搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限温度下腔光机械系统中N个二能级原子的相变和热力学性质

刘妮 黄珊 李军奇 梁九卿

引用本文:
Citation:

有限温度下腔光机械系统中N个二能级原子的相变和热力学性质

刘妮, 黄珊, 李军奇, 梁九卿

Phase transition and thermodynamic properties of N two-level atoms in an optomechanical cavity at finite temperature

Liu Ni, Huang Shan, Li Jun-Qi, Liang Jiu-Qing
PDF
HTML
导出引用
  • 研究了含有非线性相互作用的腔机械系统中N个二能级原子在有限温度下的相变和相关的热力学性质, 采用虚时路径积分方法推导出系统的配分函数,求得系统的有效作用量. 通过对有效作用量进行变分得到系统的热力学平衡方程和原子布居数期待值的解析表达式, 重点研究了原子-场耦合强度、非线性原子-光相互作用、非线性声子-光子相互作用等影响下系统的相变, 发现除了会发生由正常相到超辐射相的二阶相变外, 还会出现正常相和亚稳的超辐射态共存的现象,同时会发现三相(正常相、超辐射相、亚稳的超辐射态)共存点. 有限温度的升高, 会使正常相到超辐射相的二阶相变点向原子-场耦合强度增大的方向移动; 当非线性原子-光相互作用(正或负)增强时, 相变点会向原子-场耦合强度弱的方向移动; 声子-光子相互作用会导致出现超辐射不稳定态; 有限温度下, 在正常相区熵为定值, 而在超辐射相区熵随原子-场耦合强度的增强迅速递减为零.
    Optomechanical cavity is a powerful connection between a nanomechanical oscillator and a quantized electromagnetic field. In this system, a novel photon-phonon nonlinear interaction arising from the nanomechanical oscillation is produced through the radiation pressure. Now this nonlinear photon-phonon interaction has become an important resource for implementing high-precision measurements and processing quantum information. Motivated by T. Esslinger group’s experiment, it is very meaningful to explore the exotic quantum phenomena when a ultra-cold BEC is trapped in an optomechanical cavity. In this paper, we mainly investigate phase transition and the finite-temperature thermodynamic properties of a Bose-Einstein condensate in an optomechanical cavity. It’s worth mentioning that at zero temperature many different mean-field approximate methods have been used to analyze the ground state properties of a Bose-Einstein condensate in an optomechanical cavity. Two common methods are Holstein-Primakoff transformation and spin coherent state variation. In this paper, an interesting imaginary-time path integral approach has been introduced to study finite temperature thermodynamic properties and phase transition of a Bose-Einstein condensate in an optomechanical cavity. First, we obtained system's partition function by taking imaginary-time path integration. Meanwhile, an effective action has been obtained by means of this method, which is the basic of the variation to get the numerical solution of photon number and the expression of the atomic number. At zero temperature, these results are consistent with what we have obtained by Holstein-Primakoff transformation or spin coherent state variational method. By adjusting the atom-field coupling strength and other parameters the second-order phase transition from the normal phase to the superradiant phase has been revealed. Meanwhile, a new unstable superradiant state was also found. And we found that in addition to the normal phase and superradiation phase, there exists an un-solution region of the mean photon number. Meanwhile, we find that the nonlinear photon-phonon interaction does not affect the normal phase. However, in the superradiant phase, the nonlinear photon-phonon interaction can enhance the macroscopic collective excitations. At the same time, the thermodynamic properties of the system are also discussed. According to the obtained distribution function, we can derive the analytical expression of the average energy and the free energy. Furthermore, the expression of entropy at finite temperature can also be obtained. we find the nonlinear photon-phonon interaction does not affect the average energy in the normal phase, but the average energy in the superradiant phase can deeply deviate in the large nonlinear photon-phonon interaction. It’s worth mentioning that the mean photon number and average energy in the finite-temperature tend to be consistent with the case in absolute zero temperature in the strong coupling region, while the entropy in the superradiant phase is rapidly reduced to zero as the atom-field coupling strength increases. In other words, strongly coupled collective excited states are highly ordered and are not affected by thermal fluctuations in the temperature range we are considering. The thermodynamic properties, such as the entropy and corresponding specific heat, characterize the Dicke phase transition.
      通信作者: 刘妮, 317446484@qq.com
    • 基金项目: 国家自然科学基金(批准号: 11772177, 61505100)、山西省科学基金(批准号: 201701D221001)和山西省“1331工程”重点学科建设计划经费
      Corresponding author: Liu Ni, 317446484@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772177, 61505100), the Natural Science Foundation of Shanxi Province, China (Grant No. 201701D221001), and the Fund for Shanxi "1331 Project" Key Subjects, China
    [1]

