搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离激元“热点”的可控激发及近场增强光谱学

冯仕靓 王靖宇 陈舒 孟令雁 沈少鑫 杨志林

引用本文:
Citation:

表面等离激元“热点”的可控激发及近场增强光谱学

冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林

Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces

Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin
PDF
HTML
导出引用
  • 金属纳米结构中特定表面等离激元模式的光学激发及其相互作用是发展高分辨、高灵敏、高精度界面光谱学的物理基础. 本文综述了我们研究组近期在表面等离激元共振的光学激发、分类识别、近场增强及在界面光谱学中的应用等方面的进展, 主要内容包括: 1)利用时域有限差分法, 分析了金属粒子-基底体系中SPR“热点”产生的物理机制及影响因素, 讨论了电模式和磁模式下界面“热点”的可控激发及“热点”转移的影响因素; 2)利用粒子-金膜体系, 实现了可见光频率的表面等离激元磁共振, 并利用其形成的“热点”进行了表面增强拉曼光谱实验, 获得了比常规电模式更高的拉曼增强; 3)通过界面SPR“热点”增强二次谐波的实验和理论研究, 提出并实现了空间分辨率达到1 nm的等离激元增强二次谐波纳米尺; 4)讨论了针尖增强拉曼光谱及针尖增强荧光体系中的空间分辨率、定向发射等关键共性问题的解决方案. 相关研究成果可为界面SPR“热点”的可控激发及进一步发展表面增强拉曼、针尖增强拉曼、表面等离激元增强二次谐波等各类高灵敏度, 高空间分辨率的界面光谱学方法提供新的思路.
    Optical excitations and mutual couplings of surface plasmons with specific modes in metal nanostructures are the physical basis for developing the high spatial resolution, high sensitivity, and high precision spectroscopy. Here, we systematically review latest advances in optical excitations, classifications and identifications of surface plasmon resonance modes and their typical applications in several typical interfaces. We discuss several aspects below. First, the intrinsic mechanism of creating " hot spots” in metal particle-film systems is elucidated by the finite-difference time-domain numerical method. Spatial transfers and influence factors of the " hot spots” under plasmon-induced electric- resonance and plasmon-induced magnetic-resonance conditions are discussed. Second, the plasmon-induced magnetic-resonance in the visible-light region is successfully realized in a gold nanoparticle-film system. Meanwhile, experimental results of surface-enhanced Raman spectroscopy show that the " hot spots” in the magnetic-resonance mode can output Raman scattering with a much higher enhancement factor than that in the conventional electric-resonance mode. Third, we design nonlinear nanorulers that can reach approximately 1-nm resolution by utilizing the mechanism of plasmon-enhanced second-harmonic generation (PESHG). Through introducing Au@SiO2 (core@shell) shell isolated nanoparticles, we strive to maneuver electric-field-related gap modes such that a reliable relationship between PESHG responses and gap sizes, represented by " PESHG nanoruler equation”, can be obtained. Fourth, a critical and general solution is proposed to quantitatively describe the spatial resolution and directional emission in tip-enhanced Raman spectroscopy and tip-enhanced fluorescence. These results may help enhance our understanding of the intrinsic physical mechanism of the surface plasmon resonance, and offer opportunities for potential applications in surface-enhanced Raman spectroscopy, tip-enhanced Raman spectroscopy, second harmonic generation, and other plasmon-enhanced spectroscopy.
      通信作者: 杨志林, zlyang@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21673192, 91850119, 11474239)和国家重点研发计划(批准号: 2016YFA0200601, 2017YFA0204902)资助的课题.
      Corresponding author: Yang Zhi-Lin, zlyang@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673192, 91850119, 11474239) and the National Basic Research Program of China (Grant Nos. 2016YFA0200601, 2017YFA0204902).
    [1]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp39-87

    [2]

    Luan J, Morrissey J J, Wang Z, Derami H G, Liu K K, Cao S, Jiang Q, Wang C, Kharasch E D, Naik R R, Singamanen S 2018 Light-Sci. Appl. 7 29Google Scholar

    [3]

    Butet J, Bernasconi G D, Petit M, Bouhelier A, Yan C, Martin O J F, Cluzel B, Demichel O 2017 ACS Photon. 4 2923Google Scholar

    [4]

    Lee K L, Hung C Y, Pan M Y, Wu T Y, Yang S Y, Wei P K 2018 Adv. Mater. 5 1801064

    [5]

    Oh S H, Altug H 2018 Nat. Commun. 9 5263Google Scholar

    [6]

    Zheng J, Yang W, Wang J, Zhu J, Qian L, Yang Z 2019 Nanoscale 11 4061Google Scholar

    [7]

    Liberal I, Engheta N 2017 Nat. Photon. 11 149Google Scholar

    [8]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [9]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225Google Scholar

