搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于个性化三维心脏-躯干模型的心磁正问题

许炜炜 白明珠 林强 胡正珲

引用本文:
Citation:

基于个性化三维心脏-躯干模型的心磁正问题

许炜炜, 白明珠, 林强, 胡正珲

Magnetocardiogram forward problem based on personalized three-dimensional heart-torso model

Xu Wei-Wei, Bai Ming-Zhu, Lin Qiang, Hu Zheng-Hui
PDF
HTML
导出引用
  • 建立了基于有限元法(FEM)的三维心磁正问题计算框架, 以研究人体心脏电生理活动产生的磁场问题. 首先对被试的心脏和躯干磁共振影像数据源进行三维个性化建模, 获得心脏-躯干几何模型. 其次结合心脏三维模型与修正的FitzHugh-Nagumo (FHN)方程研究由跨膜电位 (TMP)产生的电兴奋在心脏内部的传导. 随后利用躯干三维模型与准静态麦克斯韦方程, 研究心脏电兴奋产生的生物电磁场在体内的传播过程, 进而获得体表外的心脏磁场分布. 心磁计算框架仿真结果显示, 使用FEM的模型可以较好地模拟体表外磁场分布. 一维FHN方程和直导线的简化模型数值结果分别与解析解呈现出较好的一致性, 验证了该计算框架的可行性. 综上, 该框架成功地仿真了TMP在心脏内部的传播过程及其在体表外投影的磁场分布, 这将有助于未来心磁逆问题求解的研究.
    In order to simulate the distribution of magnetic field generated by cardiac electrophysiological activities, a three-dimensional (3D) computing framework of magnetocardiogram forward problem based on a finite element method (FEM) is proposed. First, the 3D heart-torso geometry model is established from the 3D reconstruction of magnetic resonance images. Then the modified FitzHugh-Nagumo (FHN) equation combined with 3D cardiac geometry is used to investigate the propagation of transmembrane potential (TMP). In the end, quasi-static Maxwell equations and 3D torso model are used to explore the propagation of the bioelectromagnetic field produced by TMP. In our calculation, the Galerkin finite element method is used. The results show that the FEM-model can simulate extracorporeal magnetic field. Further, numerical solutions of simplified models with the one-dimensional FHN equation and the straight wire are respectively consistent with the analytical solutions, which verifies the feasibility of the computing framework. In summary, this framework successfully simulates the cardiac TMP and extracorporeal magnetic field, which may conduce to the study of magnetocardiogram inverse problem.
      通信作者: 胡正珲, zhenghui@zjut.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB329501)、国家自然科学基金(批准号: 81271645)和浙江省自然科学基金(批准号: LY12H18004)资助的课题.
      Corresponding author: Hu Zheng-Hui, zhenghui@zjut.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB329501), the National Natural Science Foundation of China (Grant No. 81271645), and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY12H18004).
    [1]

    李勇, 石曦, 陈伟宁 2008 中国医疗设备 23 46Google Scholar

    Li Y, Shi X, Chen W N 2008 Chin. Med. Equip. 23 46Google Scholar

    [2]

    周志文, 郑宏超, 缪培智, 朱建民 2016 中国心血管杂志 21 60Google Scholar

    Zhou Z W, Zheng H C, Miao P Z, Zhu J M 2016 Chin. J. Cardiovasc. Med. 21 60Google Scholar

    [3]

    张义红, 田青 2012 四川医学 33 452Google Scholar

    Zhang Y Q, Tian Q 2012 Sichuan Medical Journal 33 452Google Scholar

    [4]

    Wang L M, Wong K C L , Zhang H Y, Liu H F, Shi P C 2011 IEEE Trans. Biomed. Eng. 58 1033Google Scholar

    [5]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 227

    [6]

    何祥, 黄宇翔, 李曙光, 苏圣然, 郑文强, 胡正珲, 林强 2017 中国医学物理学杂志 34 1167Google Scholar

    He X, Huang Y X, Li S G, Shu S R, Zheng W Q, Hu Z H, Li Q 2017 Chin. J. Med. Phys. 34 1167Google Scholar

    [7]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [8]

    Moore J W 2010 Front Comput. Neurosci. 4 20

    [9]

    Schmitt O H 1969 Biological Information Processing Using the Concept of Interpenetrating Domains Information Processing in the Nervous System (New York: Springer) pp21−35

    [10]

    Muler A L, Markin V S 1977 Biofizika 22 671

    [11]

    Nielsen P M, Le G I, Smaill B H, Hunter P J 1991 Am. J. Physiol. 260 H1365

    [12]

    Guo Y L , Heng P A , Zhang S X , Liu Z J 2005 Surg. Radiol. Anat. 27 113Google Scholar

    [13]

