-
目前市场主流的窄禁带材料霍尔磁场传感器主要工作在室温或低温环境, 而新型的宽禁带GaN材料霍尔传感器虽然适用于高温, 但器件结构主要是水平型, 受制于异质结界面过高的纵向电场约束, 能探测平行器件表面磁场的垂直型结构至今未见报道, 因此技术上无法实现单一芯片三维磁场探测. 针对该难题, 本文提出基于宽禁带AlGaN/GaN异质结材料, 采用选区浅刻蚀二维电子气沟道势垒层形成局部凹槽结构的方案, 从而实现垂直型结构霍尔传感器, 并且可有效地提高磁场探测灵敏度. 首先对照真实器件测试数据对所提器件材料参数和物理模型进行校准, 然后利用计算机辅助设计技术(TCAD)对器件电极间距比值、台面宽度、感测电极长度等核心结构参数进行优化, 同时对器件特性进行深入分析讨论. 仿真结果表明所设计的霍尔传感器具有高的磁场探测敏感度(器件宽度为2 μm时为113.7 V/(A·T))和低的温度漂移系数(约600 ppm/K), 器件能稳定工作在大于500 K的高温环境. 本文工作针对宽禁带材料垂直型霍尔传感器进行设计研究, 为下一步实现在单一芯片同时制造垂直型和水平型器件, 从而最终获得更高集成度和探测敏感度、能高温应用的三维磁场探测技术奠定了理论基础.
-
关键词:
- 磁场传感器 /
- 铝镓氮/氮化镓异质结 /
- 二维电子气 /
- 高温稳定性
Magnetic fields are generally sensed by a device that makes use of the Hall effect. Hall-effect sensors are widely used for proximity switching, positioning, speed detecting for the purpose of control and condition monitoring. Currently, the Hall sensor products are mainly based on the narrow-bandgap Si or GaAs semiconductor, and they are suitable for room temperature or low temperature environment, while the novel wide-bandgap GaN-based Hall sensors are more suitable for the application in various high-temperature environments. However, the spatial structure of the GaN-based sensor is mainly horizontal and hence it is only able to detect the magnetic field perpendicular to it. To detect the parallel field on the sensor surface, the vertical structure device is required despite encountering many difficulties in technology, for example reducing the vertical electric field in the two-dimensional electron gas (2-DEG) channel. The vertical Hall sensor has not been reported so far, so it is technically impossible to realize three-dimensional magnetic field detection on single chip. To address the mentioned issues, in this paper we propose a design of the vertical Hall sensor based on the wide-bandgap AlGaN/GaN heterojunction material, which adopts a shallow etching of 2-DEG channel barrier to form a locally trenched structure. The material parameters and physical models of the proposed device are first calibrated against real device test data, and then the key structural parameters such as device electrode spacing ratio, mesa width and sensing electrode length are optimized by using technology computer aided design, and the device characteristics are analyzed. Finally, the simulation results confirm that the proposed Hall sensor has a higher sensitivity of magnetic field detection and lower temperature drift coefficient ($\sim $ 600 ppm/K), and the device can work stably in a high-temperature (greater than 500 K) environment. Therefore, the vertical and horizontal devices can be fabricated simultaneously on the same wafer in the future, thus achieving a three-dimensional magnetic field detection in various high-temperature environments.-
Keywords:
- magnetic sensor /
- AlGaN/GaN heterojunction /
- two-dimensional electron gas /
- high temperature stability
[1] Boero G, Demierre M, Besse P A, Popovic R S 2003 Sens. Actuator A: Phys. 106 314Google Scholar
[2] Nama T, Gogoi A K, Tripathy P 2017 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) Ottawa, Canada, October 5−7, 2017 p208
[3] Roumenin C, Dimitrov K, Ivanov A 2001 Sens. Actuator A: Phys. 92 119Google Scholar
[4] Dimitrov K 2007 Measurement 40 816Google Scholar
[5] 黄乐, 张志勇, 彭练矛 2017 物理学报 66 218501Google Scholar
Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501Google Scholar
[6] Bilotti A, Monreal G, Vig R 1997 IEEE J. Solid-State Circuit. 32 829Google Scholar