    [10]

    Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [11]

    Wang P, Krasavin A V, Nasir M E, Dickson W, Zayats A V 2018 Nat. Nanotechnol. 13 159Google Scholar

    [12]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [13]

    Zhao F, Yang W, Shih T M, Feng S, Zhang Y, Li J, Yan J, Yang Z 2018 ACS Photon. 5 3519Google Scholar

    [14]

    Fang Y, Seong N H, Dlott D D 2008 Science 321 388Google Scholar

    [15]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [16]

    Rahmani M, Luk'yanchuk B, Hong M 2013 Laser Photon. Rev. 7 329Google Scholar

    [17]

    Jin R, Zeng C, Zhou M, Chen Y 2016 Chem. Rev. 116 10346Google Scholar

    [18]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [19]

    Xu H 2004 Appl. Phys. Lett. 85 5980Google Scholar

    [20]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [21]

    Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P 2015 Nano Lett. 15 3472Google Scholar

    [22]

    Saito Y, Motohashi M, Hayazawa N, Iyoki M, Kawata S 2006 Appl. Phys. Lett. 88 143109Google Scholar

    [23]

    Sonntag M D, Klingsporn J M, Garibay L K, Roberts J M, Dieringer J A, Seideman T, Scheidt K A, Jensen L, Schatz G C, van Duyne R P 2011 J. Phys. Chem. C 116 478

    [24]

    Liu H, Ng J, Wang S B, Hang Z H, Chan C T, Zhu S N 2011 New J. Phys. 13 073040Google Scholar

    [25]

    Hajisalem G, Nezami M S, Gordon R 2014 Nano Lett. 14 6651Google Scholar

    [26]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835Google Scholar

    [27]

    Lian H, Gu Y, Ren J, Zhang F, Wang L, Gong Q 2015 Phys. Rev. Lett. 114 193002Google Scholar

    [28]

    Sun J, Hu H, Zheng D, Zhang D, Deng Q, Zhang S, Xu H 2018 ACS Nano 12 10393Google Scholar

    [29]

    Zhang C, Chen B Q, Li Z Y 2015 J. Phys. Chem. C 119 11858

    [30]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

    [31]

    Ciracì C, Hill R, Mock J J, Urzhumov Y, Fernández-Domínguez A I, Maier S A, Pendry J B, Chilkoti A, Smith D R 2012 Science 337 1072Google Scholar

    [32]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737Google Scholar

    [33]

    黄茜, 熊绍珍, 赵颖, 张晓丹 2012 物理学报 61 157801Google Scholar

    Huang Q, Xiong S Z, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 157801Google Scholar

    [34]

    Nikitin A Y, Alonso-González P, Vélez S, Mastel S, Centeno A, Pesquera A, Zurutuza A, Casanova F, Hueso L E, Koppens F H L, R H 2016 Nat. Photon. 10 239Google Scholar

    [35]

    Fang Y, Huang Y 2013 Appl. Phys. Lett. 102 153108Google Scholar

    [36]

    Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H 2013 ACS Nano 8 701

    [37]

    Chen H, Liu S, Zi J, Lin Z 2015 ACS Nano 9 1926Google Scholar

    [38]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [39]

    Liu N, Hentschel M, Weiss T, Alivisatos A P, Giessen H 2011 Science 332 1407Google Scholar

    [40]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [41]

    Ding T, Sigle D, Zhang L, Mertens J, de Nijs B, Baumberg J 2015 ACS Nano 9 6110Google Scholar

    [42]

    Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G, Capasso F 2010 Science 328 1135Google Scholar

    [43]

    Shafiei F, Monticone F, Le K Q, Liu X X, Hartsfield T, Alù A, Li X 2013 Nat. Nanotechnol. 8 95Google Scholar

    [44]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404Google Scholar

    [45]

    Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86Google Scholar

    [46]

    Lorente-Crespo M, Wang L, Ortuño R, García-Meca C, Ekinci Y, Martínez A 2013 Nano Lett. 13 2654Google Scholar

    [47]

    Nazir A, Panaro S, Proietti Zaccaria R, Liberale C, de Angelis F, Toma A 2014 Nano Lett. 14 3166Google Scholar

    [48]

    Chen S, Yang Z, Meng L, Li J, Williams C T, Tian Z 2015 J. Phys. Chem. C 119 5246Google Scholar

    [49]

    Chen S, Meng L Y, Shan H Y, Li J F, Qian L, Williams C T, Yang Z L, Tian Z Q 2016 ACS Nano 10 581Google Scholar

    [50]

    Wang X, Li M, Meng L, Lin K, Feng J, Huang T, Yang Z, Ren B 2013 ACS Nano 8 528

    [51]