    Xia L, Zhang Y, Zhang H G, Wei Q 2006 Physiol. Meas. 27 1125Google Scholar

    [14]

    李心雅, 许亮, 杨啸林, 彭屹 2011 中国生物医学工程学报 30 240Google Scholar

    Li X Y, Xu L, Yang X F, Peng Y 2011 Chin. J. Biomed. Eng. 30 240Google Scholar

    [15]

    赵莉娜 2008 硕士学位论文 (山东: 山东大学)

    Zhao L N 2008 M. S. Thesis (Shandong: Shangdong University) (in Chinese)

    [16]

    江贵平, 秦文健, 周寿军, 王昌淼 2015 计算机学报 38 1222Google Scholar

    Jiang G P, Qin W J, Zhou S J, Wang C M 2015 Chin. J. Comput. 38 1222Google Scholar

    [17]

    齐丽娜, 张博, 王战凯 2006 无线电工程 36 25Google Scholar

    Qi LN, Zhang B, Wang Z K 2006 Chin. Radio. Eng. 36 25Google Scholar

    [18]

    Fitzhugh R 1961 Biophys. J. 1 445Google Scholar

    [19]

    Siregar P, Sinteff J P, Julen N, Beux P L 1998 Comput. Biomed. Res. 31 323Google Scholar

    [20]

    Aliev R R, Panfilov A V 1996 Chaos, Solitons Fractals 7 293Google Scholar

    [21]

    Wang L W, Zhang H Y, Wong K C, Liu H F, Shi P C 2010 IEEE Trans. Biomed. Eng. 57 296Google Scholar

    [22]

    Scher A M , Young A C 1960 Circ. Res. 8 344Google Scholar

    [23]

    寿国法 2009 博士学位论文 (杭州: 浙江大学)

    Shou G F 2009 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [24]

    Fischer G, Tilg B, Wach P, Lafer G, Rucker W 1998 Comput. Methods Programs Biomed. 55 99Google Scholar

    [25]

    Zhang H Y, Shi P C 2006 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, January 17−18, 2006 p349

    [26]

    Zienkiewicz O C, Taylor R L著 (曾攀译 ) 2008 有限元方法 (第一卷)基本原理 (北京: 清华大学出版社)

    Zienkiewicz O C, Taylor R L (translated by Zeng P) 2008 The Finite Element Method: v.1: Basic Formulation and Linear Problems (Beijing: Tsinghua University Press) p41 (in Chinese)

    [27]

    Rogers J M, Mcculloch A D 1994 IEEE Trans. Biomed. Eng. 41 743Google Scholar

    [28]

    林府标, 张千宏, 张俊, 龙文 2017 应用数学 4 200

    Ling F B, Zhang Q H, Zhang J, Long W 2017 Math. Appl. 4 200

    [29]

    Griffiths G, Schiesser W E 2011 Traveling Wave Analysis of Partial Differential Equations (New York: Academic Press) pp67−110

    [30]

    陈自高, 张金辉 2010 河南工程学院学报(自然科学版) 22 57Google Scholar

    Cheng Z G, Zhang J H 2010 Journal of Henan Institute of Engineering 22 57Google Scholar

    [31]

    Geselowitz D B 1970 IEEE Trans. Magn. 6 346Google Scholar

    [32]

    Nattel S 2002 Nature 415 219Google Scholar

    [33]

    李明, 张朝祥, 张树林, 陈威, 鲁丽, 王毅, 孔祥燕 2017 低温物理学报 3 4

    Li M, Zhang C X, Zhang S L, Chen W, Lu L, Wang Y, Kong X Y 2017 Chin. J. Low Temp. Phys. 3 4

    [34]

    Seemann G, Keller D U J, Weiss D L, Dosse O 2008 2006 Computers in Cardiology Valencia, Spain, September 17−20, 2006 p801

  • 图 1  MRI切片的图像分割 (a) 心脏; (b) 躯干

    Fig. 1.  Image segmentation of MRI slices: (a) Heart; (b) torso

    图 2  个性化心脏-躯干三维几何模型

    Fig. 2.  Personalized three-dimensional heart-torso model.

    图 3  二阶10节点四面体单元

    Fig. 3.  The second-order tetrahedral element with 10 nodes.

    图 4  离散的心脏-躯干三维模型 (a) 心脏三维模型; (b) 心脏-躯干模型组合

    Fig. 4.  Discretized three-dimensional heart-torso model: (a) 3D cardiac model; (b) heart-torso model.

    图 5  t = 20, 40, 60时, 激发电位u的变化 实线: FHN方程数值解; 虚线: FHN方程行波解

    Fig. 5.  Evolution of excitation potential u at t = 20, 40, 60. Solid line: numerical solution of FHN equation. Dotted line: analytical solution of FHN equation.

