-
利用精确求解原子核与电子耦合运动的三维含时量子波包法, 理论研究了HD+分子在强激光场中的光解离动力学, 并给出了量子调控HD+分子光解离通道的理论方案. 通过分析HD+分子在不同的初始振动态和激光场强度下的光解离动力学过程及其解离核动能谱, 得出了HD+分子的光解离机理及其随激光场强度的变化规律. 研究结果表明, 利用激光场的强度可以实现HD+分子光解离通道的量子调控. 当激光场强度I1 = 4.0 × 1013 W/cm2时, HD+分子的光解离主要是通过净单光子吸收解离和净双光子吸收解离; 当激光场强度增大到I2 = 2.0 × 1014 W/cm2时, 直接双光子吸收解离取代了净单光子吸收解离, 净双光子吸收解离的比重也下降了.The dissociation dynamics of HD+ molecule in an intense field is investigated by using an accurate three-dimensional time-dependent wave packet approach. When the 790-nm laser pulse interacts with HD+ molecule, the lowest electronic 1sσ and 2pσ states are coupled. Due to the existence of the permanent electric dipole moment, the transitions in HD+ molecule involve the direct absorption of an odd and even number of photons, thereby opening different pathways for dissociation. The model of the photon-dressed states is presented to analyze the possible dissociation pathways of HD+ molecule. The laser-induced dissociation of HD+ molecule is mainly composed of the four pathways: the direct one-photon absorption, the net two-photon absorption, the direct two-photon absorption, and the direct two-photon absorption. To reveal the dissociation mechanism of HD+ molecule, the kinetic energy resolved spectra are calculated at the given laser intensities. It is found that the dissociation pathways are strongly dependent on laser intensity, especially for the net one-photon absorption dissociation and direct two-photon absorption dissociation. With further research, the dissociation pathways of HD+ are controlled by regulating the intensity of laser pulse. At a laser intensity of 4.0 × 1013 W/cm2, the kinetic energy resolved spectrum for the vibrational state ν = 3 includes the contributions from the net two-photon absorption dissociation and the direct two-photon absorption dissociation. For the vibrational state ν = 6, HD+ molecule is preferentially dissociated via the net one-photon absorption. However, the dissociation mechanism of HD+ molecule at the vibrational states ν = 3 and ν = 6 have significant changes as the laser intensity increases to 2.0 × 1014 W/cm2. For the vibrational state ν = 3, the branching ratio between the dissociation pathway of the net two-photon absorption and that of the direct two-photon absorption has a dramatic change with the increase of laser intensity. Compared with the kinetic energy resolved spectra at laser energy of 4.0 × 1013 W/cm2, the height of the dissociation peak from the net two-photon absorption decreases, and that of the direct two-photon absorption increases at laser intensity of 2.0 × 1014 W/cm2. For the vibrational state ν = 6, the dissociation process of the net one-photon absorption almost disappears at laser intensity of 2.0 × 1014 W/cm2, and it is replaced by the dissociation pathway of the direct two-photon absorption.
