-
柱-孔汇聚结构(PHC)附近高功率脉冲电流的损失是脉冲功率技术领域的研究热点, 是研制下一代大型脉冲功率装置的技术瓶颈. 本文建立了单孔柱-孔汇聚结构的3维仿真模型, 采用粒子(PIC)仿真算法, 分别在阴极发射电子以及阴极等离子体等情况下, 计算了单孔柱-孔汇聚结构的电流传输特性, 首次在仿真过程中考虑了阴极负离子的运动对单孔PHC阴阳极间隙闭合的影响. 仿真结果表明阴极等离子体导致了阴阳极间距明显地缩短, 从而引起电流损失. 同时获得了阴极等离子体平均扩展速度为3.76 cm/μs. 更为重要的是, 当阴极等离子体中含有负离子时, 单孔柱-孔汇聚结构电流损失的现象更为显著. 同时获得了负离子平均漂移速度约为10 cm/μs. 仿真结果显示阴极负离子在PHC阴阳极间隙闭合过程中, 同样发挥了显著的作用, 是阴阳极间隙闭合的重要因素之一. 研究结果有助于深入理解高功率PHC电流损失的物理机理, 也可为高功率PHC的设计提供重要理论基础.The post-hole convolutes (PHCs) are used in pulsed high-power generators to add the output currents of the magnetically insulated transmission lines (MITLs) and deliver the combined current to a single MITL. Then the single MITL delivers the combined current to the load. Magnetic insulation of electron flow is lost near the post-hole convolute (PHC) in the high-power generator. Although cathode plasma and anode ions are widely considered as the factors of the magnetic insulation collapse, there are some other factors that are needed to study. In this paper, the cathode negative ions are considered in the PIC simulation of a single-hole PHC. In this work, we examine the evolution and dynamics of the negative ions in the PHC. The simulation results demonstrate that there are no current losses while the cathode emits only electrons, little current losses (10 kA out of a total current of 900 kA) while the cathode emits plasma including electrons and ions, and obvious current losses (20 kA out of a total current of 900 kA) while the cathode emits plasma including the electrons, ions and negative ions. The results also indicate that the velocity of the negative ions is about 10 cm/μs, larger than that of the cathode plasma including the electrons and the ions. All results suggest that the cathode negative ions can play an important role in the magnetic insulation collapse, and should be considered carefully in experiment.
-
Keywords:
- magnetic insulation /
- post-hole convolute /
- negative ions /
- plasma
[1] Rose D V, Welch D R, Madrid E A, Miller C L, Clark R E, Stygar W A, Savage M E, Rochau G A, Bailey J E, Nash T J, Sceiford M E, Struve K W 2010 Phys. Rev. Spec. Top. Accel. Beams 13 010402Google Scholar
[2] Mcbride R D, Jennings C A, Vesey R A, Rochau G A, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. Spec. Top. Accel. Beams 13 120401Google Scholar
[3] 邹文康, 郭帆, 王贵林, 陈林, 卫兵, 宋盛义 2015 高电压技术 41 1844
Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Voltage Engineering 41 1844
[4] Stygar W A, Cuneo M E, Headley D I, Ives H C, Leeper R J, Mazarakis M G, Olson C L, Porter J L, Wagoner T C, Woodworth J R 2007 Phys. Rev. Spec. Top. Accel. Beams 10 030401Google Scholar
[5] Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401Google Scholar
[6] Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar
[7] Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Spec. Top. Accel. Beams 20 010401Google Scholar
[8] 廖臣, 刘大刚, 刘盛刚 2009 物理学报 58 6709Google Scholar
