搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于目标场点法和流函数的磁共振有源匀场线圈设计方法

黄清明 陈珊珊 张建青 杨洋 郑刚

引用本文:
Citation:

基于目标场点法和流函数的磁共振有源匀场线圈设计方法

黄清明, 陈珊珊, 张建青, 杨洋, 郑刚

Method of designing magnetic resonance active shimming coil based on target field point method and flow function

Huang Qing-Ming, Chen Shan-Shan, Zhang Jian-Qing, Yang Yang, Zheng Gang
PDF
HTML
导出引用
  • 磁场均匀性是磁共振系统的重要参数, 提高磁场均匀性有助于磁共振时域信号的检测和磁共振频域信号分辨率的改善. 基于有源匀场连续电流密度分布的思想, 采用目标场点法和流函数结合的方法设计匀场线圈, 即由毕奥-萨伐尔定律确定磁场分布与电流密度的关系, 约束线圈半径和设置约束点后, 根据目标场分布逆向求解线圈平面的电流密度分布, 再用流函数将电流密度分布离散化处理, 得到匀场线圈的绕线位置分布. 根据电磁仿真计算结果制作包含一阶与二阶匀场线圈应用于磁共振分析仪, 实验验证表明该匀场线圈能有效地改善永磁体核磁共振系统磁场的均匀性.
    Uniformity of magnetic field is an important parameter of magnetic resonance system. Improving the uniformity of magnetic field is helpful for detecting the magnetic resonance time domain signal and improving the resolution of magnetic resonance frequency domain signal. Based on the idea of continuous current density distribution in an active shimming field, the shimming coil is designed by combining the target field point method with the current function method. That is to say, the relationship between magnetic field distribution and current density is determined by Biot-Savart law. After confining the coil radius and setting the constraint point, the current density distribution on the coil plane is inversely solved according to the target field distribution. Then the current density distribution is discretized by the current function, and the winding position distribution of the uniform field coil is obtained. According to the results of electromagnetic simulation, the first-order and second-order shimming coils are fabricated and applied to the magnetic resonance analyzer. The experimental results show that the shimming coils can effectively improve the magnetic field uniformity of the permanent magnet in nuclear magnetic resonance (NMR) system.
      通信作者: 郑刚, qmhuang-paper@163.com
    • 基金项目: 国家重大科学仪器设备开发专项(批准号: 2013YQ170463)、上海市高校“高峰高原”学科Ⅱ类高原学科建设项目、上海高校教师专业发展工程青年骨干教师产学践习项目和上海健康医学院医教协同(产教融合)应用型人才示范项目资助的课题
      Corresponding author: Zheng Gang, qmhuang-paper@163.com
    • Funds: Project supported by the National Grant Project for the Development of Major Scientific Instruments and Equipment(Grant No. 2013yq170463), the Shanghai Municipal Education Commission (Class II Plateau Disciplinary Construction Program for Medical Technology of SUMHS, 2018-2020), China, the Professional Development Project for College Teachers in Shanghai, China, and the Application-oriented Talents Demonstration Project of Medical-Educational Synergy (Industry-Education Integration) of SUMHS, China
    [1]

    白烨, 王秋良, 余运佳 2004 中国电机工程学报 24 132Google Scholar

    Bai Y, Wang Q L, Yu Y J 2004 Proc. CSEE 24 132Google Scholar

    [2]

    Hu G, Ni Z, Wang Q 2014 IEEE Trans. Appl. Supercond. 24 1

    [3]

    Kong X 2016 J. Magn. Reson. 263 122Google Scholar

    [4]

    丁守谦 1985 CN 1061486 A

    Ding S Q 1985 CN 1061486 A

    [5]

    Turner R 1986 J. Phys. D: Appl. Phys. 19 L147Google Scholar

    [6]

    Moon S, Hatano M 2000 J. Phys. 88 4994

    [7]

    Forbes L K, Crozier S 2002 J. Phys. D: Appl. Phys. 35 839Google Scholar

    [8]

    Harvey P R, Smink J S, Peeren G N, Jacob A D 2004 US Patent 7 412 278

    [9]

    李霞, 谢德馨 2005 电工理论与新技术学术年会论文集

    Li X, Xie D X 2005 Annual Conference Papers on Electrical Theory and New Technologies

    [10]

    Liu W, Tang X, Zu D 2010 Concepts Magn. Reson. Part B 37B 29Google Scholar

    [11]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701Google Scholar

    [12]

    Poole M S 2007 Ph. D. Dissertation (Nottingham: The University of Nottingham)

    [13]

    Liu W T, Zu D L, Tang X 2007 J. Phys. D: Appl. Phys. 40 4418Google Scholar

    [14]

