搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂在GaAs材料中Be受主能级之间的跃迁

郑卫民 黄海北 李素梅 丛伟艳 王爱芳 李斌 宋迎新

引用本文:
Citation:

掺杂在GaAs材料中Be受主能级之间的跃迁

郑卫民, 黄海北, 李素梅, 丛伟艳, 王爱芳, 李斌, 宋迎新

Transitions between Be acceptor levels in GaAs bulk

Zheng Wei-Min, Huang Hai-Bei, Li Su-Mei, Cong Wei-Yan, Wang Ai-Fang, Li Bin, Song Ying-Xin
PDF
HTML
导出引用
  • 通过远红外吸收谱、光致发光光谱和拉曼散射光谱, 对均匀掺杂在GaAs材料中Be受主能级之间的跃迁进行了研究. 实验中使用的GaAs:Be样品是通过分子束外延设备, 生长在半绝缘(100) GaAs衬底之上的外延单层. 在4.2 K温度下, 对样品分别进行了远红外吸收光谱、光致发光光谱、Raman光谱的实验测量. 在远红外吸收光谱中, 清楚地观察到了从Be受主1S3/2Γ8基态到它的三个激发态2P3/2Γ8, 2P5/2Γ8和2P5/2Γ7之间的奇宇称跃迁吸收峰. 跃迁能量与先前文献中报道的符合得很好. 从光致发光光谱中, 观察到了Be受主从1S3/2Γ8基态到2S3/2Γ8激发态的两空穴跃迁的发光峰, 从而间接地找到了两能级之间的跃迁能量. 在Raman光谱中, 清楚地分辨出来了Be受主从1S3/2Γ8基态到2S3/2Γ8激发态偶宇称跃迁的拉曼散射峰, 直接得到了两能级间的跃迁能量. 对比发现, 分别直接和间接得到的1S3/2Γ8基态到2S3/2Γ8激发态跃迁能量结果是一致的.
    The doping is one of important means in the semiconductor manufacturing techniques, by which the optical and electric properties of semiconductor materials can be significantly improved. The doping level and energy level structure of dopants have a great influence on the operating performances of micro-electronic devices. Beryllium is one of acceptors, which is frequently used to be doped in GaAs bulk, because it is very stable with respect to diffusion at higher temperatures. Therefore, it is significant for the application to optoelectronic devices that the energy-state structure of Be acceptors in GaAs bulk can be investigated in detail. The sample GaAs:Be used in experiment is a 5-μm-thick epitaxial single layer doped uniformly by Be acceptors with a doping level of 2 × 1016 cm–3, and grown by molecular beam epitaxy on 450-μm-thick semi-insulating (100) GaAs substrates in a VG V80 H reactor equipped with all solid sources. The transitions between the energy states of Be acceptors are studied experimentally by different spectroscopy techniques. The far-infrared absorption experiments are performed by using a Fourier-transform spectrometer equipped with a tungsten light source and a multilayer wide band beam splitter. Prior to the absorption spectrum measurement, the sample is thinned, polished and wedged to approximately a 5° angle to suppress optical interference between the front and back faces. Then, the sample is placed into the cryostat with liquid helium (4.2 K). The photoluminescence and Raman spectra are also measured at 4.2 K by a Renishaw Raman imaging microscope. The optical excitation to the sample is provided by an argon-ion laser with a wavelength of 514.5 nm, and the excited power is typically 5 mW. The odd-parity transitions from the Be acceptor ground state 1S3/2Γ8 to three excited states, i.e. 2P3/2Γ8, 2P5/2Γ8 and 2P5/2Γ7 are clearly observed in the far-infrared absorption spectra, then the respective transition energy values are obtained, which are in excellent agreement with the experimental results reported previously. In the photoluminescence spectrum, the emission peak labelled two holetransition, originating from the two-hole transition of recombination of the neutral-accptor bound excitons, is seen obviously, thus the energy of the even-parity transition between 1S3/2Γ8 and 2S3/2Γ8 states is found indirectly. Furthermore, in the Raman spectrum measured, the transition peak between 1S3/2Γ8 and 2S3/2Γ8 states is well resolved, and the transition energy between them is gained directly. By comparison, the transition energy values gained directly and indirectly are found to be consistent with each other.
      通信作者: 郑卫民, wmzheng@sdu.edu.cn ; 李斌, binli@mail.sitp.ac.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2017MF018)和国家自然科学基金(批准号: 61675223)资助的课题.
      Corresponding author: Zheng Wei-Min, wmzheng@sdu.edu.cn ; Li Bin, binli@mail.sitp.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2017MF018) and the National Natural Science Foundation of China (Grant No. 61675223)
    [1]