    Braginsky V B, Vorontsov Y I, Thorne K S 1980 Science 209 547Google Scholar

    [2]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 53623Google Scholar

    [3]

    陈雪, 刘晓威, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [4]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2013 Rev. Mod. Phys. 86 1391

    [5]

    Mancini S, Tombesi P 1994 Phys. Rev. A 49 4055Google Scholar

    [6]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A, Mackowski J M, Michel C, Pinard L, Francais O, Rousseau L 2006 Phys. Rev. Lett. 97 133601Google Scholar

    [7]

    Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550Google Scholar

    [8]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [9]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [10]

    Padhi B, Ghosh S 2013 Phys. Rev. Lett. 111 043603Google Scholar

    [11]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315Google Scholar

    [12]

    黄珊, 刘妮, 梁九卿 2018 物理学报 67 183701Google Scholar

    Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67 183701Google Scholar

    [13]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [14]

    Popov V N, Fedotov S A 1982 Theor. Math. Phys. 51 363Google Scholar

    [15]

    Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar

    [16]

    Sun Q, Hu X H, Liu W M, Xie X C, Ji A C 2011 Phys. Rev. A 84 023822Google Scholar

    [17]

    Sun Q, Hu X H, Ji A C, Liu W M 2011 Phys. Rev. A 83 043606Google Scholar

    [18]

    Wang Z M, Lian J L, Liang J Q, Yu Y, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar

    [19]

    Nagy D, Kónya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 1041

    [20]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831Google Scholar

    [21]

    Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar

    [22]

    Santos J P, Furuya K, Semião F L 2010 Phys. Rev. A 82 063801Google Scholar

    [23]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

    [24]

    Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818Google Scholar

    [25]

    Zhang Y W, Lian J L, Liang J Q, Chen G, Zhang C, Jia S T 2012 Phys. Rev. A 87 811

    [26]

    Popov V N 1981 Zap. Nauchn. Sem. LOMI 101 128

  • 图 1  将超冷原子囚禁在超精细的光腔内, 在z方向注入一束泵浦光, 并且在x方向外加一个与光腔发生相互作用的纳米机械振子

    Fig. 1.  Experimental setup for an ultra-cold atoms trapped inside a high-finesse optical cavity driven by a pump laser in the z direction. While, a nanomechanical oscillator interacts with the optical cavity in the x direction.

    图 2  平均光子数$\left\langle {{a^\dagger }a} \right\rangle /N$随原子-场的集体耦合强度$g$变化的示意图

    Fig. 2.  The average photon number$\left\langle {{a^\dagger }a} \right\rangle /N$as a function of the atom-field coupling strength$g$.

    图 3  原子-光场非线性相互作用影响下, 平均光子数随原子-场集体耦合强度和温度变化的相图$(g - T)$, 其中声子-光子耦合强度$\xi \;=\;0\left( {{\rm{MHz}}} \right)$

    Fig. 3.  The average photon number’s phase diagram of the atom-field collective coupling strength and the temperature for different atom-light nonlinear interaction strength with the disappeared phonon-photon coupling constant $\xi \;=\;0\left( {{\rm{MHz}}} \right)$.