[7] Behet M, Bekaert J, de Boeck J, Borghs G 2000 Sens. Actuator A: Phys. 81 13Google Scholar
[8] Kunets V P, Easwaran S, Black W T, Guzun D, Mazur Y I, Goel N, Mishima T D, Santos M B, Salamo G J 2009 IEEE Trans. Electron Dev. 56 683
[9] Koide S, Takahashi H, Abderrahmane A, Shibasaki I, Sandhu A 2012 J. Phys.: Conf. Ser. 352 012009Google Scholar
[10] Hassan A, Ali M, Savaria Y, Sawan M 2019 Microelectron. J. 84 129Google Scholar
[11] Li L, Chen J, Gu X, Li X, Pu T, Ao J-P 2018 Superlattice Microst. 123 274Google Scholar
[12] Alim M A, Rezazadeh A A, Gaquiere C, Crupi G 2019 Semicond. Sci. Technol. 34 035002Google Scholar
[13] Dowling K M, Alpert H S, Yalamarthy A S, Satterthwaite P F, Kumar S, Köck H, Ausserlechner U, Senesky D G 2019 IEEE Sens. Lett. 3 2500904Google Scholar
[14] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar
Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar
[15] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334Google Scholar
[16] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar
[17] Abderrahmane A, Koide S, Sato S I, Ohshima T, Sandhu A, Okada H 2012 IEEE Trans. Magn. 48 4421Google Scholar
[18] Nifa I, Leroux C, Torres A, Charles M, Blachier D, Reimbold G, Ghibaudo G, Bano E 2017 Microelectron. Eng. 178 128Google Scholar
[19] White T P, Shetty S, Ware M E, Mantooth H A, Salamo G J 2018 IEEE Sens. J. 18 2944Google Scholar
[20] Abderrahmane A, Tashiro T, Takahashi H, Ko P J, Okada H, Sato S, Ohshima T, Sandhu A 2014 Appl. Phys. Lett. 104 023508Google Scholar
[21] Heidari H, Bonizzoni E, Gatti U, Maloberti F, Dahiya R 2016 IEEE Sens. J. 16 8736Google Scholar
[22] Kaufmann T, Vecchi M C, Ruther P, Paul O 2012 Sensor. Actuat. A: Phys. 178 1Google Scholar
[23] 黄杨, 徐跃, 郭宇锋 2015 半导体学报 36 124006
Huang Y, Xu Y, Guo Y 2015 J. Semicond. 36 124006
[24] Popovic R S 1984 IEEE Electron Dev. Lett. 5 357Google Scholar
[25] Pascal J, Hebrard L, Kammerer J B, Frick V, Blonde J P 2007 IEEE Sensors 2007 Conference Atlanta, GA, USA, October 28–31, 2007 p1480
[26] Popovic R S 2003 Hall Effect Devices (Vol. 2) (London: Institute of Physics Publishing) pp179−242
[27] Allegretto W, Nathan A, Baltes H 1991 IEEE Trans. Comput.: Aided Des. Integr. Circuits Syst. 10 501Google Scholar
[28] Riccobene C, Gartner K, Wachutka G, Baltes H, Fichtner W 1994 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 11−14, 1994 p727
[29] Riccobene C, Wachutka G, Burgler J, Baltes H 1994 IEEE Trans. Electron Dev. 41 32
[30] Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D, Ruden P P 2001 IEEE Trans. Electron Dev. 48 535Google Scholar
[31] Anderson T J, Tadjer M J, Mastro M A, Hite J K, Hobart K D, Eddy C R, Kub F J 2010 J. Electron. Mater. 39 478Google Scholar
[32] Consejo C, Contreras S, Konczewicz L, Lorenzini P, Cordier Y, Skierbiszewski C, Robert J L 2005 Phys. Stat. Sol. (c)
2 1438Google Scholar [33] Roumenin C S, Nikolov D, Ivanov A 2004 Sensor. Actuat. A: Phys. 115 303Google Scholar
[34] Zhao X, Bai Y, Deng Q, Ai C, Yang X, Wen D 2017 IEEE Sens. J. 17 5849Google Scholar
[35] Kejik P, Schurig E, Bergsma F, Popovic R S 2005 The 13th International Conference on Solid-State Sensors Seoul, Korea, June 5–9, 2005 p317
[36] Yamamura T, Nakamura D, Higashiwaki M, Matsui T, Sandhu A 2006 J. Appl. Phys. 99 08B302
-
图 2 器件仿真数据与实验转移特性结果进行对比的器件参数校准过程[31]
Fig. 2. Comparisons of simulated IDS-VGS characteristics of the Hall sensor with the experimental data.