    Park J, Barnes P A, Lovejoy M L 1995 Appl. Phys. Lett. 67 968Google Scholar

    [2]

    Jiang D S, Makita Y, Ploog K, Queisser H J 1982 J. Appl. Phys. 53 999Google Scholar

    [3]

    Arab S, Yao M, Zhou C, Dapkus P D, Cronin S B 2016 Appl. Phys. Lett. 108 182106Google Scholar

    [4]

    Hu J, Zhang H, Sun Y, Misochko O V, Nakamura K G 2018 Phys. Rev. B 97 165307Google Scholar

    [5]

    Belykh V V, Kavokin K V, Yakovlev D R, Bayer M 2017 Phys. Rev. B 96 241201Google Scholar

    [6]

    Donnelly J P, Leonberger F J, Bozler C O 1976 Appl. Phys. Lett. 28 706Google Scholar

    [7]

    Waldrop J R 1988 Appl. Phys. Lett. 53 1518Google Scholar

    [8]

    Beyzavi K, Lee K, Kim D M, Nathan M I, Wrenner K, Wright S L 1991 Appl. Phys. Lett. 58 1268Google Scholar

    [9]

    Wagner J, Seelewind H, Koidl P 1986 Appl. Phys. Lett. 49 1080Google Scholar

    [10]

    Atzmuller R, Dahl M, Kraus J, Schaack G, Schubert J 1991 J. Phys. Condens. Matter 3 6775Google Scholar

    [11]

    Sze S M 1981 Physics of Semiconductor Devices (New York: John Wiley & Sons Ltd.) p20

    [12]

    Reeder A A, McCombe B D, Chambers F A, Devane G P 1988 Phys. Rev. B 38 4318Google Scholar

    [13]

    Reeder A A, McCombe B D, Chambers F A, Devane G P 1988 Superlatt. Microstruct. 4 381Google Scholar

    [14]

    Reeder A A, Mercy J M, McCombe B D 1988 IEEE J. Quantum Electron. 24 1690Google Scholar

    [15]

    Lewis R A, Cheng T S, Henini M, Chamberlain J M 1996 Phys. Rev. B 53 12829Google Scholar

    [16]

    Wan K, Bray R M 1985 Phys. Rev. B 32 5265Google Scholar

    [17]

    Gammon D, Merlin R, Masselink W T, Morkoc H 1986 Phys. Rev. B 33 2919Google Scholar

    [18]

    Lipari N O, Balderschi A 1978 Solid State Commun. 25 665Google Scholar

    [19]

    Balderschi A, Lipari N O 1976 Journal of Luminescence 12−13 489

    [20]

    Fiorentini V, Balderschi A 1989 Solid State Commun. 69 953Google Scholar

    [21]

    Fisher P, Fan H Y 1959 Phys. Rev. Lett. 2 456Google Scholar

    [22]

    Kirkman R F, Stradling R A, Lin-Chung P J 1978 J. Phys. C 11 419Google Scholar

    [23]

    Luttinger J M 1956 Phys. Rev. 102 1030Google Scholar

    [24]

    Balderschi A, Lipari N O 1973 Phys. Rev. B 8 2697Google Scholar

    [25]

    Balderschi A, Lipari N O 1974 Phys. Rev. B 9 1525Google Scholar

    [26]

    Labrie D, Booth I J, Thewalt M L W, Clayman B P 1986 Appl. Opt. 25 171Google Scholar

    [27]

    Koteles E S, Datars W R 1976 Can. J. Phys. 54 1676Google Scholar

    [28]

    Shen X C 2002 Spectrum and Optical Property of Semiconductor (Beijing: Scientific Press) p553 (in Chinese) [沈学础 2002 半导体光谱和光学性质 (北京: 科学出版社) 第553页]

    [29]

    Contour J P, Neu G, Leroux M, Chaix C, Levesque B, Etienne P 1983 J. Vac. Sci. Technol. B 1 811

    [30]

    Bhattacharya P K, BOhlmann H J, Iegems M 1982 J. Appl. Phys. 53 6391Google Scholar

    [31]

    Wan K, Young J F, Devine R L S, Moore W T, Thorpe S, Miner C J, Mandeville P 1988 J. Appl. Phys. 63 5598Google Scholar

    [32]

    Olego D, Cardona M 1981 Phys. Rev. B 24 7217Google Scholar

  • 图 1  掺杂在GaAs材料中Be受主的能级分布及跃迁

    Fig. 1.  Energy levels of Be acceptors doped in GaAs bulk.