    Forbes L K, Crozier S 2003 J. Phys. D: Appl. Phys. 36 68Google Scholar

    [15]

    Chen S S, Xia T, Miao Z Y 2017 Meas. Sci. Technol. 28 055902Google Scholar

    [16]

    Zhang R, Xu J, Fu Y 2011 Meas. Sci. Technol. 22 25505

    [17]

    You X F, Hu L L, Yang W H 2010 IEEE Trans. Appl. Supercond. 20 1045Google Scholar

    [18]

    Tian X, Miao Z Y, Chen S S 2017 PLoS One 12 e0181552Google Scholar

    [19]

    Xiao C, Cai C, Chen Z 2008 IEEE International Symposium on IT in Medicine and Education

    [20]

    李杰森, 陈应书 1983 分析仪器 27

    Li J S, Chen Y S 1983 Anal. Instrum. 27

    [21]

    Forbes L K, Brideson M A, Crozier S 2005 IEEE Trans. Magn. 41 2134Google Scholar

    [22]

    Li C L, Guo J, Zhang P 2014 Chin. Phys. Express: Engl. Ed. 31 184

    [23]

    汪红志, 蔡筱云, 王鹤 2011 物理学报 60 090204

    Wang H Z, Cai X Y, Wang H 2011 Acta Phys. Sin. 60 090204

    [24]

    周玉淑, 曹洁 2010 物理学报 59 2898Google Scholar

    Zhou Y S, Cao J 2010 Acta Phys. Sin. 59 2898Google Scholar

    [25]

    沈杰, 宁瑞鹏, 刘颖 2006 物理学报 55 3060Google Scholar

    Shen J, Ning R P, Liu Y 2006 Acta Phys. Sin. 55 3060Google Scholar

    [26]

    Pan H, Jia F, Liu Z Y 2018 Chin. Phys. B 27 50201Google Scholar

  • 图 1  目标场及流函数结合的有源匀场线圈设计算法流程

    Fig. 1.  Design algorithm flow of active shimming coil based on target field and flow function.

    图 2  各阶次线圈的流函数和绕线分布 (a) X, Y线圈的流函数和绕线分布; (b) Z线圈的流函数和绕线分布; (c) XY线圈的流函数和绕线分布; (d) XZ, YZ线圈的流函数和绕线分布; (e) Z2线圈的流函数和绕线分布

    Fig. 2.  Flow function distribution and coil winding of each order coils: (a) Flow function distribution and coil winding of X and Y coil; (b) flow function distribution and coil winding of Z coil; (c) flow function distribution and coil winding of XY coil; (d) flow function distribution and coil winding of XZ and YZ coil; (e) flow function distribution and coil winding of Z2 coil

    图 3  采用有源匀场线圈匀场前后磁共振检测的FID信号和频谱的FWHM (a)有源匀场线圈应用于磁共振系统的实验平台; (b)匀场前FID信号; (c)匀场前频谱的FWHM; (d)二阶匀场线圈匀场后的FID信号; (e)二阶匀场线圈匀场后频谱的FWHM

    Fig. 3.  FID signal detected by magnetic resonance before and after shimming with active shimming coil: (a) Experimental platform of active shimming coil applied to magnetic resonance system; (b) FID signal before shimming; (c) FWHM of the pre-shimming spectrum; (d) FID signal after the second-order shimming coil shimming; (e) FWHM of after the second-order shimming coil shimming

    表 1  ${B_z}$在直角坐标系和球坐标系下的分量表示

    Table 1.  Component representation of ${B_z}$ in Cartesian and spherical coordinates.