-
Keywords:
- dissociation /
- quantum control /
- time-dependent wave packet method /
- kinetic energy resolved spectra
[1] 秦朝朝, 黄燕, 彭玉峰 2017 物理学报 66 193301Google Scholar
Qin C C, Huang Y, Peng Y F 2017 Acta Phys. Sin. 66 193301Google Scholar
[2] Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246
[3] Sun Z P, Yao H B, Wang C Y, Zhao, W K, Yang C L 2019 Laser Phys. Lett. 16 016001Google Scholar
[4] Chang Z C, Li C M, Guo W, Yao H B 2018 Chin. Phys. B 27 053301Google Scholar
[5] Yao H B, Guo W, Hoffmann M R, Han K L 2014 Phys. Rev. A 90 063418Google Scholar
[6] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新 2016 物理学报 65 223206Google Scholar
Liu C D, Jia Z M, Zheng Y H, Ge X C, Zeng Z N, Li R X 2016 Acta Phys. Sin. 65 223206Google Scholar
[7] 姚洪斌, 李文亮, 张季, 彭敏 2014 物理学报 63 178201Google Scholar
Yao H B, Li W L, Zhang J, Peng M 2014 Acta Phys. Sin. 63 178201Google Scholar
[8] Yao H B, Zhen Y J 2011 Phys. Chem. Chem. Phys. 13 8900Google Scholar
[9] Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883Google Scholar
[10] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar
[11] Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar
[12] Frasinski L J, Plumridge J, Posthumus J H, Codling K, Taday P F, Divall E J, Langley A J 2001 Phys. Rev. Lett. 86 2541Google Scholar
[13] Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar
[14] Posthumus J H 2004 Rep. Prog. Phys. 67 623Google Scholar
[15] Orr P A, Williams I D, Greenwood J B, Turcu I C E, Bryan W A, Pedregosa-Gutierrez J, Walter C W 2007 Phys. Rev. Lett. 98 163001Google Scholar
[16] Kiess A, Pavičić D, Hänsch T W, Figger H 2008 Phys. Rev. A 77 053401Google Scholar
[17] McKenna J, Sayler A M, Gaire B, Johnson N G, Zohrabi M, Carnes K D, Esry B D, Ben-Itzhak I 2009 J. Phys. B: At. Mol. Opt. Phys. 42 121003Google Scholar
[18] McKenna J, Sayler A M, Gaire B, Johnson N G, Parke E, Carnes K D, Esry B D, Ben-Itzhak I 2009 Phys. Rev. A 80 023421Google Scholar
[19] Liu Z T, Yuan K J, Shu C C, Hu W H, Cong S L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601Google Scholar
[20] He H X, Lu R F, Zhang P Y, Guo Y H, Han K L, He G Z 2011 Phys. Rev. A 84 033418Google Scholar
[21] He H X, Lu R F, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 024311Google Scholar
[22] Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar
[23] Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001
[24] Feuerstein B, Thumm U 2003 Phys. Rev. A 67 043405Google Scholar
[25] 姚洪斌, 张季, 彭敏, 李文亮 2014 物理学报 63 198202Google Scholar
Yao H B, Zhang J, Peng M, Li W L 2014 Acta Phys. Sin. 63 198202Google Scholar
[26] Yao H B, Zhao G J 2014 J. Phys. Chem. A 118 9173Google Scholar
[27] McKenna J, Sayler A M, Anis F, Gaire B, Johnson N G, Parke E, Hua J J, Mashiko H, Nakamura C M, Moon E, Chang Z, Carnes K D, Esry B D, Ben-Itzhak I 2008 Phys. Rev. Lett. 100 133001Google Scholar
-
图 2 激光场强度I1 = 4.0 × 1013 W/cm2时, HD+分子在初始振动态ν = 3 (a)和ν = 6 (b)上的光解离核动能谱 (激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)
Fig. 2. At the laser intensity of I1 = 4.0 × 1013 W/cm2, the kinetic energy resolved distributions of dissociation for the vibrational states ν = 3 (a) and ν = 6 (b) of HD+ molecule. The laser wavelength is 790 nm and the pulse duration is 40 fs, respectively.
图 3 激光场强度I2 = 2.0 × 1014 W/cm2时, HD+分子在初始振动态ν = 3 (a)和ν = 6 (b)上的光解离核动能谱 (激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)
Fig. 3. At the laser intensity of I2 = 2.0 × 1014 W/cm2, the kinetic energy resolved distributions of dissociation for the vibrational states ν = 3 (a) and ν = 6 (b) of HD+ molecule. The laser wavelength is 790 nm and the pulse duration is 40 fs, respectively.