Liao C, Liu D G, Liu S G 2009 Acta Phys. Sin. 58 6709Google Scholar
[9] Rose D V, Welch D R, Hughes T P, Clark R E, Stygar W A 2008 Phy. Rev. Spec. Top. Accel. Beams 11 060401Google Scholar
[10] Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B 2013 Phys. Rev. Spec. Top. Accel. Beams 16 120401Google Scholar
[11] Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B 2015 Phys. Rev. Spec. Top. Accel. Beams 18 030402Google Scholar
[12] Pointon T D, Stygar W A, Spielman R B, Ives H C, Struve K W 2001 Phys. Plasmas 8 4534Google Scholar
[13] Oliver B V, Ottinger P F, Genoni T C, Schumer J W, Strasburg S, Swanekamp S B, Cooperstein G 2004 Phys. Plasmas 11 3976Google Scholar
[14] Ottinger P F, Schumer J W 2006 Phys. Plasmas 13 063109Google Scholar
[15] 刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛刚 2010 物理学报 59 1643Google Scholar
Liu L Q, Meng L, Deng J J, Song S Y, Zou W K, Liu D G, Liu S G 2010 Acta Phys. Sin. 59 1643Google Scholar
[16] 张鹏飞, 李永东, 杨海亮, 邱爱慈, 刘纯亮, 王洪广, 郭帆, 苏兆锋, 孙剑锋, 孙江, 高屹 2011 强激光与粒子束 23 2239
Zhang P F, Li Y D, Yang H L, Qiu A C, Liu C L, Wang H G, Guo F, Su Z F, Sun J F, Sun J, Gao Y 2011 High Power Laser and Particle Beams 23 2239
[17] 吴撼宇, 曾正中, 丛培天, 张信军 2011 强激光与粒子束 23 845
Wu H Y, Zeng Z Z, Cong P T, Zhang X J 2011 High Power Laser and Particle Beams 23 845
[18] 郭帆, 邹文康, 陈林 2014 强激光与粒子束 26 045010
Guo F, Zou W K, Chen L 2014 High Power Laser and Particle Beams 26 045010
[19] 魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈 2017 物理学报 66 038402Google Scholar
Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402Google Scholar
[20] Vandevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar
[21] Swegle J 1983 J. Appl. Phys. 54 3534Google Scholar
[22] Zhu D N, Zhang J, Zhong H H, Gao J M, Bai Z 2018 Chin. Phys. B 27 020501Google Scholar
-
图 1 仿真模型的结构示意图 (a) 单孔PHC及三板传输线剖面图(单位: mm); (b) 单孔PHC及三板传输线俯视图(单位: mm)
Fig. 1. The configuration of the simulated model: (a) The cutaway drawing of the single-hole PHC and the tri-plated transmission line (units: mm); (b) the vertical drawing of the single-hole PHC and the tri-plated transmission line (units: mm).
图 5 柱-孔附近等离子体随时间运动分布的二维图, 紫色代表电子, 黄色代表质子(横坐标和纵坐标单位: m) (a) t = 15.8535 ns; (b) t = 23.7802 ns; (c) t = 31.7069 ns; (d) t = 55.4871 ns; (e) t = 71.3401 ns; (f) t = 103.0475 ns
Fig. 5. Particles distribution near the convolute of the plasmas motion, the purple is electrons, the yellow is ions (unit of the Y/Z-axis: m): (a) t = 15.8535 ns; (b) t = 23.7802 ns; (c) t = 31.7069 ns; (d) t = 55.4871 ns; (e) t = 71.3401 ns; (f) t = 103.0475 ns.
图 9 柱-孔附近等离子体随时间运动分布的二维图(横坐标和纵坐标单位: m) (a) t = 15.4005 ns; (b) t = 21.7419 ns; (c) t = 34.4247 ns; (d) t = 59.7902 ns; (e) t = 97.8381 ns; (f) t = 108.6064 ns
Fig. 9. Particles distribution near the convolute of the plasmas motion (unit of the Y/Z-axis: m): (a) t = 15.4005 ns; (b) t = 21.7419 ns; (c) t = 34.4247 ns; (d) t = 59.7902 ns; (e) t = 97.8381 ns; (f) t = 108.6064 ns.