    图 4  原子-光非线性相互作用影响下, 平均光子数关于原子-场耦合强度和声子-光子非线性相互作用强度$(g - \xi )$的相图, 其中有限温度分别为$T\;=\;0\left( {{\rm{nK}}} \right)$(1)和$T\;=\;140\left( {{\rm{nK}}} \right)$(2)

    Fig. 4.  The phase diagram about the average photon number of atom-field collective coupling strength and the nonlinear photon-phonon interaction for different atoms-light nonlinear interaction strength with different finite temperature$T\;=\;0\left( {{\rm{nK}}} \right)$(1) and$T=140\left( {{\rm{nK}}} \right)$(2).

    图 5  在不同的原子-场集体耦合强度下, 平均光子数关于原子-光非线性相互作用和温度($U - T$)的相图, 其中声子-光子非线性相互作用$\xi = 50\left( {{\rm{MHz}}} \right)$

    Fig. 5.  The phase diagram about the average photon number of the atoms-light nonlinear interaction and temperature for different atoms-field collective coupling strength, where the nonlinear photon-phonon interaction $\xi = 50\left( {{\rm{MHz}}} \right)$.

    图 6  平均光子数$\left\langle {{a^\dagger }a} \right\rangle /N$随原子-光非线性相互作用$U$变化的示意图, 给定的参数是: 原子-场耦合强度. (a)$g = 0.7\left( {{\rm{MHz}}} \right)$和(b)$g = 0.75\left( {{\rm{MHz}}} \right)$, 温度$T = 80\left( {{\rm{nK}}} \right)$和光子-声子非线性耦合强度$\xi = 50\left( {{\rm{MHz}}} \right)$

    Fig. 6.  Variations of the average photon number $\left\langle {{a^\dagger }a} \right\rangle /N$with respect to the atom-light nonlinear interaction$U$. The given parameters are the atom-field coupling strength (a)$g = 0.7\left( {{\rm{MHz}}} \right)$ and (b)$g = 0.75\left( {{\rm{MHz}}} \right)$, the temperature$T = 80\left( {{\rm{nK}}} \right)$ and the photon-phonon nonlinear coupling strength $\xi = 50\left( {{\rm{MHz}}} \right)$.

    图 7  平均能量${E_{\rm{g}}}$随原子-场集体耦合强度$g$的变化

    Fig. 7.  The average energy${E_{\rm{g}}}$as a function of the atom-field collective coupling strength.

    图 8  $S$随原子-场集体耦合强度$g$的变化

    Fig. 8.  Entropy$S$as a function of the atom-field coupling strength$g$.

  • [1]

    Braginsky V B, Vorontsov Y I, Thorne K S 1980 Science 209 547Google Scholar

    [2]

    Liu N, Li J D, Liang J Q 2013 Phys. Rev. A 87 53623Google Scholar

    [3]

    陈雪, 刘晓威, 袁春华, 张卫平 2015 物理学报 64 164211Google Scholar

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211Google Scholar

    [4]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2013 Rev. Mod. Phys. 86 1391

    [5]

    Mancini S, Tombesi P 1994 Phys. Rev. A 49 4055Google Scholar

    [6]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A, Mackowski J M, Michel C, Pinard L, Francais O, Rousseau L 2006 Phys. Rev. Lett. 97 133601Google Scholar

    [7]

    Dorsel A, McCullen J D, Meystre P, Vignes E, Walther H 1983 Phys. Rev. Lett. 51 1550Google Scholar

    [8]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [9]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [10]

    Padhi B, Ghosh S 2013 Phys. Rev. Lett. 111 043603Google Scholar

    [11]

    Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315Google Scholar

    [12]

    黄珊, 刘妮, 梁九卿 2018 物理学报 67 183701Google Scholar

    Huang S, Liu N, Liang J Q 2018 Acta Phys. Sin. 67 183701Google Scholar

    [13]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [14]

    Popov V N, Fedotov S A 1982 Theor. Math. Phys. 51 363Google Scholar

    [15]

    Lian J L, Liu N, Liang J Q, Chen G, Jia S T 2013 Phys. Rev. A 88 043820Google Scholar

    [16]

    Sun Q, Hu X H, Liu W M, Xie X C, Ji A C 2011 Phys. Rev. A 84 023822Google Scholar

    [17]

