搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1556 nm光纤激光器频率分裂效应的应力测量

陈恺 祝连庆 牛海莎 孟阔 董明利

引用本文:
Citation:

基于1556 nm光纤激光器频率分裂效应的应力测量

陈恺, 祝连庆, 牛海莎, 孟阔, 董明利

Stress measurement based on 1556 nm fiber laser frequency splitting effect

Chen Kai, Zhu Lian-Qing, Niu Hai-Sha, Meng Kuo, Dong Ming-Li
PDF
HTML
导出引用
  • 光学元件在红外波段的应力-光学常数是众多光学系统关心的问题之一. 本文提出一种基于1556.16 nm掺铒光纤激光频率分裂效应的光学玻璃内应力致双折射测量方法. 选择平面介质膜腔镜和光纤光栅(FBG)构成线形半开放式谐振腔, 并分析了光纤自身弯曲引入谐振腔内的双折射. 将待测光学玻璃附带力传感结构放置在谐振腔内, 结合Jones矩阵传递方程得到了外载荷所致双折射与空腔双折射的叠加模型. 对光学玻璃的载荷从0逐级递加到20 N, 内腔的频率分裂量增加, 根据双折射叠加模型和频率分裂原理解出应力与频率分裂量的对应关系, 且该结果可溯源到基本物理量—波长. 实验结果表明, 系统灵敏度为22060 Pa/nm, 线性度为99.44%, 可广泛应用于红外波段的光学元件双折射精确测量.
    When the optical component works in a complicated working environment such as a large temperature difference or a multi-modal state, internal stress accumulation is likely to occur, which affects the overall performance of the optical system. The stress-optical constant of optical component in the infrared range is one of the concerns of many optical systems. In this paper, a method of measuring the internal stress-induced birefringence of optical glass based on the frequency splitting effect of 1556.16 nm erbium-doped fiber laser is proposed. The planar dielectric lenticular and fiber Bragg grating (FBG) are selected to form a linear semi-open resonator by using an erbium-doped fiber as a gain medium, and a 976 nm semiconductor laser (LD) with a single-mode pigtail output for pumping. At the pump power of 200 mW, a laser output with a spectral center wavelength of 1556.16 nm, a spectral 3-dB bandwidth of 0.018 nm, and a longitudinal mode spacing of 40.77 MHz is obtained. The birefringence and its fast axis introduced into the cavity by the fiber itself are analyzed. The force sensing structure of the optical glass to be tested is placed in the cavity, and the frequency splitting of the laser after the stress loading on the optical glass in the cavity is compared with the scenario in the empty cavity, and the bifurcation and cavity birefringence caused by the external load are obtained by combining the Jones matrix transfer equation. The load on the optical glass is gradually increased from 0 to 20 N. In the stress loading process, the direction of the stress birefringence in the optical glass is parallel to the direction of the applied force. The frequency splitting of the inner cavity increases from 35.59 MHz to 35.77 MHz, which corresponds to a 679.18 nm—682.62 nm optical path difference of the cavity. The correspondence between stress and frequency splitting is understood according to the birefringence superposition model and frequency splitting, and the result can be traced back to the basic physical quantity-wavelength. Continuous loading of the optical glass results in a system with measurement repeatability better than 0.0459 MHz. The experiment is designed to avoid the uncorrected systematic error of the system induced by the sub-cavity effect. The non-aligned error equation is obtained, and the error is calibrated. The experimental results show that the sensitivity of the instrument for K9 glass is 22060 Pa/nm and the linearity is 99.44%. The method has no damage to the surface of the optical structure, nor occlusion nor influence of its normal in-service work. It is of significance for optical lens, structural measurement and error correction, and can be widely used for accurately measuring the birefringence of optical components in the infrared band.
      通信作者: 祝连庆, zhulianqing@sina.com
    • 基金项目: 教育部长江学者和创新团队发展计划(批准号: IRT_16R07)、国家自然科学基金青年科学基金(批准号: 61805017)和北京市自然科学基金(批准号: 4184087)资助的课题.
      Corresponding author: Zhu Lian-Qing, zhulianqing@sina.com
    • Funds: Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_16R07), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61805017), and the Natural Science Foundation of Beijing, China (Grant No. 4184087).
    [1]

