图谱

    Fig. 2.  XRD pattern of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol%Dy3+ and standard data card card JCPDS#75-1736.

    图 3  Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+的荧光激发和发射光谱

    Fig. 3.  Fluorescence excitation and emission spectroscopy of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+.

    图 4  Sr2MgSi2O7:0.5 mol%Eu2+, 1.0 mol% Dy3+的余辉衰减曲线

    Fig. 4.  Afterglow decay curve of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+.

    图 5  Sr2MgSi2O7:0.5 mol%Eu2+, 1.0 mol% Dy3+的热释发光光谱

    Fig. 5.  Thermoluminescence spectroscopy of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+.

    图 6  长余辉发光过程的简单模型

    Fig. 6.  Simple model of long afterglow luminescence process.

    表 1  自然因素水平编码表

    Table 1.  Natural factor level coding table

    Zj(xj) x1(Eu2+)/% x2(Dy3+)/%
    Z2j(r) 5 10
    Z0j + $\varDelta_j$(1) 4.341 8.682
    Z0j(0) 2.75 5.5
    Z0j – $\varDelta_j$(–1) 1.159 2.318
    Z1j(–r) 0.5 1
    $\varDelta_j$ = (Z2jZ1j)/2r 1.591 3.182
    xj = (ZjZ0j)/$\varDelta_j$ x1 = (Z1 – 2.75)/1.591 x2 = (Z2 – 5.5)/3.182
    下载: 导出CSV

    表 2  二次通用旋转组合设计实验方案及余辉时间

    Table 2.  Quadratic general rotation combination design experimental scheme and afterglow time.

    Number x0 x1 x2 x1x2 x12 x22 Afterglow time/s
    1 1 1 1 1 1 1 132
    2 1 1 –1 –1 1 1 80
    3 1 –1 1 –1 1 1 212
    4 1 –1 –1 1 1 1 184
    5 1 r 0 0 r2 0 116
    6 1 r 0 0 r2 0 290
    7 1 0 r 0 0 r2 172
    8 1 0 r 0 0 r2 138
    9 1 0 0 0 0 0 141
    10 1 0 0 0 0 0 104
    11 1 0 0 0 0 0 102
    12 1 0 0 0 0 0 101
    13 1 0 0 0 0 0 105
    下载: 导出CSV

    表 3  显著性检验分析

    Table 3.  Significant test analysis.

    Afterglow time/s
    方差或 t 统计量 显著性水平$\alpha$ 显著性水平$\alpha$
    x0 14.490 0.001 ***
    x1 5.193 0.01 **
    x2 1.546 0.2 *
    x1x2 0.703 0.6 Insignificant
    x12 6.116 0.01 ***
    x22 2.408 0.2 *
    F 18.07 0.001 ***
    注: ***极显著水平($\alpha$ ≤ 0.01); **显著水平($\alpha$ ≤ 0.1); *较显著水平($\alpha$ ≤ 0.25).
    下载: 导出CSV

    表 5  Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+的陷阱深度参数

    Table 5.  Trap depth parameter of Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+.

    T1/K Tm/K T2/K $\tau$/K $\delta$/K $\omega$/K ${\mu _{\rm g}}$/K ${E_\tau }$/eV ${E_\delta }$/eV ${E_\omega }$/eV E/eV
    339* 365 393 26 28 54 0.528 0.673 0.701 0.690 0.688
    下载: 导出CSV

    表 4  文献[27, 28]的模型陷阱深度参数

    Table 4.  Model trap depth parameter in Refs. [27, 28].

    $\tau$ $\delta$ $\omega$
    ${c_\alpha }$ 1.81 1.71 3.54
    ${b_\alpha }$ 2 0 1
    下载: 导出CSV
  • [1]

    Chang C K, Mao D L, Shen J F, Feng C L 2003 J. Alloy. Compd. 348 224Google Scholar

    [2]

    Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993Google Scholar

    [3]

    梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒 2016 物理学报 65 170701Google Scholar

    Mei Q F, Tang Y H, Mei X N, Liu H C, Liu Q, Yu Y, Li N Y, Gao H 2016 Acta Phys. Sin. 65 170701Google Scholar

    [4]

    彭玲玲, 曹仕秀, 赵聪, 刘碧桃, 韩涛, 李凤, 黎小敏 2018 物理学报 67 187801Google Scholar

    Peng L L, Cao S X, Zhao C, Liu B T, Han T, Li F, Li X M 2018 Acta Phys Sin. 67 187801Google Scholar