    Chen S, Zhang Y, Shih T M, Yang W, Hu S, Hu X, Li J, Ren B, Mao B, Yang Z, Tian Z 2018 Nano Lett. 18 2209Google Scholar

    [52]

    Shen S, Meng L, Zhang Y, Han J, Ma Z, Hu S, He Y, Li J, Ren B, Shih T M, Wang Z, Yang Z, Tian Z 2015 Nano Lett. 15 6716Google Scholar

    [53]

    Meng L, Yang Z, Chen J, Sun M 2015 Sci. Rep. 5 9240Google Scholar

    [54]

    Meng L, Yang Z 2018 Nanophotonics 7 1325Google Scholar

    [55]

    Meng L, Sun M, Chen J, Yang Z 2016 Sci. Rep. 6 19558Google Scholar

    [56]

    Mertens J, Eiden A L, Sigle D O, Huang F, Lombardo A, Sun Z, Sundaram R S, Colli A, Tserkezis C, Aizpurua J, Milana S, Ferrari A C, Baumberg J J 2013 Nano Lett. 13 5033Google Scholar

    [57]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [58]

    Ye J, Wen F, Sobhani H, Lassiter J B, van Dorpe P, Nordlander P, Halas N J 2012 Nano Lett. 12 1660Google Scholar

    [59]

    Monticone F, Alù A 2014 J. Mater. Chem. C 2 9059Google Scholar

    [60]

    Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Opt. Lett. 31 1800Google Scholar

    [61]

    Podolskiy V A, Sarychev A K, Narimanov E E, Shalaev V M 2005 J. Opt. A: Pure Appl. Opt. 7 S 3 2

    [62]

    Sheikholeslami S N, García-Etxarri A, Dionne J A 2011 Nano Lett. 11 3927Google Scholar

    [63]

    Lei D Y, Fernández-Domínguez A I, Sonnefraud Y, Appavoo K, Haglund Jr R F, Pendry J B, Maier S A 2012 ACS Nano 6 1380Google Scholar

    [64]

    Bao Y, Hu Z, Li Z, Zhu X, Fang Z 2015 Small 11 2177Google Scholar

    [65]

    Liu N, Mukherjee S, Bao K, Brown L V, Dorfmuller J, Nordlander P, Halas N J 2012 Nano Lett. 12 364Google Scholar

    [66]

    Davis R M, Kiss B, Trivedi D R, Metzner T J, Liao J C, Gambhir S S 2018 ACS Nano 12 9669Google Scholar

    [67]

    Shiota M, Naya M, Yamamoto T, Hishiki T, Tani T, Takahashi H, Kubo A, Koike D, Itoh M, Ohmura M 2018 Nat. Commun. 9 1561Google Scholar

    [68]

    Sánchez-Illana A, Mayr F, Cuesta-García D, Piñeiro-Ramos J D, Cantarero A, de la Guardia M, Vento M, Lendl B, Quintás G, Kuligowski J 2018 Anal. Chem. 90 9093Google Scholar

    [69]

    Lin W, Xu X, Quan J, Sun M 2018 Appl. Spectrosc. Rev. 53 771Google Scholar

    [70]

    Li Z, Gao Y, Zhang L, Fang Y, Wang P 2018 Nanoscale 10 18720Google Scholar

    [71]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [72]

    Slablab A, Le Xuan L, Zielinski M, de Wilde Y, Jacques V, Chauvat D, Roch J F 2012 Opt. Express 20 220Google Scholar

    [73]

    Danckwerts M, Novotny L 2007 Phys. Rev. Lett. 98 026104Google Scholar

    [74]

    Hill R T, Mock J J, Hucknall A, Wolter S D, Jokerst N M, Smith D R, Chilkoti A 2012 ACS Nano 6 9237Google Scholar

    [75]

    Mauser N, Hartschuh A 2014 Chem. Soc. Rev. 43 1248Google Scholar

    [76]

    Zhang Z, Sheng S, Wang R, Sun M 2016 Anal. Chem. 88 9328Google Scholar

    [77]

    Zhang Z L, Chen L, Sheng S X, Sun M T, Zheng H R, Chen K Q, Xu H X 2014 Front. Phys. 9 17Google Scholar

    [78]

    Sun M, Zhang Z, Chen L, Sheng S, Xu H 2014 Adv. Opt. Mater. 2 74Google Scholar

    [79]

    Richards D, Milner R G, Huang F, Festy F 2003 J. Raman Spectrosc. 34 663Google Scholar

    [80]

    Steidtner J, Pettinger B 2007 Rev. Sci. Instrum. 78 103104Google Scholar

    [81]

    Chen C, Hayazawa N, Kawata S 2014 Nat. Commun. 5 3312Google Scholar

    [82]