-
[1] Rose D V, Welch D R, Madrid E A, Miller C L, Clark R E, Stygar W A, Savage M E, Rochau G A, Bailey J E, Nash T J, Sceiford M E, Struve K W 2010 Phys. Rev. Spec. Top. Accel. Beams 13 010402Google Scholar
[2] Mcbride R D, Jennings C A, Vesey R A, Rochau G A, Savage M E, Stygar W A, Cuneo M E, Sinars D B, Jones M, LeChien K R, Lopez M R, Moore J K, Struve K W, Wagoner T C, Waisman E M 2010 Phys. Rev. Spec. Top. Accel. Beams 13 120401Google Scholar
[3] 邹文康, 郭帆, 王贵林, 陈林, 卫兵, 宋盛义 2015 高电压技术 41 1844
Zou W K, Guo F, Wang G L, Chen L, Wei B, Song S Y 2015 High Voltage Engineering 41 1844
[4] Stygar W A, Cuneo M E, Headley D I, Ives H C, Leeper R J, Mazarakis M G, Olson C L, Porter J L, Wagoner T C, Woodworth J R 2007 Phys. Rev. Spec. Top. Accel. Beams 10 030401Google Scholar
[5] Stygar W A, Awe T J, Bailey J E, et al. 2015 Phys. Rev. Spec. Top. Accel. Beams 18 110401Google Scholar
[6] Jennings C A, Chittenden J P, Cuneo M E, Stygar W A, Ampleford D J, Waisman E M, Jones M, Savage M E, LeChien K R, Wagoner T C 2010 IEEE Trans. Plasma Sci. 38 529Google Scholar
[7] Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, Maron Y 2017 Phys. Rev. Spec. Top. Accel. Beams 20 010401Google Scholar
[8] 廖臣, 刘大刚, 刘盛刚 2009 物理学报 58 6709Google Scholar
Liao C, Liu D G, Liu S G 2009 Acta Phys. Sin. 58 6709Google Scholar
[9] Rose D V, Welch D R, Hughes T P, Clark R E, Stygar W A 2008 Phy. Rev. Spec. Top. Accel. Beams 11 060401Google Scholar
[10] Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B 2013 Phys. Rev. Spec. Top. Accel. Beams 16 120401Google Scholar
[11] Rose D V, Madrid E A, Welch D R, Clark R E, Mostrom C B 2015 Phys. Rev. Spec. Top. Accel. Beams 18 030402Google Scholar
[12] Pointon T D, Stygar W A, Spielman R B, Ives H C, Struve K W 2001 Phys. Plasmas 8 4534Google Scholar
[13] Oliver B V, Ottinger P F, Genoni T C, Schumer J W, Strasburg S, Swanekamp S B, Cooperstein G 2004 Phys. Plasmas 11 3976Google Scholar
[14] Ottinger P F, Schumer J W 2006 Phys. Plasmas 13 063109Google Scholar
[15] 刘腊群, 蒙林, 邓建军, 宋盛义, 邹文康, 刘大刚, 刘盛刚 2010 物理学报 59 1643Google Scholar
Liu L Q, Meng L, Deng J J, Song S Y, Zou W K, Liu D G, Liu S G 2010 Acta Phys. Sin. 59 1643Google Scholar
[16] 张鹏飞, 李永东, 杨海亮, 邱爱慈, 刘纯亮, 王洪广, 郭帆, 苏兆锋, 孙剑锋, 孙江, 高屹 2011 强激光与粒子束 23 2239
Zhang P F, Li Y D, Yang H L, Qiu A C, Liu C L, Wang H G, Guo F, Su Z F, Sun J F, Sun J, Gao Y 2011 High Power Laser and Particle Beams 23 2239
[17] 吴撼宇, 曾正中, 丛培天, 张信军 2011 强激光与粒子束 23 845
Wu H Y, Zeng Z Z, Cong P T, Zhang X J 2011 High Power Laser and Particle Beams 23 845
[18] 郭帆, 邹文康, 陈林 2014 强激光与粒子束 26 045010
Guo F, Zou W K, Chen L 2014 High Power Laser and Particle Beams 26 045010
[19] 魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈 2017 物理学报 66 038402Google Scholar
Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402Google Scholar
[20] Vandevender J P, Stinnett R W, Anderson R J 1981 Appl. Phys. Lett. 38 229Google Scholar
[21] Swegle J 1983 J. Appl. Phys. 54 3534Google Scholar
[22] Zhu D N, Zhang J, Zhong H H, Gao J M, Bai Z 2018 Chin. Phys. B 27 020501Google Scholar
计量
- 文章访问数: 6510
- PDF下载量: 38
- 被引次数: 0