-
微区X射线衍射(micro-X-ray diffraction)分析在测量小样品或样品微区结构方面有着独特的优势. 介绍了实验室自行研发的台式毛细管聚焦的微束X射线衍射仪(μ-Hawk), 其主要由微焦斑X射线管、毛细管X光透镜、接收狭缝、SDD X射线探测器、θ-θ测角仪、三维样品台, 以及在LabVIEW语言环境下开发的计算机控制程序等部分组成. 控制程序的主界面具备微区X射线衍射分析和微区能量色散X射线荧光分析两种分析模式. 为了验证设备的可行性, 分别对一枚人民币五角硬币上“角”字第一划中央处的微区和直径为140 μm的铜质导线进行微区点分析; 对苹果手机主板焊锡接触点上1.0 mm × 0.6 mm区域内的物相分布进行二维扫描分析, 具体方式为在二维待测区域内逐点自动执行θ-θ角度扫描, 由程序控制的4个电机来实现此过程. 分析结果表明, μ-Hawk所具备的微区能量色散X射线荧光分析模式, 为物相结构的识别提供了元素种类的参考信息; 与常规的X射线衍射仪相比较, μ-Hawk所采集的衍射图整体本底较低, 并且所测得的衍射峰位置基本一致; μ-Hawk能适应小样品或样品微区物相结构的分析和物相分布的二维扫描分析, 在材料科学、地球科学和文物保护等领域有着广泛的应用前景.
-
关键词:
- 微束X射线衍射仪 /
- 毛细管X光透镜 /
- 微区X射线衍射 /
- 微区能量色散X射线荧光
Micro-X-ray diffraction (μ-XRD) plays a significant role in measuring the phase structures of small samples or micro areas of larger samples. In this article, we propose a new type of desktop micro-X-ray diffractometer named μ-Hawk focused by polycapillary optics. It consists mainly of a microfocus X-ray tube, polycapillary optics, receiving slits, a silicon drift diode (SDD) X-ray detector integrated with single/multi-channel pulse analyzer, independently rotating θ-θ goniometer, high precision XYZ sample stage, computer programs developed by LabVIEW codes, etc. The main interface of the program has micro-X-ray diffraction analysis mode and micro energy dispersive X-ray fluorescence analysis mode. In addition, the monochromatization of X-ray, the angular resolution and the accuracy of the results of μ-Hawk are discussed. In order to demonstrate the feasibility of the instrument, the phase of micro area in the middle of the first stroke on the Chinese character “Jiao” from a 5-Jiao coin (Chinese currency) is measured by the μ-Hawk, and the phase of a copper wire 140 μm in diameter is also detected by it. After that, the phase of 1.0 mm × 0.6 mm area on the welding joint of the motherboard from an iPhone is two-dimensionally scanned by μ-Hawk. The θ-θ scanning is performed at each detected point inside the two-dimensional area. Four motors drive the X and Y axis of the sample stage as well as the θ1 and θ2 axis of the goniometer to accomplish the above functions. The results show that the micro energy dispersive X-ray fluorescence analysis mode of μ-Hawk can provide elementary reference information for the analysis of phase structure. Compared with conventional X-ray diffractometer, the μ-Hawk can detect the same diffraction peaks on the coin with lower background. Furthermore, the accurate diffraction peaks can be measured with a lower power and shorter time. The measured results can better reflect the true phase structure of the micro area. Six diffraction peaks and their phases can be clearly identified from the diffraction pattern of the copper wire. For the welding joint, the phase mapping of SnO2 (3 1 2) is acquired through data processing. Therefore, the μ-Hawk can adapt to the micro-X-ray diffraction analysis of small samples or micro areas of samples as well as the two-dimensional scanning analysis of phase mapping. The μ-Hawk exhibits the unique advantages of accomplishing accurate micro-X-ray diffraction analysis, convenient software, low working power, time saving, and small in size. It indicates a wide application prospect in the fields of materials, geosciences and heritage protection.-
Keywords:
- micro-X-ray diffractometer /
- polycapillary X-ray optics /
- micro-X-ray diffraction /
- micro energy dispersive X-ray fluorescence
[1] Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114Google Scholar
[2] Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng. B 206 69Google Scholar
[3] Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16Google Scholar
[4] Wang W Q, Ji L, Li H X, Liu X H, Zhou H D, Chen J M 2019 Chin. Phys. B 28 036802Google Scholar
[5] Biberger J, Füßer H J, Klaus M, Genzel C 2017 Wear 376– 377 1502Google Scholar
[6] Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697Google Scholar
[7] Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143Google Scholar
[8] Shen Y Y, Zhang Y X, Qi T, Qiao Y, Jia Y X, Hei H J, He Z Y, Yu S W 2016 Chin. Phys. Lett. 33 088101
[9] Hampai D, Dabagov S B, Cappuccio G 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 264Google Scholar
[10] Duan Z M, Liu J, Jiang Q L, Pan Q L, Cheng L 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 442 13Google Scholar
[11] Berthold C, Bjeoumikhov A, Brügemann L 2009 Part. Part. Syst. Charact. 26 107Google Scholar