    Ayars E J, Hallen H D, Jahncke C L 2000 Phys. Rev. Lett. 85 4180Google Scholar

    [83]

    Zhang Z, Sun M, Ruan P, Zheng H, Xu H 2013 Nanoscale 5 4151Google Scholar

    [84]

    Mandal P, Gupta P, Nandi A, Ramakrishna S A 2012 J. Nanophotonics 6 063527Google Scholar

    [85]

    Bharill S, Chen C, Stevens B, Kaur J, Smilansky Z, Mandecki W, Gryczynski I, Gryczynski Z, Cooperman B S, Goldman Y 2011 ACS Nano 5 399

    [86]

    Abadeer N S, Brennan M R, Wilson W L, Murphy C J 2014 ACS Nano 8 8392Google Scholar

    [87]

    Li C Y, Meng M, Huang S C, Li L, Huang S R, Chen S, Meng L Y, Panneerselvam R, Zhang S J, Ren B, Yang Z L, Li J F, Tian Z Q 2015 J. Am. Chem. Soc. 137 13784Google Scholar

    [88]

    Gerton J M, Wade L A, Lessard G A, Ma Z, Quake S R 2004 Phys. Rev. Lett. 93 180801Google Scholar

    [89]

    Dong Z C, Guo X L, Trifonov A, Dorozhkin P, Miki K, Kimura K, Yokoyama S, Mashiko S 2004 Phys. Rev. Lett. 92 086801Google Scholar

    [90]

    张尧, 张杨, 董振超 2018 物理学报 67 223301Google Scholar

    Zhang Y, Zhang Y, Dong Z C 2018 Acta Phys. Sin. 67 223301Google Scholar

  • 图 1  粒子-金膜体系的远场散射谱及近场分布图 (a) 在金膜上直径为80 nm的单个纳米粒子的散射光谱(上行)及在633 nm和570 nm激发波长下的稳态电场和矢量分布截面图(下行)[48]; (b) Au@SiO2壳层隔绝纳米粒子二聚体-金膜体系的计算模拟散射谱(上行)及Au@SiO2 壳层隔绝纳米粒子二聚体-金基底体系中, 散射谱中四个SPR峰对应的xz截面的电场分布图(下行)[49]; (c) 在530 nm和633 nm激发光下, 七聚体和九聚体在xz平面的SERS增强分布[49]; (d) Au@SiO2 SHIN多聚体-金膜系统和“热点”在不同波长下的空间转移, A点对应的是SHIN-SHIN间隙中的最强电磁场增强点, B点对应的是SHIN与金膜表面的最强电磁场增强点[49]

    Fig. 1.  Scattering spectra and near-field profiles of nanoparticles -film system. (a) Scattering spectra of a single nanoparticle with D = 80 nm on the gold film (top row). Electric fields and vector distributions of steady state correspond to cross-sectional views under 633 nm and 570 nm excitations (bottom row)[48]. (b) Calculated scattering spectra for the Au@SiO2 SHIN dimer-film coupling system (top row). Images of the near-field distribution of the electric field at the xz-plane under different excitation wavelengths corresponding to four scattering peaks in scattering spectra for the Au@SiO2 SHIN dimer-film coupling system (bottom row)[49]. (c) Calculated SERS enhancement distributions at the xz-plane under excitation wavelengths of 530 nm and 633 nm in heptamer and nonamer aggregates, respectively[49]. (d) Schematic illustrations of typical Au@SiO2 SHIN aggregates over a gold film. Spatial transfers of hot spots under different excitation wavelengths. Point A corresponds to the maximum electric field enhancement point in SHIN-SHIN gap (A region), and point B corresponds to the maximum electric field enhancement point on the gold film surface in SHIN−film junction (B region)[49].

    图 2  等离激元磁共振模式的远近场特性[51] (a) 等离激元磁共振模式的模型及原理示意图; (b) 介质层为1 nm和10 nm时直径200 nm的纳米球在金膜上的散射和吸收光谱; (c) 用位移矢量表示的电场(上行)和磁场(下行)的分布; (d) 直径为200 nm, 纳米球-金膜系统的间隔为1 nm的散射谱(黑色曲线)和平均电磁场增强光谱(红色曲线)

    Fig. 2.  The near and far field properties of PIMR model[51]: (a) Schematic illustrations of the studied model and the principle of plasmon-induced magnetic resonance; (b) scattering and absorption spectra for 1 nm and 10 nm dielectric spacer of a nanosphere with 200 nm diameter on the gold film; (c) displacement vector filling electric-field distributions (top row) and magnetic-field (bottom row) distributions; (d) the scattering spectrum (black curve) and the average electric-field enhancement spectrum at the nanogap (red curve) for the nanosphere-film system with 200 nm diameter and 1 nm dielectric spacer.