    Findlay S J, Harrison N D 2002 Mater. Today 5 18

    [2]

    Tomozawa M, Lezzi P J, Hepburn R W J 2012 J. Non-Cryst. Solids 358 2650

    [3]

    Guo P, Gao Q, Jia H U 2000 Opt. Pre. Eng. 1

    [4]

    Zhu K Y, Guo B, Lu Y T, Zhang S, Tan Y D 2017 Optica 4 729Google Scholar

    [5]

    Jeong B H, Park J H 2018 U.S. Patent US10006982B2

    [6]

    Norrby S J 2006 J. Cataract Refract Surg 32 545

    [7]

    Montalto L, Paone N, Rinaldi D 2015 Opt. Eng. 54 081210−1/9Google Scholar

    [8]

    Vourna P, Hervoches C, Vrana M 2015 IEEE Trans. Magn. 51 1

    [9]

    Okoro C, Levine L E, Xu R 2014 IEEE Trans. Electron. Dev. 61 2473

    [10]

    Reul A, Lauhoff C, Krooß P 2018 Shape Memory & Superelasticity 1

    [11]

    Yang X, Cheng Y, Zhu Z 2018 Electric Welding Machine 323

    [12]

    Nagib N N, Bahrawi M S, Ismail L Z 2015 Opt. Laser Technol. 69 77Google Scholar

    [13]

    Mori A, Tomita R 2015 Instrum Sci. Technol. 43 379Google Scholar

    [14]

    Liu W, Liu M, Zhang S 2008 Appl. Opt. 47 5562Google Scholar

    [15]

    Xu Z, Luo Y, Sun Q 2019 IEEE Photonics Technol. Lett. PP 1

    [16]

    吕志国, 杨直, 李峰, 李强龙, 王屹山, 杨小君 2018 物理学报 67 184205Google Scholar

    Lü Z G, Yang Z, Li F, Li Q L, Wang Y S, Yang X J 2018 Acta Phys. Sin. 67 184205Google Scholar

    [17]

    王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜成, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204Google Scholar

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204Google Scholar

    [18]

    Wang J J, Zhang L, Zhou J, Si L, Chen J B, Feng Y C 2012 Opt. Lett. 10

    [19]

    Hang Y S, Xiao Q R, Li D, Wang Z H, Wang X J, Yan P, Gong M L 2018 Chin. Phys. B 27 044201

  • 图 1  半外腔频率分裂光纤激光器结构图

    Fig. 1.  Structure diagram of the half external cavity frequency splitting fiber laser.

    图 2  半外腔频率分裂光纤激光器光谱图

    Fig. 2.  Optical spectrum of the half external cavity frequency splitting fiber laser.

    图 3  空腔频率分裂频谱图

    Fig. 3.  Spectrum of cavity frequency splitting.

    图 4  谐振腔激光模式结构图

    Fig. 4.  Mode structure diagram of resonant cavity.

    图 5  镜片主应力大小与方向有限元仿真

    Fig. 5.  Finite element simulation of the main stress of the lens.

    图 6  (a)加载中PMB2拍频信号频谱变化; (b) PMB2拍频信号与加载力关系

    Fig. 6.  (a)Frequency spectrum change of PMB2 in loading; (b) relationship of the PMB2 and the force.

    图 7  双折射叠加图

    Fig. 7.  Diagram of birefringence superposition.

    图 8  合成相位延迟随快轴夹角变化

    Fig. 8.  Variation of the phase delay with the fast axis angle.

    图 9  玻璃应力双折射参数与加载力关系

    Fig. 9.  Relationship of the birefringence parameters of glass stress and the force.

    图 10  单次测量重复性

    Fig. 10.  Repeatability of single measurement.

    图 11  应力双折射重复性实验

    Fig. 11.  Repeatability experiment of birefringence of glass stress.

