搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂声学环境中人耳附近空间有源降噪研究综述

邹海山 邱小军

引用本文:
Citation:

复杂声学环境中人耳附近空间有源降噪研究综述

邹海山, 邱小军

A review of research on active noise control near human ear in complex sound field

Zou Hai-Shan, Qiu Xiao-Jun
PDF
HTML
导出引用
  • 复杂声学环境中人耳附近空间降噪是有源噪声控制研究的重要课题, 目前采用的主要方法为有源降噪头靠(AHR)和虚拟声屏障(VSB). 本文简述AHR与VSB的发展历史和研究现状, 介绍其物理原理和设计方法, 评述其在实际应用中的优缺点, 讨论了目前存在的问题与未来相关的研究方向. 已有理论、数值仿真和实验研究验证了相关技术在人耳附近空间产生静区的可行性. AHR系统需要较少控制源, 系统相对简单易实现, 但静区范围较小, 结合虚拟传声器技术和人头跟踪技术后可实现随人头移动的静区, 降噪频率可达中高频; VSB产生的静区范围较大, 但控制源个数较多, 系统复杂和成本高, 可通过代价函数和控制源优化, 以及主被动混合控制技术来提高有效降噪频率范围和减少控制源个数.
    Local control of sound around human ears in complex acoustic environments is important for both active noise control and sound reproduction. Two typical active noise control approaches for this objective are active headrest systems and virtual sound barrier systems. In this paper, the history and the present status for the active headrest systems and virtual sound barrier systems are briefed first, then the theoretical principles, the design methods and the applications of these approaches are reviewed. Their advantages and limitations are discussed, and finally, the currently existing problems and future research directions are presented. The feasibility of these approaches to generating a quiet zone near a human ear has been verified by the theoretical research, numerical simulations and experiments. The active headrest systems require less control sources and are simpler for implementation; however, they suffer the problem of small-sized quiet zones. This results in the restrictions on the head movement since the error sensor needs to be close to the human ear to obtain better noise reduction performance. Based on the virtual sensor technology, a physical error sensor can be placed farther away from the human head, and create the quiet zone at the virtual sensor position near the human ear. Moreover, combined with the virtual sensor technology and the head-tracking technology, an active headrest system can generate a moving zone of quiet following the head movement, and the noise reduction can be achieved in a middle-to-high frequency range. A virtual sound barrier system reduces the sound pressure inside a volume, through controlling the sound pressure and normal gradient on the boundary of the volume. Two main design methods are the expansion method of the primary sound field which is suitable for steady primary sound fields, and the least mean square method which is applicable to time-varying primary sound fields. It can generate larger quiet zone at the cost of more control sources, more complexity and high cost. Optimizing cost functions and control sources and using hybrid active and passive control techniques can increase the effective frequency range and reduce the number of control sources. Although the feasibility of these two systems has been verified, more research work is needed to develop practical systems. An active-passive hybrid structure for specific application scenarios, which combines these two approaches together as well as the virtual sensor technology and sound field estimation technology, may most likely be practical methods to achieve effective noise reduction near the human ear in a complex sound field in the near future.
      通信作者: 邹海山, hszou@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874218, 11874219)资助的课题.
      Corresponding author: Zou Hai-Shan, hszou@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874218, 11874219).
    [1]

    Bies D A, Hansen C H 2009 Engineering Noise Control: Theory and Practice (London and New York: Spon Press) pp3−12

    [2]

    Fuller C R, von Flotow A H 1995 IEEE Contr. Syst. Mag. 15 9Google Scholar

    [3]

    Nelson P A, Elliott S J 1986 J. Sound Vib. 105 173Google Scholar

    [4]

    Nelson P A, Curtis A R D, Elliott S J, Bullmore A J 1987 J. Sound Vib. 116 397Google Scholar

    [5]

    Omoto A, Fujiwara K 1993 J. Acoust. Soc. Am. 94 2173

    [6]

    Omoto A, Takashima K, Fujiwara K 1997 J. Acoust. Soc. Am. 102 1671Google Scholar

    [7]

    Guo J, Pan J 1998 J. Acoust. Soc. Am. 104 3408Google Scholar

    [8]

    Niu F, Zou H, Qiu X, Wu M 2007 J. Sound Vib. 299 409Google Scholar

    [9]

