搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相依网络的条件依赖群逾渗

韩伟涛 伊鹏

引用本文:
Citation:

相依网络的条件依赖群逾渗

韩伟涛, 伊鹏

Percolation of interdependent networks with conditional dependency clusters

Han Wei-tao, Yi Peng
PDF
HTML
导出引用
  • 相依网络鲁棒性研究多集中于满足无反馈条件的一对一依赖, 但现实网络节点往往依赖于多节点构成的依赖群, 即使群内部分节点失效也不会导致依赖节点失效. 针对此现象提出了一种相依网络的条件依赖群逾渗模型, 该模型允许依赖群内节点失效比例不超过容忍度$\gamma $时, 依赖节点仍可正常工作. 通过理论分析给出了基于生成函数方法的模型巨分量方程, 仿真结果表明方程理论解与相依网络模拟逾渗值相吻合, 增大$\gamma $值和依赖群规模可提高相依网络鲁棒性. 本文模型有助于更好地理解现实网络逾渗现象, 对如何增强相依网络鲁棒性有一定指导作用.
    Modern systems are always coupled. Previous studies indicate that coupled systems are more fragile than single systems. In a single system, when a fraction of 1-p nodes are removed, the percolation process is often of the second order. In a coupled system, due to the lack of resilience, the phase transition is always of the first order when removing a fraction of nodes. Most of previous studies on coupled systems focus on one-to-one dependency relation. This kind of relationship is called a no-feedback condition. Existing studies suppose that coupled systems are much more fragile without a no-feedback condition. That is to say, if a node depends on more than one node, the coupled system will breakdown even when a small fraction of nodes are removed from the coupled system. By observing the real world system, real nodes are often dependent on a dependency cluster, which consists of more than one other node. For example, in an industry chain, an electronic equipment factory may need several raw material factories to supply production components. Despite part of the raw material factories being bankrupt, the electronic equipment factory can carry out productionnormally because the remaining raw material factories still supply the necessary production components. But theoretical analysis shows that the robustness of such a coupled system is worse than that of one-to-one dependency system. Actually, the coupled system in real world does not usually disintegrate into pieces after some nodes have become invalid. To explain this phenomenon, we model a coupled system as interdependent networks and study, both analytically and numerically, the percolation in interdependent networks with conditional dependency clusters. A node in our model survives until the number of failed nodes in its dependency cluster is greater than a threshold. Our exact solutions of giant component size are in good agreement with the simulation results. Though our model does not have second order phase transition, we still find ways to improve the robustness of interdependent networks. One way is to increase the dependency cluster failure threshold. A higher threshold means that more nodes in the dependency cluster can be removed without breaking down the node depending on the cluster. Other way is to increase the size of dependency clusters, the more the nodes in the dependency cluster, the more the failure combinations are, which increases the survival probability of the node depending on cluster. Our model offers a useful strategy to enhance the robustness of coupled system and makes a good contribution to the study of interdependent networks with dependency clusters.
      通信作者: 伊鹏, yipengndsc@163.com
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0803200, 2018YFB0804002)和国家自然科学基金(批准号: 61802429, 61872382)资助的课题.
      Corresponding author: Yi Peng, yipengndsc@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFB0803200, 2018YFB0804002), and the National NaturalScience Foundationof China (Grant Nos. 61802429, 61872382).
    [1]

    Albert R, Barabási A 2002 Rev. Mod. Phys. 74 47Google Scholar

    [2]

    Dorogovtsev S N, Goltsev A V, Mendes J F 2008 Rev. Mod. Phys. 80 1275Google Scholar

    [3]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025Google Scholar

    [4]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, Porcellinis S, Setola R 2008 Int. J. Crit. Infr. 4 63Google Scholar

    [5]

    Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 48701Google Scholar

    [6]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 36116Google Scholar

    [7]

    Parshani R, Buldyrev S V, Havlin S 2011 Proc. Natl. Acad. Sci. USA 108 1007Google Scholar

    [8]

    Li M, Wang B H 2014 Chin. Phys. B 23 79

    [9]

    Wang H, Li M, Deng L, Wang B H 2015 Plos One 10 e126674

    [10]

    Liu R R, Li M, Jia C X, Wang B H 2016 Sci. Rep. 6 25294Google Scholar

    [11]

    Di Muro M A, La Rocca C E, Stanley H E, Havlin S, Braunstein L A 2016 Sci. Rep. 6 22834Google Scholar