    图 6  一个心动周期的TMP分布图 (a), (b), (c) 为去极化过程 (t = 30, 60, 90); (d), (e), (f)为复极化过程(t = 120, 150, 180)

    Fig. 6.  TMP distribution of a cardiac cycle: (a), (b), (c) Depolarization process (t = 30, 60, 90); (d), (e), (f) repolarization process (t = 120, 150, 180).

    图 7  TMP随时间变化曲线 实线: 右心室TMP变化; 虚线: 左心室TMP变化

    Fig. 7.  TMP time evolution curve, solid line: right ventricular TMP; dashed line: left ventricular TMP.

    图 8  (a) 直导线模型; (b)中轴面磁感应强度的分布, 实线: 解析解; 虚线: 数值解

    Fig. 8.  (a) Straight wire model; (b) distribution of magnetic field on the axial plane. Solid line: analytical solution; dotted line: numerical solution.

    图 9  磁场的相对误差分布

    Fig. 9.  Relative error distribution of magnetic field.

    图 10  体表外磁感应强度${{{B}}_z}$分布 (a)−(h) 模拟的心磁分布图(t = 40, 60, 80, 100, 120, 140, 160, 180);(i) 文献中的实测心磁图分布图[26]

    Fig. 10.  Extracorporeal magnetic field distribution: (a)−(h) Simulated cardiac magnetic distribution (t = 40, 60, 80, 100, 120, 140, 160, 180); (i) measured human MCG in the literature.

    表 1  FHN方程相对均方根误差RRMSE

    Table 1.  Relative root mean squared error of FHN equation.

    时间t = 20t = 40t = 60
    RRMSE0.39%0.53%0.79%
    下载: 导出CSV
  • [1]

    李勇, 石曦, 陈伟宁 2008 中国医疗设备 23 46Google Scholar

    Li Y, Shi X, Chen W N 2008 Chin. Med. Equip. 23 46Google Scholar

    [2]

    周志文, 郑宏超, 缪培智, 朱建民 2016 中国心血管杂志 21 60Google Scholar

    Zhou Z W, Zheng H C, Miao P Z, Zhu J M 2016 Chin. J. Cardiovasc. Med. 21 60Google Scholar

    [3]

    张义红, 田青 2012 四川医学 33 452Google Scholar

    Zhang Y Q, Tian Q 2012 Sichuan Medical Journal 33 452Google Scholar

    [4]

    Wang L M, Wong K C L , Zhang H Y, Liu H F, Shi P C 2011 IEEE Trans. Biomed. Eng. 58 1033Google Scholar

    [5]

    Dang H B, Maloof A C, Romalis M V 2010 Appl. Phys. Lett. 97 227

    [6]

    何祥, 黄宇翔, 李曙光, 苏圣然, 郑文强, 胡正珲, 林强 2017 中国医学物理学杂志 34 1167Google Scholar

    He X, Huang Y X, Li S G, Shu S R, Zheng W Q, Hu Z H, Li Q 2017 Chin. J. Med. Phys. 34 1167Google Scholar

    [7]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500Google Scholar

    [8]

    Moore J W 2010 Front Comput. Neurosci. 4 20

    [9]

    Schmitt O H 1969 Biological Information Processing Using the Concept of Interpenetrating Domains Information Processing in the Nervous System (New York: Springer) pp21−35

    [10]

    Muler A L, Markin V S 1977 Biofizika 22 671

    [11]

    Nielsen P M, Le G I, Smaill B H, Hunter P J 1991 Am. J. Physiol. 260 H1365

    [12]

    Guo Y L , Heng P A , Zhang S X , Liu Z J 2005 Surg. Radiol. Anat. 27 113Google Scholar

    [13]

    Xia L, Zhang Y, Zhang H G, Wei Q 2006 Physiol. Meas. 27 1125Google Scholar

    [14]

    李心雅, 许亮, 杨啸林, 彭屹 2011 中国生物医学工程学报 30 240Google Scholar

    Li X Y, Xu L, Yang X F, Peng Y 2011 Chin. J. Biomed. Eng. 30 240Google Scholar

    [15]

    赵莉娜 2008 硕士学位论文 (山东: 山东大学)

    Zhao L N 2008 M. S. Thesis (Shandong: Shangdong University) (in Chinese)

    [16]

    江贵平, 秦文健, 周寿军, 王昌淼 2015 计算机学报 38 1222Google Scholar

    Jiang G P, Qin W J, Zhou S J, Wang C M 2015 Chin. J. Comput. 38 1222Google Scholar

    [17]

    齐丽娜, 张博, 王战凯 2006 无线电工程 36 25Google Scholar

    Qi LN, Zhang B, Wang Z K 2006 Chin. Radio. Eng. 36 25Google Scholar

    [18]