[12] Romano F P, Pappalardo L, Masini N, Pappalardo G, Rizzo F 2011 Microchem. J. 99 449Google Scholar
[13] Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar
[14] 段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar
Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar
[15] Wrobel P, Czyzycki M, Furman L, Kolasinski K, Lankosz M, Mrenca A, Samek L, Wegrzynek D 2012 Talanta 93 186Google Scholar
[16] Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1493Google Scholar
[17] Décobert J, Guillamet R, Mocuta C, Carbone G, Guerault H 2013 J. Cryst. Growth 370 154Google Scholar
[18] 江超华 2014 多晶X射线衍射技术与应用 (北京: 化学工业出版社) 第169页
Jiang C H 2014 The Technique and Application of Polycrystalline X-ray Diffraction (Beijing: Chemical Industry Press) p169 (in Chinese)
[19] 徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar
Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar
[20] Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar
[21] Baated A, Hamasaki K, Kim S S, Kim K S, Suganuma K 2011 J. Electron. Mater. 40 2278Google Scholar
[22] Zhou W, Mahato D N, Macdonald C A 2010 Thin Solid Films 518 5047Google Scholar
-
图 5 在接收狭缝宽度为0.1 mm, 样品和探测器之间不同距离条件下测得Si (4 0 0)衍射峰的(a)高斯拟合峰和(b)数据散点图; 在样品和探测器之间距离为70 mm, 不同接收狭缝宽度条件下测得Si (4 0 0)衍射峰的(c)高斯拟合峰和(d)数据散点图
Fig. 5. (a) Gaussian fitting peak and (b) data scatter diagram of measured Si (4 0 0) diffraction peak when the receiving slit size is 0.1 mm, and the distances between the sample and the detector are varied; (c) gaussian fitting peak and (d) data scatter diagram of measured Si (4 0 0) diffraction peak when the distance between the sample and the detector is 70 mm, receiving slit sizes are varied.
表 1 测定衍射仪精确度的参考数据与不同角度位置的|Δd/d|
Table 1. Reference data for the determination of diffractometer accuracy and|Δd/d| at different angles.
Reference data Measured data|Δd/d| PDF 2θ/(°) d/nm (h k l) SiO2 (JCPDS 52-0784) 18.0510 0.4910 (0 0 3) 0.0111 Si (JCPDS 27-1402) 69.1300 0.1358 (4 0 0) 0.0003 CuO (JCPDS 48-1548) 113.4850 0.0921 (1 1 5) 0.2596 表 2 两种衍射仪的实验条件
Table 2. Measurement conditions of two diffractometers.
Item μ-Hawk X-pert-pro-MPD Anode material Cu Cu XRD monochromator Ni filter Ni filter Focal size/mm 0.115 × 0.115 1 × 10 HV/kV 30 40 Current/mA 0.5 40 2θ/(°) 10—120 10—90 Step size/(°) 0.1 0.03 Step time/s 11 20 -
[1] Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114Google Scholar
[2] Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng. B 206 69Google Scholar
[3] Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16Google Scholar
[4] Wang W Q, Ji L, Li H X, Liu X H, Zhou H D, Chen J M 2019 Chin. Phys. B 28 036802Google Scholar
[5] Biberger J, Füßer H J, Klaus M, Genzel C 2017 Wear 376– 377 1502Google Scholar
[6] Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697Google Scholar
[7] Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143Google Scholar
[8] Shen Y Y, Zhang Y X, Qi T, Qiao Y, Jia Y X, Hei H J, He Z Y, Yu S W 2016 Chin. Phys. Lett. 33 088101
[9] Hampai D, Dabagov S B, Cappuccio G 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 264Google Scholar
[10] Duan Z M, Liu J, Jiang Q L, Pan Q L, Cheng L 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 442 13Google Scholar
[11] Berthold C, Bjeoumikhov A, Brügemann L 2009 Part. Part. Syst. Charact. 26 107Google Scholar
[12] Romano F P, Pappalardo L, Masini N, Pappalardo G, Rizzo F 2011 Microchem. J. 99 449Google Scholar
[13] Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar
[14] 段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar
Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar
[15] Wrobel P, Czyzycki M, Furman L, Kolasinski K, Lankosz M, Mrenca A, Samek L, Wegrzynek D 2012 Talanta 93 186Google Scholar
[16] Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res. Sect. B 269 1493Google Scholar
[17] Décobert J, Guillamet R, Mocuta C, Carbone G, Guerault H 2013 J. Cryst. Growth 370 154Google Scholar
[18] 江超华 2014 多晶X射线衍射技术与应用 (北京: 化学工业出版社) 第169页
Jiang C H 2014 The Technique and Application of Polycrystalline X-ray Diffraction (Beijing: Chemical Industry Press) p169 (in Chinese)
[19] 徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar
Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar
[20] Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar
[21] Baated A, Hamasaki K, Kim S S, Kim K S, Suganuma K 2011 J. Electron. Mater. 40 2278Google Scholar
[22] Zhou W, Mahato D N, Macdonald C A 2010 Thin Solid Films 518 5047Google Scholar
计量
- 文章访问数: 11764
- PDF下载量: 118
- 被引次数: 0