    Ang L Y L, Yong K K, Lee H P 2017 Appl. Acoust. 122 16Google Scholar

    [10]

    Bai M R, Pan W, Chen H 2018 J. Acoust. Soc. Am. 143 1613Google Scholar

    [11]

    Elliott S J, Joseph P, Bullmore A J, Nelson P A 1988 J. Sound Vib. 120 183Google Scholar

    [12]

    Garcia-Bonito J, Elliott S J 1995 J. Acoust. Soc. Am. 98 1017Google Scholar

    [13]

    Rafaely B, Elliott S J, Garciabonito J 1999 J. Acoust. Soc. Am. 106 787Google Scholar

    [14]

    Garcia-Bonito J, Elliott S J, Boucher C C 1997 J. Acoust. Soc. Am. 101 3498Google Scholar

    [15]

    Elliott S J, Jones M 2006 J. Acoust. Soc. Am. 119 2702Google Scholar

    [16]

    Jung W, Elliott S J, Cheer J 2017 J. Acoust. Soc. Am. 142 298Google Scholar

    [17]

    Elliott S J, Jung W, Cheer J 2018 Sci. Rep. 8 5403Google Scholar

    [18]

    Moreau D J, Ghan J, Cazzolato B S, Zander A C 2009 J. Acoust. Soc. Am. 125 3742Google Scholar

    [19]

    Ise S 1999 Acta Acust. United Ac. 85 78

    [20]

    Qiu X, Li N, Chen G 2005 Proceedings of the 12th International Congress on Sound and Vibration, Lisbon, Portugal, July 11−14, 2005

    [21]

    Zou H, Qiu X, Lu J, Niu F 2007 J. Sound Vib. 307 379Google Scholar

    [22]

    Zou H, Qiu X 2008 Appl. Acoust. 69 875Google Scholar

    [23]

    Epain N, Friot E 2007 J. Sound Vib. 299 587Google Scholar

    [24]

    Zhang X, Qiu X 2017 Appl. Acoust. 116 283Google Scholar

    [25]

    Olson H F, May E G 1953 J. Acoust. Soc. Am. 25 1130Google Scholar

    [26]

    David A, Elliott S J 1994 Appl. Acoust. 41 63Google Scholar

    [27]

    Joseph P, Elliott S J, Nelson P A 1994 J. Sound Vib. 172 605Google Scholar

    [28]

    Elliott S J, Garcia-Bonito J 1995 J. Sound Vib. 186 696Google Scholar

    [29]

    Garcia-Bonito J, Elliott S J 1999 J. Sound Vib. 221 85Google Scholar

    [30]

    Garcia-Bonito J, Elliot S J, Bonilha M 1997 J. Sound Vib. 201 43Google Scholar

    [31]

    Rafaely B 2000 J. Acoust. Soc. Am. 107 3254Google Scholar

    [32]

    Rafaely B 2001 J. Acoust. Soc. Am. 110 296Google Scholar

    [33]

    Elliott S J, David A 1992 Proceedings of 1st International Conference on Motion and Vibration Control Yokohama, Japan, September 7−11, 1992 p1027

    [34]

    Roure A, Albarrazin A 1999 Active 99: the International Symposium on Active Control of Sound and Vibration Florida, USA, December 2−4, 1999 p1233

    [35]

    Jung W, Elliott S J, Cheer J 2018 J. Acoust. Soc. Am. 143 2858Google Scholar

    [36]

    Kestell C D, Hansen C H, Cazzolato B S 2000 Int. J. Acoust. Vib. 5 63

    [37]

    Kestell C D, Cazzolato B S, Hansen C H 2001 J. Acoust. Soc. Am. 109 232Google Scholar

    [38]

    Petersen C D, Fraanje R, Cazzolato B S, Zander A C, Hansen C H 2008 Mech. Syst. Signal Pr. 22 490Google Scholar

    [39]

    Petersen C D, Zander A C, Cazzolato B S, Hansen C H 2007 J. Acoust. Soc. Am. 121 1459Google Scholar

    [40]

    Moreau D J, Cazzolato B S, Zander A C 2008 J. Acoust. Soc. Am. 123 3063

    [41]

    Elliott S, Simon M, Cheer J, Jung W 2015 12th Western Pacific Acoustics Conference Singapore, December 6−10, 2015 p385