    阶次次序分量系数球坐标系直角坐标系
    ($r,\;\,\theta,\;\,\phi $)($x,\;\,y,\;\,z$)
    00Z0A0111
    10Z2A02rcos⁡θz
    11X3A12rsin⁡θ cosϕx
    11Y3B12rsin⁡θ sinϕy
    20Z23A03r2 (3cos2θ–1)/2z2–(x2+y2)/2
    21XZ12A13r2 cos ⁡θ sinθcosϕxz
    21YZ12B13${r^2}\cos \theta {\rm{sin}}\theta {\rm{sin}}\phi $yz
    22X2Y215A23${r^2}{\rm{si}}{{\rm{n}}^2}\theta {\rm{cos}}2\phi $x2y2
    222XY15B23${r^2}{\rm{si}}{{\rm{n}}^2}\theta {\rm{sin}}2\phi $2xy
    30Z34A04${r^3}\cos \theta (5{\cos ^2}\theta - 3)/2$$z[{z^2} - 3\left( {{x^2} + {y^2}} \right)/2]$
    31XZ215A14${r^3}\sin \theta \cos \phi (5{\cos ^2}\theta - 1)/2$$x[4{z^2} - \left( {{x^2} + {y^2}} \right)]$
    31YZ215B14${r^3}\sin \theta \sin \phi (5{\cos ^2}\theta - 1)/2$$y[4{z^2} - \left( {{x^2} + {y^2}} \right)]$
    32Z(X2Y2)90A24${r^3}{\rm{cos}}\theta {\rm{si}}{{\rm{n}}^2}\theta {\rm{cos}}2\phi $z(x2y2)
    32XYZ90B24${r^3}{\rm{cos}}\theta {\rm{si}}{{\rm{n}}^2}\theta {\rm{sin}}2\phi $2xyz
    33X3105A34${r^3}{\rm{si}}{{\rm{n}}^3}\theta {\rm{cos}}3\phi $${x^3} - 3x{y^2}$
    33Y3105B34${r^3}{\rm{si}}{{\rm{n}}^3}\theta {\rm{sin}}3\phi $$3{x^2}y - {y^3}$
    40Z45A05/8${r^4}(35{\cos ^4}\theta - 30{\rm{co}}{{\rm{s}}^2}\theta + 3)$$8{z^4} - 24{z^2}\left( {{x^2} + {y^2}} \right) + 3{\left( {{x^2} + {y^2}} \right)^2}$
    … …
    下载: 导出CSV

    表 2  有源匀场线圈匀场效果评价技术指标对比

    Table 2.  Comparison of technical indicators for evaluating shimming effect of active shimming coil.

    有源匀场线圈FID信号(积分区域)频谱半高宽/Hz磁场均匀性/ppm
    匀场前127068333819.17
    一阶线圈匀场39373259818.23
    二阶线圈匀场4866520481.98
    下载: 导出CSV
  • [1]

    白烨, 王秋良, 余运佳 2004 中国电机工程学报 24 132Google Scholar

    Bai Y, Wang Q L, Yu Y J 2004 Proc. CSEE 24 132Google Scholar

    [2]

    Hu G, Ni Z, Wang Q 2014 IEEE Trans. Appl. Supercond. 24 1

    [3]

    Kong X 2016 J. Magn. Reson. 263 122Google Scholar

    [4]

    丁守谦 1985 CN 1061486 A

    Ding S Q 1985 CN 1061486 A

    [5]

    Turner R 1986 J. Phys. D: Appl. Phys. 19 L147Google Scholar

    [6]

    Moon S, Hatano M 2000 J. Phys. 88 4994

    [7]

    Forbes L K, Crozier S 2002 J. Phys. D: Appl. Phys. 35 839Google Scholar

    [8]

    Harvey P R, Smink J S, Peeren G N, Jacob A D 2004 US Patent 7 412 278

    [9]

    李霞, 谢德馨 2005 电工理论与新技术学术年会论文集

    Li X, Xie D X 2005 Annual Conference Papers on Electrical Theory and New Technologies

    [10]

    Liu W, Tang X, Zu D 2010 Concepts Magn. Reson. Part B 37B 29Google Scholar

    [11]

    Liu W T, Zu D L, Tang X 2010 Chin. Phys. B 19 018701Google Scholar

    [12]

    Poole M S 2007 Ph. D. Dissertation (Nottingham: The University of Nottingham)

    [13]

    Liu W T, Zu D L, Tang X 2007 J. Phys. D: Appl. Phys. 40 4418Google Scholar

    [14]

    Forbes L K, Crozier S 2003 J. Phys. D: Appl. Phys. 36 68Google Scholar

    [15]

    Chen S S, Xia T, Miao Z Y 2017 Meas. Sci. Technol. 28 055902Google Scholar

    [16]

    Zhang R, Xu J, Fu Y 2011 Meas. Sci. Technol. 22 25505

    [17]

    You X F, Hu L L, Yang W H 2010 IEEE Trans. Appl. Supercond. 20 1045Google Scholar

    [18]

    Tian X, Miao Z Y, Chen S S 2017 PLoS One 12 e0181552Google Scholar

    [19]

    Xiao C, Cai C, Chen Z 2008 IEEE International Symposium on IT in Medicine and Education

    [20]

    李杰森, 陈应书 1983 分析仪器 27

    Li J S, Chen Y S 1983 Anal. Instrum. 27

    [21]

    Forbes L K, Brideson M A, Crozier S 2005 IEEE Trans. Magn. 41 2134Google Scholar

    [22]

    Li C L, Guo J, Zhang P 2014 Chin. Phys. Express: Engl. Ed. 31 184

    [23]