    图 3  SERS检测方案[50] (a) TP分子吸附在金纳米颗粒与金膜间隙中, BDT分子吸附在纳米颗粒间隙中, 绿色与红色谱线分别代表激发光为532 nm和633 nm; (b) TP和BDT吸附在不同的位置, 其他同(a)

    Fig. 3.  Scheme for SERS detection[50]. (a) Scheme for SERS detection with thiophenol (TP) molecules adsorbed in the gap between gold nanoparticles and the gold film and benzenedithiol (BDT) molecules adsorbed in the gap between nanoparticles. The green and red spectra were obtained with 532 and 633 nm excitation, respectively. (b) Similar to (a) with TP and BDT adsorbed at different locations.

    图 4  纳米球-金膜体系的散射谱图及拉曼谱图[51] (a)不同尺寸的粒子放置在吸附分子后的金单晶表面的SEM成像图, 160 nm (i), 180 nm (ii), 210 nm (iii), 240 nm (iv) and 250 nm (v), 以及分别对应的散射谱图, i黑色, ii 红色, iii 蓝色, iv 绿色, v 红褐色; (b)图(a)中理论波峰(黑线)和波谷(蓝线)的位置, 实验波峰(红点)和波谷(粉色点)的位置; (c) 吸附在单纳米球-金膜系统的Au(111)单晶平面上的MBA的Raman信号

    Fig. 4.  Scattering spectra and Raman spectra of nanosphere-gold film systems[51]. (a) SEM images for sphere-film systems with D = 160 (i), 180 (ii), 210 (iii), 240 (iv), and 250 nm (v) on the Au (111) single-crystal flat surface. Dark-field scattering spectra of single particle on the Au (111) single-crystal flat surface with i, black; ii, red; iii, blue; iv, green; and v, red-brown. (b) The plot of theoretical peak (black line) and dip (blue line) positions, experimental peak (red dots), and dip positions (pink dots). (c) Raman signals of MBA adsorbed on the Au (111) single-crystal flat surface of the single nanosphere-gold film systems.

    图 5  PESHG纳米尺与线性PNR的比较[52] (a) PESHG纳米尺的示意图; (b)在不同二氧化硅壳层厚度SHINs(D = 55 nm)的暗场散射谱表征: g = 1 (黑色曲线), 2 (红色曲线), 3 (蓝色曲线), 4 (青色曲线), 6 (黄色曲线); (c)线性PNR与g的变化关系; (d)PESHG纳米尺与g的变化关系

    Fig. 5.  Comparisons between PESHG nanoruler and linear PNR[52]: (a) Schematic illustration of PESHG nanoruler; (b) DFSS corresponding to SHINs (D = 55 nm) with different thicknesses of the silica shell laid on the smooth Au surface: g = 0 (black curve), 1 (red curve), 2 (blue curve), 4 (cyan curve), and 6 nm (yellow curve); (c) linear PNR versus g; (d) PESHG nanoruler versus g.

    图 6  STM-TERS体系计算模型图[53] (a)和(b)分别是电场和电场梯度空间分布; (c)和(d)分别是水平电场和水平电场梯度分布图; (e)为(c)与(d)图点对点相除得到的空间分布图; (f)—(h)分别为拉曼活性模、红外活性模以及二者比值随侧向位移变化曲线

    Fig. 6.  Calculation model of the STM-TERS configuration[53]: Schematics of electric field (a) and electric field gradient (b) intensity distribution; (c) the horizontal electric field and (d) horizontal electric field gradient distribution of the plane between the tip and substrate; (e) the ratio of (c) over (d); (f)-(h) dependence of Raman-active modes, infrared (IR)-active modes, and the ratio of electric field to its gradient on the lateral displacement.

    图 7  TERS和TEF原位测量的研究[55] (a) TERS和TEF原位精确测量实验示意图; (b) TERS和TEF增强因子随针尖-基底间距变化曲线; (c) TERS和TEF增强因子随波长变化曲线, 针尖-基底间距为2 nm

    Fig. 7.  Study of in-situ measurements of TERS and TEF[55]: (a) The schematic of in-situ measurements of TERS and TEF; (b) dependence of TERS and TEF enhancement factor on tip-film distance; (c) dependence of TERS and TEF enhancement factor on wavelength at tip-film distances of d = 2 nm.

    图 8  TES定向发射物理机理研究[54] (a) LSPs和PSPs对TES中PCDE协同效应的机理示意图; (b) 角度分辨的TES远场发射分布; (c)−(e)银基底、银针尖以及针尖-基底体系的远场分布

    Fig. 8.  Physical mechanism of the surface plasmon-coupled emission of TES[54]: (a) The schematic of the synergistic effect of the LSPs and PSPs for the surface plasmon-coupled emission of TES; (b) the angle-resolved emission patterns of the TES; (c)−(e) the corresponding far-field scattering spatial distributions for the film, tip and tip-film configurations.