    [42]

    Lei C, Xu J, Wang J, Zheng C, Li X 2015 J. Low Freq. Noise V. A. 34 233Google Scholar

    [43]

    Cook R K, Waterhouse R V, Berendt R D, Edelman S, Thompson M C 1955 J. Acoust. Soc. Am. 27 1072Google Scholar

    [44]

    Joseph P 1990 Ph.D. Dissertation (England: University of Southampton)

    [45]

    Elliott S J, Cheer J 2015 J. Acoust. Soc. Am. 137 1936Google Scholar

    [46]

    Sano H 2011 The 40th Inter-noise & Noise-con Congress & Conference Osaka, Japan, September 4−7, 2011 p2491

    [47]

    Duan J 2011 Ph.D. Dissertation (USA: University of Cincinnati)

    [48]

    Nelson P A, Elliott S J 1992 Active control of sound (London: Academic Press) pp282−287

    [49]

    Jessel M J M 1968 Proceedings 6th International Congress on Acoustics Tokyo, Japan, Auguster 21−28, 1968 paper F-5−6 p82

    [50]

    Malyuzhinets G D 1969 Sov. Phys. Dokl. 14 118

    [51]

    Canevet G 1978 J. Sound Vib. 58 333Google Scholar

    [52]

    Jessel M J M, Mangiante G A 1972 J. Sound Vib. 23 383Google Scholar

    [53]

    Mangiante G A 1977 J. Acoust. Soc. Am. 61 1516Google Scholar

    [54]

    邹海山, 邱小军, 卢晶 2008 声学技术 27 621

    Zou H S, Qiu X J, Lu J 2008 Tech. Acoust. 27 621

    [55]

    邹海山, 邱小军 2009 南京大学学报(自然科学版) 45 57Google Scholar

    Zou H S, Qiu X J 2009 J. Nanjing Univ. (Nat. Sci. Ed.) 45 57Google Scholar

    [56]

    饶维 2011 硕士学位论文 (南京: 南京大学)

    Rao W 2011 M.S Thesis (Nanjing: Nanjing University) (in Chinese)

    [57]

    Qiu X, Zou H, Rao W 2009 Proceedings of the 2009 International Symposium on Active Control of Sound and Vibration Ottawa Canada, August 20−22, 2009 p239

    [58]

    邹海山 2007 博士学位论文 (南京: 南京大学)

    Zou H S 2007 Ph.D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [59]

    Williams E 1999 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (London: Academic Press) pp186−211

    [60]

    Xue J, Huang X, Lu J, Wang S, Tao J, Chen K 2015 The 44th Inter-noise & Noise-con Congress & Conference San Francisco USA, August 9−12, 2015 p2377

    [61]

    Pawelczyk M 2003 Int. J. Adapt. Control 17 785

    [62]

    Poletti M A, Abhayapala T D, Samarasinghe P 2012 J. Acoust. Soc. Am. 131 3814Google Scholar

    [63]

    Chang J H, Jacobsen F 2013 J. Acoust. Soc. Am. 133 2046Google Scholar

    [64]

    Tao J, Wang S, Qiu X, Pan J 2017 Appl. Acoust. 123 1Google Scholar

    [65]

    Huang X, Zou H, Qiu X 2015 Build. Environ. 94 891Google Scholar

    [66]

    Wang X, Koba Y, Ishikawa S, Kijmoto S 2014 The 43rd Inter-noise & Noise-con Congress & Conference Melbourne, Australia, November 16−19, 2014 p378

    [67]

    韩荣, 吴鸣, 王晓琳, 孙红灵, 杨军 2018 应用声学 37 664Google Scholar

    Han R, Wu M, Wang X, Sun H, Yang J 2018 Appl. Acoust. 37 664Google Scholar

  • 图 1  AHR示意图

    Fig. 1.  Schematic drawing of AHR.

    图 2  单通道虚拟传声器示意图[14]

    Fig. 2.  Schematic drawing of single-channel virtual microphone arrangement[14].

    图 3  使用远程传声器技术和人头跟踪系统的AHR系统[16]

    Fig. 3.  AHR system integrated with remote microphone technique and head tracker system[16].

    图 4  VSB系统示意图

    Fig. 4.  Schematic drawing of a VSB system.