    Fitzhugh R 1961 Biophys. J. 1 445Google Scholar

    [19]

    Siregar P, Sinteff J P, Julen N, Beux P L 1998 Comput. Biomed. Res. 31 323Google Scholar

    [20]

    Aliev R R, Panfilov A V 1996 Chaos, Solitons Fractals 7 293Google Scholar

    [21]

    Wang L W, Zhang H Y, Wong K C, Liu H F, Shi P C 2010 IEEE Trans. Biomed. Eng. 57 296Google Scholar

    [22]

    Scher A M , Young A C 1960 Circ. Res. 8 344Google Scholar

    [23]

    寿国法 2009 博士学位论文 (杭州: 浙江大学)

    Shou G F 2009 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [24]

    Fischer G, Tilg B, Wach P, Lafer G, Rucker W 1998 Comput. Methods Programs Biomed. 55 99Google Scholar

    [25]

    Zhang H Y, Shi P C 2006 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, January 17−18, 2006 p349

    [26]

    Zienkiewicz O C, Taylor R L著 (曾攀译 ) 2008 有限元方法 (第一卷)基本原理 (北京: 清华大学出版社)

    Zienkiewicz O C, Taylor R L (translated by Zeng P) 2008 The Finite Element Method: v.1: Basic Formulation and Linear Problems (Beijing: Tsinghua University Press) p41 (in Chinese)

    [27]

    Rogers J M, Mcculloch A D 1994 IEEE Trans. Biomed. Eng. 41 743Google Scholar

    [28]

    林府标, 张千宏, 张俊, 龙文 2017 应用数学 4 200

    Ling F B, Zhang Q H, Zhang J, Long W 2017 Math. Appl. 4 200

    [29]

    Griffiths G, Schiesser W E 2011 Traveling Wave Analysis of Partial Differential Equations (New York: Academic Press) pp67−110

    [30]

    陈自高, 张金辉 2010 河南工程学院学报(自然科学版) 22 57Google Scholar

    Cheng Z G, Zhang J H 2010 Journal of Henan Institute of Engineering 22 57Google Scholar

    [31]

    Geselowitz D B 1970 IEEE Trans. Magn. 6 346Google Scholar

    [32]

    Nattel S 2002 Nature 415 219Google Scholar

    [33]

    李明, 张朝祥, 张树林, 陈威, 鲁丽, 王毅, 孔祥燕 2017 低温物理学报 3 4

    Li M, Zhang C X, Zhang S L, Chen W, Lu L, Wang Y, Kong X Y 2017 Chin. J. Low Temp. Phys. 3 4

    [34]

    Seemann G, Keller D U J, Weiss D L, Dosse O 2008 2006 Computers in Cardiology Valencia, Spain, September 17−20, 2006 p801

  • [1] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁. 物理学报, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [2] 曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂. 基于对偶单元法的三维集成微系统电热耦合分析. 物理学报, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [3] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [4] 赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武. 基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用. 物理学报, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [5] 张学良, 谭惠丽, 唐国宁, 邓敏艺. 基于心脏腔式结构的心电图元胞自动机建模. 物理学报, 2017, 66(20): 200501. doi: 10.7498/aps.66.200501
    [6] 何郁波, 唐先华, 林晓艳. 基于格子玻尔兹曼方法的一类FitzHugh-Nagumo系统仿真研究. 物理学报, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [7] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [8] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [9] 刘明, 张树林, 李华, 邱阳, 曾佳, 张国峰, 王永良, 孔祥燕, 谢晓明. 一种应用于心磁噪声抑制的选择性平均方法研究. 物理学报, 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
    [10] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [11] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [12] 高加振, 谢玲玲, 谢伟苗, 高继华. FitzHugh-Nagumo系统中螺旋波的控制. 物理学报, 2011, 60(8): 080503. doi: 10.7498/aps.60.080503
    [13] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [14] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [15] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [16] 张洪武, 王晋宝, 叶宏飞, 王 磊. 范德华力的广义参变本构模型及其在碳纳米管计算中的应用. 物理学报, 2007, 56(3): 1422-1428. doi: 10.7498/aps.56.1422
    [17] 郑 凯, 常德远, 傅永军, 魏 淮, 延凤平, 简 伟, 简水生. 掺铒孔辅助导光光纤的特性研究与优化设计. 物理学报, 2007, 56(2): 958-967. doi: 10.7498/aps.56.958
    [18] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析. 物理学报, 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [19] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [20] 赵 莉, 冯 稷, 翟光杰, 张利华. 小波变换在心磁信号处理中的应用. 物理学报, 2005, 54(4): 1943-1949. doi: 10.7498/aps.54.1943
计量
  • 文章访问数:  9575
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-18
  • 修回日期:  2019-06-29
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回