    [12]

    Yuan X, Hu Y Q, Stanley H E, Havlin S 2017 Proc. Natl. Acad. Sci. USA 114 3311Google Scholar

    [13]

    吴佳键, 龚凯, 王聪, 王磊 2018 物理学报 67 088901Google Scholar

    Wu J J, Gong K, Wang C, Wang L 2018 Acta Phys. Sin. 67 088901Google Scholar

    [14]

    Newman M 2010 Networks. An introduction(1st Ed.) (Oxford: Oxford University Press) pp 414 − 423

    [15]

    La Rocca C E, Stanley H E, Braunstein L A 2018 Physica A 508 577Google Scholar

    [16]

    Kong L W, Li M, Liu R R, Wang B H 2017 Phys. Rev. E 95 32301

    [17]

    Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702Google Scholar

    [18]

    Gao J X, Buldyrev S V, Stanley H E, Havlin S 2012 Nat. Phys. 8 40Google Scholar

    [19]

    Di Muro M A, Buldyrev S V, Stanley H E, Braunstein L A 2016 Phys. Rev. E 94 42304

    [20]

    Wang Z X, Zhou D, Hu Y Q 2018 Phys. Rev. E 97 32306

    [21]

    Wang H, Li M, Deng L, Wang B H 2018 Physica A 502 195Google Scholar

    [22]

    Newman M E, Strogatz S H, Watts D J 2001 Phys. Rev. E 64 26118Google Scholar

    [23]

    Feng L, Monterola C P, Hu Y Q 2015 New J. Phys. 17 63025Google Scholar

    [24]

    Erdős P, Rényi A 1959 Publ. Math. 62 90

    [25]

    Wilf H S 1994 Generating Functionology (2nd Ed.)(London: Academic Press) pp 1 − 16

  • 图 1  具有多依赖关系的相依网络逾渗示意图, 初始攻击导致红色节点失效, 随后发生级联失效过程, 最终相依网络仅有极少数节点存活

    Fig. 1.  The model of percolation of interdependent networks with multiple support-dependence relations. The red node fails after the initial attack. Then the cascading failure process leads to a catastrophiccollapse of the interdependent networks. Finally, only a small fraction of nodes survive.

    图 2  相依网络的条件依赖群逾渗模型 A网络节点随机依赖于B网络的$\tilde k$个节点($\tilde k \geqslant 0$), 反之亦然; A网络的a节点依赖的3个节点有一个失效, 但失效比例未超过容忍度$\gamma = 0.5$, a节点继续工作; B网络的b节点依赖的节点失效比例超过$\gamma = 0.5$, 所以b节点失效

    Fig. 2.  The model of percolation in interdependent networks with conditional dependency clusters. Nodes in network A randomly depends on $\tilde k$ ($\tilde k \geqslant 0$) nodes in network B and vice versa. One of the three nodes which node a in network A depends on fails, but the failure proportion does not exceed $\gamma = 0.5$, node a still works. Two of the three nodes which node b in network B depends on fail, the failure proportion exceeds$\gamma = 0.5$, node bfails.

    图 3  不同$\gamma $取值的RR-RR相依网络逾渗, 每个网络节点数$N = 200000$, 平均度$\left\langle k \right\rangle = 6$, $\tilde P(10) = 1$, 空心标记为仿真值, 实线为逾渗方程数值解 (a) 巨分量${\mu _\infty }$$p$对应关系; (b) 级联失效迭代次数(number of iterations, NOI)

    Fig. 3.  The results of the percolation of RR-RR interdependent networks for different $\gamma $, each network has 200000 nodes, average degree is 6, $\tilde P(10) = 1$. The symbols represent the simulation results, and the solid linesshow the corresponding analytical predictions. (a) The size ofthe giant component ${\mu _\infty }$versus $p$; (b) number of iterations.

    图 4  不同$\gamma $值对应的ER-ER相依网络相变点, 网络平均度$\left\langle k \right\rangle = 6$, $\tilde P(10) = 1$

    Fig. 4.  Graphical solutions of ER-ER interdependent networks transition for different $\gamma $. The average degree is 6, $\tilde P(10) = 1$.