    [5]

    刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2018 物理学报 65 207801Google Scholar

    Liu W Q, Zhao K F, Wu W J, Bao F Q, Zhou B Q 2018 Acta Phys. Sin. 65 207801Google Scholar

    [6]

    Lindmayer J 1988 Solid State Technol. 31 135Google Scholar

    [7]

    Fan W H, Wang Y C, Xu H, Li D, Wei Z, Yang B Z, Niu L H 1999 J. Appl. Phys. 85 451Google Scholar

    [8]

    Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502Google Scholar

    [9]

    Yamashita S A, Ogawa N 1989 Phys. States Solidi B 118 89

    [10]

    Ou Y Y, Zhou W J, Liu C M, Lin L T, Brik G M, Dorenbos P 2018 J. Phys. Chem. C 122 2959Google Scholar

    [11]

    Yan J, Liu C M, Vlieland J, Zhou J B, Dorenbos P, Huang Y, Tao Y, Liang H B 2017 J. Lumin. 183 97Google Scholar

    [12]

    Liu F, Yan W, Chuang Y J, Zhen Z, Xie J, Pan Z 2013 Sci. Rep. 3 1554Google Scholar

    [13]

    Xu X, He Q, Yan L 2013 J. Alloy. Compd. 574 22Google Scholar

    [14]

    Wang J, Ma Q, Wang Y, Shen H, Yuan Q 2017 Nanoscale 9 6204Google Scholar

    [15]

    孙佳石, 李香萍, 李树伟, 吴金磊, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys Sin. 66 100201Google Scholar

    [16]

    田碧凝 2013 硕士学位论文 (大连: 大连海事大学)

    Tian B N 2013 M. S. Thesis (Dalian: Dalian Mar-itime University) (in Chinese)

    [17]

    任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第172—185页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp172–185 (in Chinese)

    [18]

    王志军, 刘海燕, 杨勇, 蒋海峰, 段平光, 李盼来, 杨志平, 郭庆林 2014 物理学报 63 077802Google Scholar

    Wang Z J, Liu H Y, Yang Y, Jiang H F, Duan P G, Li P L, Yang Z P, Guo Q L 2014 Acta Phys. Sin. 63 077802Google Scholar

    [19]

    何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第185—190页

    He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp185–190 (in Chinese)

    [20]

    翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 物理学报 62 203301Google Scholar

    Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys Sin. 62 203301Google Scholar

    [21]

    程仕平, 徐慧, 王德志, 王光君, 吴壮志 2007 稀有金属材料与工程 36 1933Google Scholar

    Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933Google Scholar

    [22]

    高大海, 罗军, 葛明桥 2013 化工新型材料 41 30Google Scholar

    Gao D H, Luo J, Ge M Q 2013 New Chem. Mater. 41 30Google Scholar

    [23]

    Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862Google Scholar

    [24]

    Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845Google Scholar

    [25]

    石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014 光子学报 43 1116002

    Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002

    [26]

    Wu H, Hu Y, Chen L, Wang X 2011 J. Alloy. Compd. 509 4304Google Scholar

    [27]

    Chen R 1969 J. Appl. Phys. 40 570Google Scholar

    [28]

    张哲, 徐旭辉, 邱建备, 张新, 余雪 2014 光谱学与光谱分析 34 1486Google Scholar

    Zhang Z, Xu X H, Qiu J B, Zhang X, Yu X 2014 Spetroscopy Spectral Anal. 34 1486Google Scholar

    [29]