    图 12  玻璃应力-光程差拟合

    Fig. 12.  Fitting of glass stress and optical path difference.

  • [1]

    Findlay S J, Harrison N D 2002 Mater. Today 5 18

    [2]

    Tomozawa M, Lezzi P J, Hepburn R W J 2012 J. Non-Cryst. Solids 358 2650

    [3]

    Guo P, Gao Q, Jia H U 2000 Opt. Pre. Eng. 1

    [4]

    Zhu K Y, Guo B, Lu Y T, Zhang S, Tan Y D 2017 Optica 4 729Google Scholar

    [5]

    Jeong B H, Park J H 2018 U.S. Patent US10006982B2

    [6]

    Norrby S J 2006 J. Cataract Refract Surg 32 545

    [7]

    Montalto L, Paone N, Rinaldi D 2015 Opt. Eng. 54 081210−1/9Google Scholar

    [8]

    Vourna P, Hervoches C, Vrana M 2015 IEEE Trans. Magn. 51 1

    [9]

    Okoro C, Levine L E, Xu R 2014 IEEE Trans. Electron. Dev. 61 2473

    [10]

    Reul A, Lauhoff C, Krooß P 2018 Shape Memory & Superelasticity 1

    [11]

    Yang X, Cheng Y, Zhu Z 2018 Electric Welding Machine 323

    [12]

    Nagib N N, Bahrawi M S, Ismail L Z 2015 Opt. Laser Technol. 69 77Google Scholar

    [13]

    Mori A, Tomita R 2015 Instrum Sci. Technol. 43 379Google Scholar

    [14]

    Liu W, Liu M, Zhang S 2008 Appl. Opt. 47 5562Google Scholar

    [15]

    Xu Z, Luo Y, Sun Q 2019 IEEE Photonics Technol. Lett. PP 1

    [16]

    吕志国, 杨直, 李峰, 李强龙, 王屹山, 杨小君 2018 物理学报 67 184205Google Scholar

    Lü Z G, Yang Z, Li F, Li Q L, Wang Y S, Yang X J 2018 Acta Phys. Sin. 67 184205Google Scholar

    [17]

    王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜成, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204Google Scholar

    Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204Google Scholar

    [18]

    Wang J J, Zhang L, Zhou J, Si L, Chen J B, Feng Y C 2012 Opt. Lett. 10

    [19]

    Hang Y S, Xiao Q R, Li D, Wang Z H, Wang X J, Yan P, Gong M L 2018 Chin. Phys. B 27 044201

  • [1] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [2] 刘维新, 唐宁, 马龙行, 高克凡, 孙明哲. Zeeman双频激光器频率分裂与纵模间隔变动一致性分析. 物理学报, 2021, 70(7): 074204. doi: 10.7498/aps.70.20200607
    [3] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化. 物理学报, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [4] 刘恒, 张钧翔, 付士杰, 盛泉, 史伟, 姚建铨. 有源光纤中稀土离子激光上能级寿命测量的研究. 物理学报, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [5] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [6] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [7] 张松, 谈宜东, 张书练. 激光回馈引起的微片Nd:YAG激光器频差调制. 物理学报, 2014, 63(10): 104208. doi: 10.7498/aps.63.104208
    [8] 徐攀, 胡正良, 马明祥, 姜暖, 胡永明. 光频率调制法测量动态光栅瞬态反射谱特性. 物理学报, 2012, 61(17): 174208. doi: 10.7498/aps.61.174208
    [9] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [10] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [11] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [12] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [13] 延凤平, 魏淮, 傅永军, 王琳, 郑凯, 毛向桥, 刘鹏, 彭健, 刘利松, 简水生. 石英基掺Tm3+包层抽运光纤激光器. 物理学报, 2009, 58(9): 6300-6303. doi: 10.7498/aps.58.6300
    [14] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [15] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [16] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [17] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [18] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [19] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [20] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
计量
  • 文章访问数:  7414
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-11
  • 修回日期:  2019-03-18
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回