    图 2  在4.2 K温度下, GaAs:Be样品的远红外吸收谱

    Fig. 2.  Far-infrared absorption spectrum for the sample GaAs:Be at 4.2 K.

    图 3  在4.2 K温度下, GaAs:Be样品的PL光谱

    Fig. 3.  PL spectrum of sample GaAs:Be at 4.2 K.

    图 4  在4.2 K温度下, GaAs:Be样品的Raman光谱

    Fig. 4.  Raman spectrum of the sample GaAs:Be at 4.2 K.

    表 1  掺杂在GaAs中Be受主的跃迁能量的对照

    Table 1.  Comparison of transition energies of Be accepters in GaAs.

    跃迁
    谱线
    跃迁能量
    实验值 理论值
    文献[12, 15] 本文文献[25]
    /cm –1 /cm–1 /meV/meV
    G135134.4213516.7414.29
    D167166.7616720.7118.47
    C184182.3018322.6920.34
    E160 (PL)
    161 (Raman)
    19.84
    19.96
    18.04
    下载: 导出CSV
  • [1]

    Park J, Barnes P A, Lovejoy M L 1995 Appl. Phys. Lett. 67 968Google Scholar

    [2]

    Jiang D S, Makita Y, Ploog K, Queisser H J 1982 J. Appl. Phys. 53 999Google Scholar

    [3]

    Arab S, Yao M, Zhou C, Dapkus P D, Cronin S B 2016 Appl. Phys. Lett. 108 182106Google Scholar

    [4]

    Hu J, Zhang H, Sun Y, Misochko O V, Nakamura K G 2018 Phys. Rev. B 97 165307Google Scholar

    [5]

    Belykh V V, Kavokin K V, Yakovlev D R, Bayer M 2017 Phys. Rev. B 96 241201Google Scholar

    [6]

    Donnelly J P, Leonberger F J, Bozler C O 1976 Appl. Phys. Lett. 28 706Google Scholar

    [7]

    Waldrop J R 1988 Appl. Phys. Lett. 53 1518Google Scholar

    [8]

    Beyzavi K, Lee K, Kim D M, Nathan M I, Wrenner K, Wright S L 1991 Appl. Phys. Lett. 58 1268Google Scholar

    [9]

    Wagner J, Seelewind H, Koidl P 1986 Appl. Phys. Lett. 49 1080Google Scholar

    [10]

    Atzmuller R, Dahl M, Kraus J, Schaack G, Schubert J 1991 J. Phys. Condens. Matter 3 6775Google Scholar

    [11]

    Sze S M 1981 Physics of Semiconductor Devices (New York: John Wiley & Sons Ltd.) p20

    [12]

    Reeder A A, McCombe B D, Chambers F A, Devane G P 1988 Phys. Rev. B 38 4318Google Scholar

    [13]

    Reeder A A, McCombe B D, Chambers F A, Devane G P 1988 Superlatt. Microstruct. 4 381Google Scholar

    [14]

    Reeder A A, Mercy J M, McCombe B D 1988 IEEE J. Quantum Electron. 24 1690Google Scholar

    [15]

    Lewis R A, Cheng T S, Henini M, Chamberlain J M 1996 Phys. Rev. B 53 12829Google Scholar

    [16]

    Wan K, Bray R M 1985 Phys. Rev. B 32 5265Google Scholar

    [17]

    Gammon D, Merlin R, Masselink W T, Morkoc H 1986 Phys. Rev. B 33 2919Google Scholar

    [18]

    Lipari N O, Balderschi A 1978 Solid State Commun. 25 665Google Scholar

    [19]

    Balderschi A, Lipari N O 1976 Journal of Luminescence 12−13 489

    [20]

    Fiorentini V, Balderschi A 1989 Solid State Commun. 69 953Google Scholar

    [21]

    Fisher P, Fan H Y 1959 Phys. Rev. Lett. 2 456Google Scholar

    [22]

    Kirkman R F, Stradling R A, Lin-Chung P J 1978 J. Phys. C 11 419Google Scholar

    [23]

    Luttinger J M 1956 Phys. Rev. 102 1030Google Scholar

    [24]

    Balderschi A, Lipari N O 1973 Phys. Rev. B 8 2697Google Scholar

    [25]