    Sun Q, Hu X H, Ji A C, Liu W M 2011 Phys. Rev. A 83 043606Google Scholar

    [18]

    Wang Z M, Lian J L, Liang J Q, Yu Y, Liu W M 2016 Phys. Rev. A 93 033630Google Scholar

    [19]

    Nagy D, Kónya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 1041

    [20]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831Google Scholar

    [21]

    Hioe F T 1973 Phys. Rev. A 8 1440Google Scholar

    [22]

    Santos J P, Furuya K, Semião F L 2010 Phys. Rev. A 82 063801Google Scholar

    [23]

    Gröblacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724Google Scholar

    [24]

    Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818Google Scholar

    [25]

    Zhang Y W, Lian J L, Liang J Q, Chen G, Zhang C, Jia S T 2012 Phys. Rev. A 87 811

    [26]

    Popov V N 1981 Zap. Nauchn. Sem. LOMI 101 128

  • [1] 陈奕多, 韵雨婷, 关剑月, 吴枝喜. 具有层级结构集体影响力的多数投票模型. 物理学报, 2024, 73(2): 020201. doi: 10.7498/aps.73.20231164
    [2] 宋睿睿, 邓钦玲, 周绍林. 基于相变与悬链线连续相位调控的超构光子开关. 物理学报, 2022, 71(2): 029101. doi: 10.7498/aps.71.20211538
    [3] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [4] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [5] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶. 物理学报, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [6] 王彦成, 邱吴劼, 杨宏亮, 席丽丽, 杨炯, 张文清. 基于第一性原理分子动力学的填充方钴矿热输运性质及微观过程的研究. 物理学报, 2018, 67(1): 016301. doi: 10.7498/aps.67.20171406
    [7] 毛斌斌, 程晨, 陈富州, 罗洪刚. 一维扩展t-J模型中密度-自旋相互作用诱导的相分离. 物理学报, 2015, 64(18): 187105. doi: 10.7498/aps.64.187105
    [8] 李鹤龄, 王娟娟, 杨斌, 沈宏君. 由N-E-V分布及赝势法研究弱磁场中弱相互作用费米子气体的热力学性质. 物理学报, 2015, 64(4): 040501. doi: 10.7498/aps.64.040501
    [9] 张天宝, 俞玄平, 陈阿海. 有限温度下一维Gaudin-Yang模型的热力学性质. 物理学报, 2015, 64(15): 156402. doi: 10.7498/aps.64.156402
    [10] 贾树芳, 梁九卿. 单模光腔中N个二能级原子系统的有限温度特性和相变. 物理学报, 2015, 64(13): 130505. doi: 10.7498/aps.64.130505
    [11] 牛余全, 郑斌, 崔春红, 魏巍, 张彩霞, 孟庆田. 双柱胶体粒子与管状生物膜的相互作用. 物理学报, 2014, 63(3): 038701. doi: 10.7498/aps.63.038701
    [12] 罗植, 杨冠琼, 狄增如. 具有空间因素的社会网络上的舆论形成. 物理学报, 2012, 61(19): 190509. doi: 10.7498/aps.61.190509
    [13] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理. 物理学报, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [14] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究. 物理学报, 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [15] 吴勇峰, 张世平, 孙金玮, Peter Rolfe. 环形耦合Duffing振子间的同步突变. 物理学报, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [16] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析. 物理学报, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [17] 陈贺胜. 带有2+1味道Wilson费米子的格点量子色动力学在有限温度、有限密度下的相变. 物理学报, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [18] 邓 强, 颜 骏. 有限温度下的二维暗能量星模型. 物理学报, 2008, 57(7): 3978-3982. doi: 10.7498/aps.57.3978
    [19] 苏 杰, 王继锁, 梁宝龙, 张晓燕. 介观电容耦合LC电路在有限温度下的能量及热效应. 物理学报, 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [20] 刘 红. 丝状相液晶由表面相互作用产生的相变. 物理学报, 2000, 49(7): 1321-1326. doi: 10.7498/aps.49.1321
计量
  • 文章访问数:  8109
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-12
  • 修回日期:  2019-08-06
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回