    图 5  不同$\gamma $取值的ER-ER相依网络逾渗, 每个网络节点数$N = 200000$, 平均度$\left\langle k \right\rangle = 6$, $\tilde P(10) = 1$, 空心标记为仿真值, 实线为逾渗方程数值解 (a) 巨分量${\mu _\infty }$$p$对应关系; (b) 级联失效迭代次数

    Fig. 5.  The results of the percolation of ER-ER interdependent networks for different $\gamma $, each network has 200000 nodes, average degree is 6, $\tilde P(10) = 1$. The symbols represent the simulation results, and the solid linesshow the corresponding analytical predictions. (a) The size ofthe giant component ${\mu _\infty }$ versus $p$; (b) number of iterations.

    图 6  不同依赖度分布的ER-ER相依网络逾渗, $\tilde P(10) = 1$, $\tilde P(5) = 1$分别用实心和空心标记表示, 每个网络节点数$N = 200000$, 平均度$\left\langle k \right\rangle = 6$ (a) 巨分量${\mu _\infty }$$p$对应关系; (b) 级联失效迭代次数

    Fig. 6.  The results of the percolation of ER-ER interdependent networks for different dependency degrees, each network has 200000 nodes, average degree is 6. The dependency degrees are $\tilde P(10) = 1$ (solid symbols) and $\tilde P(5) = 1$ (empty symbols). (a) The size ofthe giant component ${\mu _\infty }$ versus $p$; (b) number of iterations.

    图 7  不同$\gamma $取值的ER-ER相依网络相变点, 空心标记为仿真结果, 实线是理论值

    Fig. 7.  The critical point ${p_{\rm{c}}}$ versus $\gamma $ of ER-ER interdependent networks, The symbols represent the simulation results, and the solid linesshow the corresponding analytical predictions.

    图 8  不同$\gamma $取值的SF-SF相依网络逾渗, 每个网络节点数$N = 200000$, 平均度$\left\langle k \right\rangle = 6$, $\lambda = 2.7$, $\tilde P(10) = 1$, 空心标记为仿真值, 实线为逾渗方程数值解 (a) 巨分量${\mu _\infty }$$p$对应关系; (b) 级联失效迭代次数

    Fig. 8.  The results of the percolation of SF-SF interdependent networks for different $\gamma $, each network has 200000 nodes, average degree is 6, $\lambda = 2.7$, $\tilde P(10) = 1$. The symbols represent the simulation results, and the solid linesshow the corresponding analytical predictions. (a) The size ofthe giant component ${\mu _\infty }$ versus $p$; (b) number of iterations.

  • [1]

    Albert R, Barabási A 2002 Rev. Mod. Phys. 74 47Google Scholar

    [2]

    Dorogovtsev S N, Goltsev A V, Mendes J F 2008 Rev. Mod. Phys. 80 1275Google Scholar

    [3]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025Google Scholar

    [4]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, Porcellinis S, Setola R 2008 Int. J. Crit. Infr. 4 63Google Scholar

    [5]

    Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 48701Google Scholar

    [6]

    Shao J, Buldyrev S V, Havlin S, Stanley H E 2011 Phys. Rev. E 83 36116Google Scholar

    [7]

    Parshani R, Buldyrev S V, Havlin S 2011 Proc. Natl. Acad. Sci. USA 108 1007Google Scholar

    [8]

    Li M, Wang B H 2014 Chin. Phys. B 23 79

    [9]

    Wang H, Li M, Deng L, Wang B H 2015 Plos One 10 e126674

    [10]

    Liu R R, Li M, Jia C X, Wang B H 2016 Sci. Rep. 6 25294Google Scholar

    [11]

    Di Muro M A, La Rocca C E, Stanley H E, Havlin S, Braunstein L A 2016 Sci. Rep. 6 22834Google Scholar

    [12]

    Yuan X, Hu Y Q, Stanley H E, Havlin S 2017 Proc. Natl. Acad. Sci. USA 114 3311Google Scholar

    [13]

    吴佳键, 龚凯, 王聪, 王磊 2018 物理学报 67 088901Google Scholar

    Wu J J, Gong K, Wang C, Wang L 2018 Acta Phys. Sin. 67 088901Google Scholar

    [14]

    Newman M 2010 Networks. An introduction(1st Ed.) (Oxford: Oxford University Press) pp 414 − 423

    [15]

    La Rocca C E, Stanley H E, Braunstein L A 2018 Physica A 508 577Google Scholar

    [16]

    Kong L W, Li M, Liu R R, Wang B H 2017 Phys. Rev. E 95 32301

    [17]