    Balderschi A, Lipari N O 1974 Phys. Rev. B 9 1525Google Scholar

    [26]

    Labrie D, Booth I J, Thewalt M L W, Clayman B P 1986 Appl. Opt. 25 171Google Scholar

    [27]

    Koteles E S, Datars W R 1976 Can. J. Phys. 54 1676Google Scholar

    [28]

    Shen X C 2002 Spectrum and Optical Property of Semiconductor (Beijing: Scientific Press) p553 (in Chinese) [沈学础 2002 半导体光谱和光学性质 (北京: 科学出版社) 第553页]

    [29]

    Contour J P, Neu G, Leroux M, Chaix C, Levesque B, Etienne P 1983 J. Vac. Sci. Technol. B 1 811

    [30]

    Bhattacharya P K, BOhlmann H J, Iegems M 1982 J. Appl. Phys. 53 6391Google Scholar

    [31]

    Wan K, Young J F, Devine R L S, Moore W T, Thorpe S, Miner C J, Mandeville P 1988 J. Appl. Phys. 63 5598Google Scholar

    [32]

    Olego D, Cardona M 1981 Phys. Rev. B 24 7217Google Scholar

  • [1] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性. 物理学报, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [2] 乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒. 悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象. 物理学报, 2016, 65(13): 136801. doi: 10.7498/aps.65.136801
    [3] 刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究. 物理学报, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [4] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究. 物理学报, 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [5] 韩亮, 邵鸿翔, 何亮, 陈仙, 赵玉清. 氮离子轰击能量对ta-C:N薄膜结构的影响. 物理学报, 2012, 61(10): 106803. doi: 10.7498/aps.61.106803
    [6] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用. 物理学报, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [7] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [8] 张山丽, 曾繁明, 王欣桐, 李春, 王成伟, 张莹, 林海, 秦杰明, 刘景和. Cr4+:Ca2 GeO4激光晶体生长及结构表征. 物理学报, 2010, 59(10): 7214-7218. doi: 10.7498/aps.59.7214
    [9] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 一氧化碳合成金刚石薄膜的形貌和结构分析. 物理学报, 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [10] 王 茺, 刘昭麟, 陈平平, 崔昊杨, 夏长生, 杨 宇, 陆 卫. 应力导致InAs/In0.15Ga0.85As量子点结构中In0.15Ga0.85As阱层的合金分解效应研究. 物理学报, 2007, 56(9): 5418-5423. doi: 10.7498/aps.56.5418
    [11] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究. 物理学报, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [12] 钟红梅, 陈效双, 王金斌, 夏长生, 王少伟, 李志锋, 徐文兰, 陆 卫. 基于离子注入技术的ZnMnO半导体材料的制备及光谱表征. 物理学报, 2006, 55(4): 2073-2077. doi: 10.7498/aps.55.2073
    [13] 徐波, 余庆选, 吴气虹, 廖源, 王冠中, 方容川. 应力和掺杂对Mg:GaN薄膜光致发光光谱影响的研究. 物理学报, 2004, 53(1): 204-209. doi: 10.7498/aps.53.204
    [14] 蔡炜颖, 李志锋, 陆 卫, 李守荣, 梁平治. Si微电阻桥温度分布与热传导特性的显微Raman光谱研究. 物理学报, 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [15] 张海燕, 陈可心, 朱燕娟, 陈易明, 何艳阳, 伍春燕, 王金华, 刘颂豪. CO2连续激光蒸发制备单壁碳纳米管及其Raman光谱的研究. 物理学报, 2002, 51(2): 444-448. doi: 10.7498/aps.51.444
    [16] 董艳锋, 李清山. 多孔铝镶嵌8-羟基喹啉铝荧光光谱研究. 物理学报, 2002, 51(7): 1645-1648. doi: 10.7498/aps.51.1645
    [17] 卢贵武, 夏海瑞, 孟宪林, 刘雪松, 杨卫兵. 掺Nd锆石类激光晶体的Raman光谱研究. 物理学报, 2002, 51(2): 424-429. doi: 10.7498/aps.51.424
    [18] 梁二军, 晁明举. 激光诱导多孔硅晶格畸变的Raman光谱和光致发光谱研究. 物理学报, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
    [19] 李刘合, 张海泉, 崔旭明, 张彦华, 夏立芳, 马欣新, 孙跃. X射线光电子能谱辅助Raman光谱分析类金刚石碳膜的结构细节. 物理学报, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究. 物理学报, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  9360
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-06-29
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回