    图 5  圆柱状分布内含人头的16通道VSB系统[58]

    Fig. 5.  Setup of the 16-channel cylindrical VSB system with a rigid sphere[58].

    图 6  实验环境照片[58]

    Fig. 6.  Photo of experimental setup[58].

    图 7  实测VSB系统平均降噪量NR随频率变化的曲线[58]

    Fig. 7.  Experimental results of control performance with respect to the frequency of noise signal[58].

    图 8  实测人头移动对降噪效果的影响[58]

    Fig. 8.  Experimental results of control performance with respect to the movements of rigid sphere[58].

  • [1]

    Bies D A, Hansen C H 2009 Engineering Noise Control: Theory and Practice (London and New York: Spon Press) pp3−12

    [2]

    Fuller C R, von Flotow A H 1995 IEEE Contr. Syst. Mag. 15 9Google Scholar

    [3]

    Nelson P A, Elliott S J 1986 J. Sound Vib. 105 173Google Scholar

    [4]

    Nelson P A, Curtis A R D, Elliott S J, Bullmore A J 1987 J. Sound Vib. 116 397Google Scholar

    [5]

    Omoto A, Fujiwara K 1993 J. Acoust. Soc. Am. 94 2173

    [6]

    Omoto A, Takashima K, Fujiwara K 1997 J. Acoust. Soc. Am. 102 1671Google Scholar

    [7]

    Guo J, Pan J 1998 J. Acoust. Soc. Am. 104 3408Google Scholar

    [8]

    Niu F, Zou H, Qiu X, Wu M 2007 J. Sound Vib. 299 409Google Scholar

    [9]

    Ang L Y L, Yong K K, Lee H P 2017 Appl. Acoust. 122 16Google Scholar

    [10]

    Bai M R, Pan W, Chen H 2018 J. Acoust. Soc. Am. 143 1613Google Scholar

    [11]

    Elliott S J, Joseph P, Bullmore A J, Nelson P A 1988 J. Sound Vib. 120 183Google Scholar

    [12]

    Garcia-Bonito J, Elliott S J 1995 J. Acoust. Soc. Am. 98 1017Google Scholar

    [13]

    Rafaely B, Elliott S J, Garciabonito J 1999 J. Acoust. Soc. Am. 106 787Google Scholar

    [14]

    Garcia-Bonito J, Elliott S J, Boucher C C 1997 J. Acoust. Soc. Am. 101 3498Google Scholar

    [15]

    Elliott S J, Jones M 2006 J. Acoust. Soc. Am. 119 2702Google Scholar

    [16]

    Jung W, Elliott S J, Cheer J 2017 J. Acoust. Soc. Am. 142 298Google Scholar

    [17]

    Elliott S J, Jung W, Cheer J 2018 Sci. Rep. 8 5403Google Scholar

    [18]

    Moreau D J, Ghan J, Cazzolato B S, Zander A C 2009 J. Acoust. Soc. Am. 125 3742Google Scholar

    [19]

    Ise S 1999 Acta Acust. United Ac. 85 78

    [20]

    Qiu X, Li N, Chen G 2005 Proceedings of the 12th International Congress on Sound and Vibration, Lisbon, Portugal, July 11−14, 2005

    [21]

    Zou H, Qiu X, Lu J, Niu F 2007 J. Sound Vib. 307 379Google Scholar

    [22]

    Zou H, Qiu X 2008 Appl. Acoust. 69 875Google Scholar

    [23]

    Epain N, Friot E 2007 J. Sound Vib. 299 587Google Scholar

    [24]

    Zhang X, Qiu X 2017 Appl. Acoust. 116 283Google Scholar

    [25]

    Olson H F, May E G 1953 J. Acoust. Soc. Am. 25 1130Google Scholar

    [26]

    David A, Elliott S J 1994 Appl. Acoust. 41 63Google Scholar

    [27]

    Joseph P, Elliott S J, Nelson P A 1994 J. Sound Vib. 172 605Google Scholar

    [28]

    Elliott S J, Garcia-Bonito J 1995 J. Sound Vib. 186 696Google Scholar

    [29]

    Garcia-Bonito J, Elliott S J 1999 J. Sound Vib. 221 85Google Scholar

    [30]