表 1 仿真中所用的典型器件物理参数
Table 1. Summary of physical parameters adopted in the simulations.
物理参数 单位 GaN AlN 禁带宽度 Eg eV 3.4 6.2 电子亲和能χ V 3.4 1.9 相对介电常数$\epsilon $ — 9.4 8.8 迁移率 μ cm2/(V·s) 1310 300 电子饱和速率 vsat cm/s 1.8 × 107 1.3 × 107 电子发射截面 σ0n cm2 1.0 × 10–15 1.0 × 10–15 导带状态密度 Nc cm–3 2.7 × 1018 4.1 × 1018 价带状态密度 Nv cm–3 2.5 × 1019 2.8 × 1020 热导率 κ W/(cm·K) 1.3 2.9 表 2 基于不同材料的霍尔传感器关键性能指标对比
Table 2. Comparisons of key performances of Hall sensors based on various materials.
器件类别 工作温度/K 温漂系数ST/ppm·K–1 灵敏度SI/V·(A·T)–1 Si基垂直型[33] T < 350 $\sim $1000 41 (x方向) Si基垂直型[34] T < 350 4545 77.5 (x方向) Si基垂直型[35] T < 350 1500 N/A InAs/AlGaSb水平型[7] T < 400 1710 250 InAs/AlGaSb水平型[7] T < RT 2690 302 AlGaN/GaN水平型[19] T > 400 $\sim $1000 113 AlGaN/GaN水平型[36] T > 400 820 46 AlGaN/GaN垂直型(本文) T > 500 $\sim $600 75.7 (w = 3 μm) 113.7 (w = 2 μm) -
[1] Boero G, Demierre M, Besse P A, Popovic R S 2003 Sens. Actuator A: Phys. 106 314Google Scholar
[2] Nama T, Gogoi A K, Tripathy P 2017 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS) Ottawa, Canada, October 5−7, 2017 p208
[3] Roumenin C, Dimitrov K, Ivanov A 2001 Sens. Actuator A: Phys. 92 119Google Scholar
[4] Dimitrov K 2007 Measurement 40 816Google Scholar
[5] 黄乐, 张志勇, 彭练矛 2017 物理学报 66 218501Google Scholar
Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501Google Scholar
[6] Bilotti A, Monreal G, Vig R 1997 IEEE J. Solid-State Circuit. 32 829Google Scholar
[7] Behet M, Bekaert J, de Boeck J, Borghs G 2000 Sens. Actuator A: Phys. 81 13Google Scholar
[8] Kunets V P, Easwaran S, Black W T, Guzun D, Mazur Y I, Goel N, Mishima T D, Santos M B, Salamo G J 2009 IEEE Trans. Electron Dev. 56 683
[9] Koide S, Takahashi H, Abderrahmane A, Shibasaki I, Sandhu A 2012 J. Phys.: Conf. Ser. 352 012009Google Scholar
[10] Hassan A, Ali M, Savaria Y, Sawan M 2019 Microelectron. J. 84 129Google Scholar
[11] Li L, Chen J, Gu X, Li X, Pu T, Ao J-P 2018 Superlattice Microst. 123 274Google Scholar
[12] Alim M A, Rezazadeh A A, Gaquiere C, Crupi G 2019 Semicond. Sci. Technol. 34 035002Google Scholar
[13] Dowling K M, Alpert H S, Yalamarthy A S, Satterthwaite P F, Kumar S, Köck H, Ausserlechner U, Senesky D G 2019 IEEE Sens. Lett. 3 2500904Google Scholar
[14] 唐文昕, 郝荣晖, 陈扶, 于国浩, 张宝顺 2018 物理学报 67 198501Google Scholar
Tang W X, Hao R H, Chen F, Yu G H, Zhang B S 2018 Acta Phys. Sin. 67 198501Google Scholar