  • [1]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp39-87

    [2]

    Luan J, Morrissey J J, Wang Z, Derami H G, Liu K K, Cao S, Jiang Q, Wang C, Kharasch E D, Naik R R, Singamanen S 2018 Light-Sci. Appl. 7 29Google Scholar

    [3]

    Butet J, Bernasconi G D, Petit M, Bouhelier A, Yan C, Martin O J F, Cluzel B, Demichel O 2017 ACS Photon. 4 2923Google Scholar

    [4]

    Lee K L, Hung C Y, Pan M Y, Wu T Y, Yang S Y, Wei P K 2018 Adv. Mater. 5 1801064

    [5]

    Oh S H, Altug H 2018 Nat. Commun. 9 5263Google Scholar

    [6]

    Zheng J, Yang W, Wang J, Zhu J, Qian L, Yang Z 2019 Nanoscale 11 4061Google Scholar

    [7]

    Liberal I, Engheta N 2017 Nat. Photon. 11 149Google Scholar

    [8]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [9]

    Zhang Y, Meng Q S, Zhang L, Luo Y, Yu Y J, Yang B, Zhang Y, Esteban R, Aizpurua J, Luo Y, Yang J L, Dong Z C, Hou J G 2017 Nat. Commun. 8 15225Google Scholar

    [10]

    Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [11]

    Wang P, Krasavin A V, Nasir M E, Dickson W, Zayats A V 2018 Nat. Nanotechnol. 13 159Google Scholar

    [12]

    Zhou L, Swearer D F, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter E A, Nordlander P, Halas N J 2018 Science 362 69Google Scholar

    [13]

    Zhao F, Yang W, Shih T M, Feng S, Zhang Y, Li J, Yan J, Yang Z 2018 ACS Photon. 5 3519Google Scholar

    [14]

    Fang Y, Seong N H, Dlott D D 2008 Science 321 388Google Scholar

    [15]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [16]

    Rahmani M, Luk'yanchuk B, Hong M 2013 Laser Photon. Rev. 7 329Google Scholar

    [17]

    Jin R, Zeng C, Zhou M, Chen Y 2016 Chem. Rev. 116 10346Google Scholar

    [18]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [19]

    Xu H 2004 Appl. Phys. Lett. 85 5980Google Scholar

    [20]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [21]

    Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P 2015 Nano Lett. 15 3472Google Scholar

    [22]

    Saito Y, Motohashi M, Hayazawa N, Iyoki M, Kawata S 2006 Appl. Phys. Lett. 88 143109Google Scholar

    [23]

    Sonntag M D, Klingsporn J M, Garibay L K, Roberts J M, Dieringer J A, Seideman T, Scheidt K A, Jensen L, Schatz G C, van Duyne R P 2011 J. Phys. Chem. C 116 478

    [24]

    Liu H, Ng J, Wang S B, Hang Z H, Chan C T, Zhu S N 2011 New J. Phys. 13 073040Google Scholar

    [25]

    Hajisalem G, Nezami M S, Gordon R 2014 Nano Lett. 14 6651Google Scholar

    [26]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J, Smith D R, Mikkelsen M H 2014 Nat. Photon. 8 835Google Scholar

    [27]

    Lian H, Gu Y, Ren J, Zhang F, Wang L, Gong Q 2015 Phys. Rev. Lett. 114 193002Google Scholar

    [28]

    Sun J, Hu H, Zheng D, Zhang D, Deng Q, Zhang S, Xu H 2018 ACS Nano 12 10393Google Scholar

    [29]

    Zhang C, Chen B Q, Li Z Y 2015 J. Phys. Chem. C 119 11858

    [30]

    程自强, 石海泉, 余萍, 刘志敏 2018 物理学报 67 197302Google Scholar

    Cheng Z Q, Shi H Q, Yu P, Liu Z M 2018 Acta Phys. Sin. 67 197302Google Scholar

    [31]

    Ciracì C, Hill R, Mock J J, Urzhumov Y, Fernández-Domínguez A I, Maier S A, Pendry J B, Chilkoti A, Smith D R 2012 Science 337 1072Google Scholar

    [32]

    Kauranen M, Zayats A V 2012 Nat. Photon. 6 737Google Scholar

    [33]

    黄茜, 熊绍珍, 赵颖, 张晓丹 2012 物理学报 61 157801Google Scholar

    Huang Q, Xiong S Z, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 157801Google Scholar

    [34]

    Nikitin A Y, Alonso-González P, Vélez S, Mastel S, Centeno A, Pesquera A, Zurutuza A, Casanova F, Hueso L E, Koppens F H L, R H 2016 Nat. Photon. 10 239Google Scholar