    Garcia-Bonito J, Elliot S J, Bonilha M 1997 J. Sound Vib. 201 43Google Scholar

    [31]

    Rafaely B 2000 J. Acoust. Soc. Am. 107 3254Google Scholar

    [32]

    Rafaely B 2001 J. Acoust. Soc. Am. 110 296Google Scholar

    [33]

    Elliott S J, David A 1992 Proceedings of 1st International Conference on Motion and Vibration Control Yokohama, Japan, September 7−11, 1992 p1027

    [34]

    Roure A, Albarrazin A 1999 Active 99: the International Symposium on Active Control of Sound and Vibration Florida, USA, December 2−4, 1999 p1233

    [35]

    Jung W, Elliott S J, Cheer J 2018 J. Acoust. Soc. Am. 143 2858Google Scholar

    [36]

    Kestell C D, Hansen C H, Cazzolato B S 2000 Int. J. Acoust. Vib. 5 63

    [37]

    Kestell C D, Cazzolato B S, Hansen C H 2001 J. Acoust. Soc. Am. 109 232Google Scholar

    [38]

    Petersen C D, Fraanje R, Cazzolato B S, Zander A C, Hansen C H 2008 Mech. Syst. Signal Pr. 22 490Google Scholar

    [39]

    Petersen C D, Zander A C, Cazzolato B S, Hansen C H 2007 J. Acoust. Soc. Am. 121 1459Google Scholar

    [40]

    Moreau D J, Cazzolato B S, Zander A C 2008 J. Acoust. Soc. Am. 123 3063

    [41]

    Elliott S, Simon M, Cheer J, Jung W 2015 12th Western Pacific Acoustics Conference Singapore, December 6−10, 2015 p385

    [42]

    Lei C, Xu J, Wang J, Zheng C, Li X 2015 J. Low Freq. Noise V. A. 34 233Google Scholar

    [43]

    Cook R K, Waterhouse R V, Berendt R D, Edelman S, Thompson M C 1955 J. Acoust. Soc. Am. 27 1072Google Scholar

    [44]

    Joseph P 1990 Ph.D. Dissertation (England: University of Southampton)

    [45]

    Elliott S J, Cheer J 2015 J. Acoust. Soc. Am. 137 1936Google Scholar

    [46]

    Sano H 2011 The 40th Inter-noise & Noise-con Congress & Conference Osaka, Japan, September 4−7, 2011 p2491

    [47]

    Duan J 2011 Ph.D. Dissertation (USA: University of Cincinnati)

    [48]

    Nelson P A, Elliott S J 1992 Active control of sound (London: Academic Press) pp282−287

    [49]

    Jessel M J M 1968 Proceedings 6th International Congress on Acoustics Tokyo, Japan, Auguster 21−28, 1968 paper F-5−6 p82

    [50]

    Malyuzhinets G D 1969 Sov. Phys. Dokl. 14 118

    [51]

    Canevet G 1978 J. Sound Vib. 58 333Google Scholar

    [52]

    Jessel M J M, Mangiante G A 1972 J. Sound Vib. 23 383Google Scholar

    [53]

    Mangiante G A 1977 J. Acoust. Soc. Am. 61 1516Google Scholar

    [54]

    邹海山, 邱小军, 卢晶 2008 声学技术 27 621

    Zou H S, Qiu X J, Lu J 2008 Tech. Acoust. 27 621

    [55]

    邹海山, 邱小军 2009 南京大学学报(自然科学版) 45 57Google Scholar

    Zou H S, Qiu X J 2009 J. Nanjing Univ. (Nat. Sci. Ed.) 45 57Google Scholar

    [56]

    饶维 2011 硕士学位论文 (南京: 南京大学)

    Rao W 2011 M.S Thesis (Nanjing: Nanjing University) (in Chinese)

    [57]

    Qiu X, Zou H, Rao W 2009 Proceedings of the 2009 International Symposium on Active Control of Sound and Vibration Ottawa Canada, August 20−22, 2009 p239

    [58]

    邹海山 2007 博士学位论文 (南京: 南京大学)

    Zou H S 2007 Ph.D. Dissertation (Nanjing: Nanjing University) (in Chinese)

    [59]

    Williams E 1999 Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (London: Academic Press) pp186−211

    [60]