    汪红志, 蔡筱云, 王鹤 2011 物理学报 60 090204

    Wang H Z, Cai X Y, Wang H 2011 Acta Phys. Sin. 60 090204

    [24]

    周玉淑, 曹洁 2010 物理学报 59 2898Google Scholar

    Zhou Y S, Cao J 2010 Acta Phys. Sin. 59 2898Google Scholar

    [25]

    沈杰, 宁瑞鹏, 刘颖 2006 物理学报 55 3060Google Scholar

    Shen J, Ning R P, Liu Y 2006 Acta Phys. Sin. 55 3060Google Scholar

    [26]

    Pan H, Jia F, Liu Z Y 2018 Chin. Phys. B 27 50201Google Scholar

  • [1] 崔智高, 王华, 李艾华, 王涛, 李辉. 动态背景下基于光流场分析的运动目标检测算法. 物理学报, 2017, 66(8): 084203. doi: 10.7498/aps.66.084203
    [2] 潘辉, 王亮, 王强龙, 陈利民, 贾峰, 刘震宇. 基于Pareto优化理论的多目标超椭梯度线圈设计. 物理学报, 2017, 66(9): 098301. doi: 10.7498/aps.66.098301
    [3] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法. 物理学报, 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [4] 马鸽, 胡跃明, 高红霞, 李致富, 郭琪伟. 基于物理总能量目标函数的稀疏重建模型. 物理学报, 2015, 64(20): 204202. doi: 10.7498/aps.64.204202
    [5] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [6] 王亮, 曹英晖, 贾峰, 刘震宇. 超椭圆柱面梯度线圈设计. 物理学报, 2014, 63(23): 238301. doi: 10.7498/aps.63.238301
    [7] 范孟豹, 尹亚丹, 曹丙花. 基于截断区域特征函数展开法的金属管材电涡流检测线圈阻抗解析模型. 物理学报, 2012, 61(8): 088105. doi: 10.7498/aps.61.088105
    [8] 戎宜生, 刘伟强. 过渡流区钝锥体Linear桥函数调节参数研究. 物理学报, 2012, 61(4): 040508. doi: 10.7498/aps.61.040508
    [9] 曹斌, 林鑫, 黄卫东. 远场来流条件下过冷熔体球晶生长的稳定性. 物理学报, 2011, 60(6): 066403. doi: 10.7498/aps.60.066403
    [10] 袁艳, 孙成明, 张修宝. 空间目标表面材料光谱双向反射分布函数测量与建模. 物理学报, 2010, 59(3): 2097-2103. doi: 10.7498/aps.59.2097
    [11] 沈 杰, 宁瑞鹏, 刘 颖, 李鲠颖. 一种减小梯度线圈产生的涡流的方法. 物理学报, 2006, 55(6): 3060-3066. doi: 10.7498/aps.55.3060
    [12] 张智明. 利用微脉塞重构腔场的Wigner函数. 物理学报, 2004, 53(1): 70-74. doi: 10.7498/aps.53.70
    [13] 方锦清, 高远, 翁甲强, 罗晓曙, 陈关荣. 小波函数反馈法实现对强流束晕混沌的有效控制. 物理学报, 2001, 50(3): 435-439. doi: 10.7498/aps.50.435
    [14] 申金媛, 刘, 常胜江, 贾 佳, 张文伟, 张延, 母国光. 基于径向基函数的多目标旋转不变分类及其光电实现. 物理学报, 1998, 47(12): 1968-1975. doi: 10.7498/aps.47.1968
    [15] 罗正明. 求解流函数方程Cauchy问题的一种迭代投影方法. 物理学报, 1987, 36(2): 217-223. doi: 10.7498/aps.36.217
    [16] 西门纪业, 晏继文, 黄旭. 存在球差和失焦下电子光学传递函数和脉冲响应函数. 物理学报, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
    [17] 詹达三. 完全相干场的二阶关联函数的分解性质. 物理学报, 1979, 28(1): 117-120. doi: 10.7498/aps.28.117
    [18] 侯伯宇. Green函数及δ函数的三方向球函数展开式. 物理学报, 1964, 20(1): 11-18. doi: 10.7498/aps.20.11
    [19] 侯伯宇. 局部坐标系中的旋量球函数及算子. 物理学报, 1963, 19(6): 341-359. doi: 10.7498/aps.19.341
    [20] 黄祖洽. 无限长黑圆柱情形下密恩(Milne)问题的近似解(球谐函数展开法). 物理学报, 1957, 13(4): 257-270. doi: 10.7498/aps.13.257
计量
  • 文章访问数:  10409
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-24
  • 修回日期:  2019-06-22
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回