图 4 当激光场强度I1 = 4.0 × 1013 W/cm2 (蓝线)和I2 = 2.0 × 1014 W/cm2 (红线)时, HD+分子在初始振动态ν = 6上光解离通道(激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)
Fig. 4. The related pathways of dissociation for the vibrational state ν = 6 of HD+ molecule at the laser intensities of 4.0 × 1013 W/cm2 (blue line) and 2.0 × 1014 W/cm2 (red line). The laser wavelength is 790 nm, the pulse duration is 40 fs.
-
[1] 秦朝朝, 黄燕, 彭玉峰 2017 物理学报 66 193301Google Scholar
Qin C C, Huang Y, Peng Y F 2017 Acta Phys. Sin. 66 193301Google Scholar
[2] Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246
[3] Sun Z P, Yao H B, Wang C Y, Zhao, W K, Yang C L 2019 Laser Phys. Lett. 16 016001Google Scholar
[4] Chang Z C, Li C M, Guo W, Yao H B 2018 Chin. Phys. B 27 053301Google Scholar
[5] Yao H B, Guo W, Hoffmann M R, Han K L 2014 Phys. Rev. A 90 063418Google Scholar
[6] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新 2016 物理学报 65 223206Google Scholar
Liu C D, Jia Z M, Zheng Y H, Ge X C, Zeng Z N, Li R X 2016 Acta Phys. Sin. 65 223206Google Scholar
[7] 姚洪斌, 李文亮, 张季, 彭敏 2014 物理学报 63 178201Google Scholar
Yao H B, Li W L, Zhang J, Peng M 2014 Acta Phys. Sin. 63 178201Google Scholar
[8] Yao H B, Zhen Y J 2011 Phys. Chem. Chem. Phys. 13 8900Google Scholar
[9] Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883Google Scholar
[10] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar
[11] Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar
[12] Frasinski L J, Plumridge J, Posthumus J H, Codling K, Taday P F, Divall E J, Langley A J 2001 Phys. Rev. Lett. 86 2541Google Scholar
[13] Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar
[14] Posthumus J H 2004 Rep. Prog. Phys. 67 623Google Scholar
[15] Orr P A, Williams I D, Greenwood J B, Turcu I C E, Bryan W A, Pedregosa-Gutierrez J, Walter C W 2007 Phys. Rev. Lett. 98 163001Google Scholar
[16] Kiess A, Pavičić D, Hänsch T W, Figger H 2008 Phys. Rev. A 77 053401Google Scholar
[17] McKenna J, Sayler A M, Gaire B, Johnson N G, Zohrabi M, Carnes K D, Esry B D, Ben-Itzhak I 2009 J. Phys. B: At. Mol. Opt. Phys. 42 121003Google Scholar
[18] McKenna J, Sayler A M, Gaire B, Johnson N G, Parke E, Carnes K D, Esry B D, Ben-Itzhak I 2009 Phys. Rev. A 80 023421Google Scholar
[19] Liu Z T, Yuan K J, Shu C C, Hu W H, Cong S L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601Google Scholar
[20] He H X, Lu R F, Zhang P Y, Guo Y H, Han K L, He G Z 2011 Phys. Rev. A 84 033418Google Scholar
[21] He H X, Lu R F, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 024311Google Scholar
[22] Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar
[23] Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001
[24] Feuerstein B, Thumm U 2003 Phys. Rev. A 67 043405Google Scholar
[25] 姚洪斌, 张季, 彭敏, 李文亮 2014 物理学报 63 198202Google Scholar
Yao H B, Zhang J, Peng M, Li W L 2014 Acta Phys. Sin. 63 198202Google Scholar
[26] Yao H B, Zhao G J 2014 J. Phys. Chem. A 118 9173Google Scholar
[27] McKenna J, Sayler A M, Anis F, Gaire B, Johnson N G, Parke E, Hua J J, Mashiko H, Nakamura C M, Moon E, Chang Z, Carnes K D, Esry B D, Ben-Itzhak I 2008 Phys. Rev. Lett. 100 133001Google Scholar
计量
- 文章访问数: 7459
- PDF下载量: 53
- 被引次数: 0