    Xue J, Huang X, Lu J, Wang S, Tao J, Chen K 2015 The 44th Inter-noise & Noise-con Congress & Conference San Francisco USA, August 9−12, 2015 p2377

    [61]

    Pawelczyk M 2003 Int. J. Adapt. Control 17 785

    [62]

    Poletti M A, Abhayapala T D, Samarasinghe P 2012 J. Acoust. Soc. Am. 131 3814Google Scholar

    [63]

    Chang J H, Jacobsen F 2013 J. Acoust. Soc. Am. 133 2046Google Scholar

    [64]

    Tao J, Wang S, Qiu X, Pan J 2017 Appl. Acoust. 123 1Google Scholar

    [65]

    Huang X, Zou H, Qiu X 2015 Build. Environ. 94 891Google Scholar

    [66]

    Wang X, Koba Y, Ishikawa S, Kijmoto S 2014 The 43rd Inter-noise & Noise-con Congress & Conference Melbourne, Australia, November 16−19, 2014 p378

    [67]

    韩荣, 吴鸣, 王晓琳, 孙红灵, 杨军 2018 应用声学 37 664Google Scholar

    Han R, Wu M, Wang X, Sun H, Yang J 2018 Appl. Acoust. 37 664Google Scholar

  • [1] 王蕾, 马玺越, 陈克安, 刘韬. 自由场中大尺寸有源微穿孔板吸声器的低频吸声性能. 物理学报, 2023, 72(6): 064304. doi: 10.7498/aps.72.20222151
    [2] 杜安天, 刘若涛, 曹春芳, 韩实现, 王海龙, 龚谦. 利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计. 物理学报, 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [3] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [4] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [5] 杨生辉, 董明义, 渠超越, 田兴成, 董静, 吴冶, 马骁妍, 章红宇, 江晓山, 欧阳群, 李岚坤, 郑国恒. 基于单片有源像素传感器的探测模块测试研究. 物理学报, 2021, 70(17): 170702. doi: 10.7498/aps.70.20210464
    [6] 刘恒, 张钧翔, 付士杰, 盛泉, 史伟, 姚建铨. 有源光纤中稀土离子激光上能级寿命测量的研究. 物理学报, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [7] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [8] 李建军. 近800 nm波长张应变GaAsP/AlGaAs量子阱激光器有源区的设计. 物理学报, 2018, 67(6): 067801. doi: 10.7498/aps.67.20171816
    [9] 俞清, 包伯成, 徐权, 陈墨, 胡文. 基于有源广义忆阻的无感混沌电路研究. 物理学报, 2015, 64(17): 170503. doi: 10.7498/aps.64.170503
    [10] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器. 物理学报, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [11] 王燕, 邹男, 梁国龙. 强多途环境下水听器阵列位置近场有源校正方法. 物理学报, 2015, 64(2): 024304. doi: 10.7498/aps.64.024304
    [12] 胡海帆, 王颖, 陈杰, 赵士斌. 全三维电离粒子有源像素探测器优化仿真. 物理学报, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [13] 白岩, 赵卫疆, 任德明, 曲彦臣, 刘闯, 袁晋鹤, 钱黎明, 陈振雷. 基于有源Fabry-Perot腔的激光脉冲延时自外差研究. 物理学报, 2012, 61(9): 094218. doi: 10.7498/aps.61.094218
    [14] 殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳. 基于单矢量有源平均声强器的码分多址水声通信. 物理学报, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302
    [15] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [16] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [17] 周梅, 赵德刚. 以弱p型为有源区的新型p-n结构GaN紫外探测器. 物理学报, 2009, 58(10): 7255-7260. doi: 10.7498/aps.58.7255
    [18] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究. 物理学报, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [19] 徐刚毅, 李爱珍. InGaAsSb/AlGaAsSb长波长多量子阱激光器有源区的优化设计. 物理学报, 2004, 53(1): 218-225. doi: 10.7498/aps.53.218
    [20] 廉 鹏, 殷 涛, 高 国, 邹德恕, 陈昌华, 李建军, 沈光地, 马骁宇, 陈良惠. 新型多有源区隧道再生光耦合大功率半导体激光器. 物理学报, 2000, 49(12): 2374-2377. doi: 10.7498/aps.49.2374
计量
  • 文章访问数:  10339
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-01-15
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回