    Li W, Bashan A, Buldyrev S V, Stanley H E, Havlin S 2012 Phys. Rev. Lett. 108 228702Google Scholar

    [18]

    Gao J X, Buldyrev S V, Stanley H E, Havlin S 2012 Nat. Phys. 8 40Google Scholar

    [19]

    Di Muro M A, Buldyrev S V, Stanley H E, Braunstein L A 2016 Phys. Rev. E 94 42304

    [20]

    Wang Z X, Zhou D, Hu Y Q 2018 Phys. Rev. E 97 32306

    [21]

    Wang H, Li M, Deng L, Wang B H 2018 Physica A 502 195Google Scholar

    [22]

    Newman M E, Strogatz S H, Watts D J 2001 Phys. Rev. E 64 26118Google Scholar

    [23]

    Feng L, Monterola C P, Hu Y Q 2015 New J. Phys. 17 63025Google Scholar

    [24]

    Erdős P, Rényi A 1959 Publ. Math. 62 90

    [25]

    Wilf H S 1994 Generating Functionology (2nd Ed.)(London: Academic Press) pp 1 − 16

  • [1] 高彦丽, 徐维南, 周杰, 陈世明. 二元双层耦合网络渗流行为分析. 物理学报, 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] 严玉为, 蒋沅, 杨松青, 余荣斌, 洪成. 基于时间序列的网络失效模型. 物理学报, 2022, 71(8): 088901. doi: 10.7498/aps.71.20212106
    [3] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效. 物理学报, 2022, (): . doi: 10.7498/aps.71.20210850
    [4] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效. 物理学报, 2022, 71(11): 110505. doi: 10.7498/aps.70.20210850
    [5] 蒋文君, 刘润然, 范天龙, 刘霜霜, 吕琳媛. 多层网络级联失效的预防和恢复策略概述. 物理学报, 2020, 69(8): 088904. doi: 10.7498/aps.69.20192000
    [6] 韩伟涛, 伊鹏, 马海龙, 张鹏, 田乐. 异质弱相依网络鲁棒性研究. 物理学报, 2019, 68(18): 186401. doi: 10.7498/aps.68.20190761
    [7] 吴佳键, 龚凯, 王聪, 王磊. 相依网络上基于相连边的择优恢复算法. 物理学报, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [8] 高彦丽, 陈世明. 一种全局同质化相依网络耦合模式. 物理学报, 2016, 65(14): 148901. doi: 10.7498/aps.65.148901
    [9] 彭兴钊, 姚宏, 杜军, 王哲, 丁超. 负荷作用下相依网络中的级联故障. 物理学报, 2015, 64(4): 048901. doi: 10.7498/aps.64.048901
    [10] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [11] 段东立, 战仁军. 基于相继故障信息的网络节点重要度演化机理分析. 物理学报, 2014, 63(6): 068902. doi: 10.7498/aps.63.068902
    [12] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析. 物理学报, 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [13] 袁铭. 带有层级结构的复杂网络级联失效模型. 物理学报, 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [14] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [15] 李炎, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏. Erds Rnyi随机网络上爆炸渗流模型相变性质的数值模拟研究. 物理学报, 2013, 62(4): 046401. doi: 10.7498/aps.62.046401
    [16] 刘志峰, 赖远庭, 赵 刚, 张有为, 刘正锋, 王晓宏. 随机多孔介质逾渗模型渗透率的临界标度性质. 物理学报, 2008, 57(4): 2011-2015. doi: 10.7498/aps.57.2011
    [17] 冯增朝, 赵阳升, 吕兆兴. 二维孔隙裂隙双重介质逾渗规律研究. 物理学报, 2007, 56(5): 2796-2801. doi: 10.7498/aps.56.2796
    [18] 牟威圩, 许小亮. 感染生长模型的逾渗模拟. 物理学报, 2006, 55(6): 2871-2876. doi: 10.7498/aps.55.2871
    [19] 马仲发, 庄奕琪, 杜 磊, 包军林, 李伟华. 栅氧化层介质经时击穿的逾渗模型. 物理学报, 2003, 52(8): 2046-2051. doi: 10.7498/aps.52.2046
    [20] 袁坚, 任勇, 刘锋, 山秀明. 复杂计算机网络中的相变和整体关联行为. 物理学报, 2001, 50(7): 1221-1225. doi: 10.7498/aps.50.1221
计量
  • 文章访问数:  7317
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-01-31
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回