    [35]

    Fang Y, Huang Y 2013 Appl. Phys. Lett. 102 153108Google Scholar

    [36]

    Li Z, Zhang S, Tong L, Wang P, Dong B, Xu H 2013 ACS Nano 8 701

    [37]

    Chen H, Liu S, Zi J, Lin Z 2015 ACS Nano 9 1926Google Scholar

    [38]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [39]

    Liu N, Hentschel M, Weiss T, Alivisatos A P, Giessen H 2011 Science 332 1407Google Scholar

    [40]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [41]

    Ding T, Sigle D, Zhang L, Mertens J, de Nijs B, Baumberg J 2015 ACS Nano 9 6110Google Scholar

    [42]

    Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G, Capasso F 2010 Science 328 1135Google Scholar

    [43]

    Shafiei F, Monticone F, Le K Q, Liu X X, Hartsfield T, Alù A, Li X 2013 Nat. Nanotechnol. 8 95Google Scholar

    [44]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404Google Scholar

    [45]

    Moreau A, Ciraci C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86Google Scholar

    [46]

    Lorente-Crespo M, Wang L, Ortuño R, García-Meca C, Ekinci Y, Martínez A 2013 Nano Lett. 13 2654Google Scholar

    [47]

    Nazir A, Panaro S, Proietti Zaccaria R, Liberale C, de Angelis F, Toma A 2014 Nano Lett. 14 3166Google Scholar

    [48]

    Chen S, Yang Z, Meng L, Li J, Williams C T, Tian Z 2015 J. Phys. Chem. C 119 5246Google Scholar

    [49]

    Chen S, Meng L Y, Shan H Y, Li J F, Qian L, Williams C T, Yang Z L, Tian Z Q 2016 ACS Nano 10 581Google Scholar

    [50]

    Wang X, Li M, Meng L, Lin K, Feng J, Huang T, Yang Z, Ren B 2013 ACS Nano 8 528

    [51]

    Chen S, Zhang Y, Shih T M, Yang W, Hu S, Hu X, Li J, Ren B, Mao B, Yang Z, Tian Z 2018 Nano Lett. 18 2209Google Scholar

    [52]

    Shen S, Meng L, Zhang Y, Han J, Ma Z, Hu S, He Y, Li J, Ren B, Shih T M, Wang Z, Yang Z, Tian Z 2015 Nano Lett. 15 6716Google Scholar

    [53]

    Meng L, Yang Z, Chen J, Sun M 2015 Sci. Rep. 5 9240Google Scholar

    [54]

    Meng L, Yang Z 2018 Nanophotonics 7 1325Google Scholar

    [55]

    Meng L, Sun M, Chen J, Yang Z 2016 Sci. Rep. 6 19558Google Scholar

    [56]

    Mertens J, Eiden A L, Sigle D O, Huang F, Lombardo A, Sun Z, Sundaram R S, Colli A, Tserkezis C, Aizpurua J, Milana S, Ferrari A C, Baumberg J J 2013 Nano Lett. 13 5033Google Scholar

    [57]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [58]

    Ye J, Wen F, Sobhani H, Lassiter J B, van Dorpe P, Nordlander P, Halas N J 2012 Nano Lett. 12 1660Google Scholar

    [59]

    Monticone F, Alù A 2014 J. Mater. Chem. C 2 9059Google Scholar

    [60]

    Dolling G, Enkrich C, Wegener M, Soukoulis C M, Linden S 2006 Opt. Lett. 31 1800Google Scholar

    [61]

    Podolskiy V A, Sarychev A K, Narimanov E E, Shalaev V M 2005 J. Opt. A: Pure Appl. Opt. 7 S 3 2

    [62]

    Sheikholeslami S N, García-Etxarri A, Dionne J A 2011 Nano Lett. 11 3927Google Scholar

    [63]

    Lei D Y, Fernández-Domínguez A I, Sonnefraud Y, Appavoo K, Haglund Jr R F, Pendry J B, Maier S A 2012 ACS Nano 6 1380Google Scholar

    [64]

    Bao Y, Hu Z, Li Z, Zhu X, Fang Z 2015 Small 11 2177Google Scholar

    [65]

    Liu N, Mukherjee S, Bao K, Brown L V, Dorfmuller J, Nordlander P, Halas N J 2012 Nano Lett. 12 364Google Scholar

    [66]

    Davis R M, Kiss B, Trivedi D R, Metzner T J, Liao J C, Gambhir S S 2018 ACS Nano 12 9669Google Scholar

    [67]

    Shiota M, Naya M, Yamamoto T, Hishiki T, Tani T, Takahashi H, Kubo A, Koike D, Itoh M, Ohmura M 2018 Nat. Commun. 9 1561Google Scholar