[15] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334Google Scholar
[16] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar
[17] Abderrahmane A, Koide S, Sato S I, Ohshima T, Sandhu A, Okada H 2012 IEEE Trans. Magn. 48 4421Google Scholar
[18] Nifa I, Leroux C, Torres A, Charles M, Blachier D, Reimbold G, Ghibaudo G, Bano E 2017 Microelectron. Eng. 178 128Google Scholar
[19] White T P, Shetty S, Ware M E, Mantooth H A, Salamo G J 2018 IEEE Sens. J. 18 2944Google Scholar
[20] Abderrahmane A, Tashiro T, Takahashi H, Ko P J, Okada H, Sato S, Ohshima T, Sandhu A 2014 Appl. Phys. Lett. 104 023508Google Scholar
[21] Heidari H, Bonizzoni E, Gatti U, Maloberti F, Dahiya R 2016 IEEE Sens. J. 16 8736Google Scholar
[22] Kaufmann T, Vecchi M C, Ruther P, Paul O 2012 Sensor. Actuat. A: Phys. 178 1Google Scholar
[23] 黄杨, 徐跃, 郭宇锋 2015 半导体学报 36 124006
Huang Y, Xu Y, Guo Y 2015 J. Semicond. 36 124006
[24] Popovic R S 1984 IEEE Electron Dev. Lett. 5 357Google Scholar
[25] Pascal J, Hebrard L, Kammerer J B, Frick V, Blonde J P 2007 IEEE Sensors 2007 Conference Atlanta, GA, USA, October 28–31, 2007 p1480
[26] Popovic R S 2003 Hall Effect Devices (Vol. 2) (London: Institute of Physics Publishing) pp179−242
[27] Allegretto W, Nathan A, Baltes H 1991 IEEE Trans. Comput.: Aided Des. Integr. Circuits Syst. 10 501Google Scholar
[28] Riccobene C, Gartner K, Wachutka G, Baltes H, Fichtner W 1994 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 11−14, 1994 p727
[29] Riccobene C, Wachutka G, Burgler J, Baltes H 1994 IEEE Trans. Electron Dev. 41 32
[30] Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D, Ruden P P 2001 IEEE Trans. Electron Dev. 48 535Google Scholar
[31] Anderson T J, Tadjer M J, Mastro M A, Hite J K, Hobart K D, Eddy C R, Kub F J 2010 J. Electron. Mater. 39 478Google Scholar
[32] Consejo C, Contreras S, Konczewicz L, Lorenzini P, Cordier Y, Skierbiszewski C, Robert J L 2005 Phys. Stat. Sol. (c)
2 1438Google Scholar [33] Roumenin C S, Nikolov D, Ivanov A 2004 Sensor. Actuat. A: Phys. 115 303Google Scholar
[34] Zhao X, Bai Y, Deng Q, Ai C, Yang X, Wen D 2017 IEEE Sens. J. 17 5849Google Scholar
[35] Kejik P, Schurig E, Bergsma F, Popovic R S 2005 The 13th International Conference on Solid-State Sensors Seoul, Korea, June 5–9, 2005 p317
[36] Yamamura T, Nakamura D, Higashiwaki M, Matsui T, Sandhu A 2006 J. Appl. Phys. 99 08B302
计量
- 文章访问数: 9648
- PDF下载量: 116
- 被引次数: 0