    齐智坚, 黄维刚 2013 物理学报 62 197801Google Scholar

    Qi Z J, Huang W G 2013 Acta Phys Sin. 62 197801Google Scholar

  • [1] 余学舟, 黄昌保, 吴海信, 胡倩倩, 刘国晋, 李亚, 朱志成, 祁华贝, 倪友保, 王振友. 基于实验参数的Dy3+, Na+: PbGa2S4中红外激光理论研究. 物理学报, 2024, 73(16): 164203. doi: 10.7498/aps.73.20240223
    [2] 李辰琳, 赵习宇, 郭彤, 刘峰, 王笑军, 廖川, 张家骅. 上转换充能的动力学研究—以Mn2+掺杂的长余辉材料为例. 物理学报, 2022, 71(7): 077801. doi: 10.7498/aps.71.20211523
    [3] 梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒. 基于长余辉材料的激光书写和显示. 物理学报, 2016, 65(17): 170701. doi: 10.7498/aps.65.170701
    [4] 程帅, 徐旭辉, 王鹏久, 邱建备. 新型电子俘获型材料β-Sr2SiO4:Eu2+, La3+长余辉和光激励发光性能的研究. 物理学报, 2015, 64(1): 017802. doi: 10.7498/aps.64.017802
    [5] 王鹏久, 徐旭辉, 邱建备, 周大成, 刘雪娥, 程帅. 高亮度蓝绿色长余辉材料Ba4 (Si3O8)2:Eu2+, Pr3+的发光性能及其余辉机理研究. 物理学报, 2014, 63(7): 077804. doi: 10.7498/aps.63.077804
    [6] 谢伟, 王银海, 全军, 邹长伟, 梁枫, 邵乐喜. H3BO3对Y1.98O3:Eu0.01, Dy0.01红色长余辉发光材料结构和余辉性能的影响. 物理学报, 2014, 63(1): 016101. doi: 10.7498/aps.63.016101
    [7] 余阳, 刘自军, 陈乔乔, 戴能利, 李进延, 杨旅云. Dy3+掺杂硼硅酸盐玻璃的发光特性. 物理学报, 2013, 62(1): 017804. doi: 10.7498/aps.62.017804
    [8] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [9] 李海玲, 王银海, 张万鑫, 王显盛, 赵慧. Eu3+掺杂CaO的合成与红色长余辉发光性能研究. 物理学报, 2012, 61(22): 227802. doi: 10.7498/aps.61.227802
    [10] 牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴. Y3Al5O12∶Ce3+的余辉和热释光特性. 物理学报, 2011, 60(1): 013201. doi: 10.7498/aps.60.013201
    [11] 谢伟, 王银海, 胡义华, 张军, 邹长伟, 李达, 邵乐喜. Sr0.6Ba0.2Ca0.2Al2O4 ∶Eu,Dy的制备与长余辉发光性能研究. 物理学报, 2011, 60(6): 067801. doi: 10.7498/aps.60.067801
    [12] 杨志平, 马欣, 赵盼盼, 宋兆丰. SrAl2B2O7:Dy3+材料的制备及其发光性能. 物理学报, 2010, 59(8): 5387-5391. doi: 10.7498/aps.59.5387
    [13] 邓柳咏, 胡义华, 王银海, 吴浩怡, 谢伟. Dy3+/Nd3+掺杂对Sr4Al14O25:Eu2+陷阱能级的影响. 物理学报, 2010, 59(5): 3402-3407. doi: 10.7498/aps.59.3402
    [14] 谢伟, 王银海, 胡义华, 吴浩怡, 邓柳咏, 廖峰. Ca2+离子替代对Sr4Al14O25:Eu2+,Dy3+结构和发光性能的影响. 物理学报, 2010, 59(2): 1148-1154. doi: 10.7498/aps.59.1148
    [15] 谢伟, 王银海, 胡义华, 罗莉, 吴浩怡, 邓柳咏. Y2O3: Eu,Dy的制备与红色长余辉发光性能研究. 物理学报, 2010, 59(5): 3344-3349. doi: 10.7498/aps.59.3344
    [16] 王志军, 李盼来, 王颖, 杨志平, 郭庆林. 白光LED用LiBaBO3:Eu2+材料发光特性研究. 物理学报, 2009, 58(2): 1257-1260. doi: 10.7498/aps.58.1257
    [17] 朱涛, 史翠华, 饶云江, 郑建成. CO2激光写入长周期光纤光栅的折变理论及实验研究. 物理学报, 2009, 58(9): 6316-6322. doi: 10.7498/aps.58.6316
    [18] 崔彩娥, 王森, 黄平. Dy含量对红色长余辉发光材料Sr3Al2O6:Eu2+,Dy3+性能的影响. 物理学报, 2009, 58(5): 3565-3571. doi: 10.7498/aps.58.3565
    [19] 王志军, 李盼来, 王 刚, 杨志平, 郭庆林. Ca2SiO4:Dy3+材料的制备及其发光特性. 物理学报, 2008, 57(7): 4575-4579. doi: 10.7498/aps.57.4575
    [20] 刘春旭, 张家骅, 吕少哲, 刘俊业. 纳米Gd2O3:Eu3+中Judd-Ofelt参数的实验确定. 物理学报, 2004, 53(11): 3945-3949. doi: 10.7498/aps.53.3945
计量
  • 文章访问数:  10482
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2018-12-19
  • 刊出日期:  2019-03-05

/

返回文章
返回