    [68]

    Sánchez-Illana A, Mayr F, Cuesta-García D, Piñeiro-Ramos J D, Cantarero A, de la Guardia M, Vento M, Lendl B, Quintás G, Kuligowski J 2018 Anal. Chem. 90 9093Google Scholar

    [69]

    Lin W, Xu X, Quan J, Sun M 2018 Appl. Spectrosc. Rev. 53 771Google Scholar

    [70]

    Li Z, Gao Y, Zhang L, Fang Y, Wang P 2018 Nanoscale 10 18720Google Scholar

    [71]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [72]

    Slablab A, Le Xuan L, Zielinski M, de Wilde Y, Jacques V, Chauvat D, Roch J F 2012 Opt. Express 20 220Google Scholar

    [73]

    Danckwerts M, Novotny L 2007 Phys. Rev. Lett. 98 026104Google Scholar

    [74]

    Hill R T, Mock J J, Hucknall A, Wolter S D, Jokerst N M, Smith D R, Chilkoti A 2012 ACS Nano 6 9237Google Scholar

    [75]

    Mauser N, Hartschuh A 2014 Chem. Soc. Rev. 43 1248Google Scholar

    [76]

    Zhang Z, Sheng S, Wang R, Sun M 2016 Anal. Chem. 88 9328Google Scholar

    [77]

    Zhang Z L, Chen L, Sheng S X, Sun M T, Zheng H R, Chen K Q, Xu H X 2014 Front. Phys. 9 17Google Scholar

    [78]

    Sun M, Zhang Z, Chen L, Sheng S, Xu H 2014 Adv. Opt. Mater. 2 74Google Scholar

    [79]

    Richards D, Milner R G, Huang F, Festy F 2003 J. Raman Spectrosc. 34 663Google Scholar

    [80]

    Steidtner J, Pettinger B 2007 Rev. Sci. Instrum. 78 103104Google Scholar

    [81]

    Chen C, Hayazawa N, Kawata S 2014 Nat. Commun. 5 3312Google Scholar

    [82]

    Ayars E J, Hallen H D, Jahncke C L 2000 Phys. Rev. Lett. 85 4180Google Scholar

    [83]

    Zhang Z, Sun M, Ruan P, Zheng H, Xu H 2013 Nanoscale 5 4151Google Scholar

    [84]

    Mandal P, Gupta P, Nandi A, Ramakrishna S A 2012 J. Nanophotonics 6 063527Google Scholar

    [85]

    Bharill S, Chen C, Stevens B, Kaur J, Smilansky Z, Mandecki W, Gryczynski I, Gryczynski Z, Cooperman B S, Goldman Y 2011 ACS Nano 5 399

    [86]

    Abadeer N S, Brennan M R, Wilson W L, Murphy C J 2014 ACS Nano 8 8392Google Scholar

    [87]

    Li C Y, Meng M, Huang S C, Li L, Huang S R, Chen S, Meng L Y, Panneerselvam R, Zhang S J, Ren B, Yang Z L, Li J F, Tian Z Q 2015 J. Am. Chem. Soc. 137 13784Google Scholar

    [88]

    Gerton J M, Wade L A, Lessard G A, Ma Z, Quake S R 2004 Phys. Rev. Lett. 93 180801Google Scholar

    [89]

    Dong Z C, Guo X L, Trifonov A, Dorozhkin P, Miki K, Kimura K, Yokoyama S, Mashiko S 2004 Phys. Rev. Lett. 92 086801Google Scholar

    [90]

    张尧, 张杨, 董振超 2018 物理学报 67 223301Google Scholar

    Zhang Y, Zhang Y, Dong Z C 2018 Acta Phys. Sin. 67 223301Google Scholar

  • [1] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [2] 井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根. 基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计. 物理学报, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [5] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [6] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [7] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [8] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [9] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [10] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [11] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应. 物理学报, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [12] 盛子城, 王腾, 周桂耀, 夏长明, 刘建涛, 李波瑶, 樊海霞, 陈云, 侯峙云. 基于空芯微结构光纤拉曼探针的实验研究. 物理学报, 2018, 67(18): 184211. doi: 10.7498/aps.67.20180684
    [13] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [14] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [15] 陆乃彦, 余雪健, 万佳伟, 翁雨燕, 郭俊宏, 刘宇. 微图案化金衬底表面等离子体共振光学特性. 物理学报, 2016, 65(20): 208102. doi: 10.7498/aps.65.208102
    [16] 孙雪菲, 王鹿霞. 分子激发中的表面等离激元增强效应. 物理学报, 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [17] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [18] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [19] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [20] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
计量
  • 文章访问数:  17101
  • PDF下载量:  819
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-05
  • 修回日期:  2019-04-02
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回