搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线聚焦望远镜光学设计

强鹏飞 盛立志 李林森 闫永清 刘哲 周晓红

引用本文:
Citation:

X射线聚焦望远镜光学设计

强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红

Optical design of X-ray focusing telescope

Qiang Peng-Fei, Sheng Li-Zhi, Li Lin-Sen, Yan Yong-Qing, Liu Zhe, Zhou Xiao-Hong
PDF
HTML
导出引用
  • X射线聚焦望远镜是X射线空间观测的重要设备, 针对X射线聚焦望远镜光学设计工作, 采用掠入射原理对X射线进行聚焦, 利用蒙特卡罗算法仿真镜片面型和粗糙度对角分辨率影响, 并确定了不同分辨率水平对镜片面型的不同需求; 对X射线聚焦望远镜有效面积进行分析, 并确定了膜层结构、层数与有效面积的关系, 最终完成了焦距5.25 m、嵌套层数45层, 有效面积为842和563 cm2@6 keV的X射线聚焦望远镜设计.
    X-ray focusing telescope is one of the most important equipment for X-ray space observation, which is designed based on the grazing incidence principle. The purpose of x-ray observation is to detect the black holes of various sizes in outer space, and the data obtained by X-ray telescope conduces to investigating the basic physical law under the condition of extreme gravity and magnetic field, In this article, multi-layer telescope is designed to satisfy the demand for enhanced X-ray timing and polarimetry mission. in which the telescope is designed based on Wolter-I telescope. The Monte Carlo method and power spectral density are used when the relationship between mirror profile and roughness with angular resolution is investigated. We analyze the relationship between angular resolution and mirror profile, and the result shows that the higher mirror profile possesses higher angular resolution. When the root mean square(RMS) of mirror profile is 0.04 μm, PV is 0.2 μm and roughness is 0.4 nm, the mirror angular resolution is 6.3" and it will change to 30.6" when the RMS of mirror profile is 0.2 μm, PV is 1 μm and roughness is 0.4 nm. The angular resolution out of focus is also investigated in this article, and the more defocusing amount gives rise to the worse angular resolution because defocusing spot will be larger than that of focal plane. So the maximum defocusing amount of 5 mm is required when the focal plane detector is installed. The relationship between effective area with film structure and layers number is also investigated. The film with Au mixed with C has a higher reflectivity than the film with only Au, because the mixed film will generate an interference effect and enhance the intensity of reflecting X-ray. When the telescope layers increase, the effective area and telescope weight are both improved, the requirement for effective area of satellite can be satisfied when the number of nesting layers is 45. However, when the number of nesting layers further increase, the effective area will be improved with a low speed, but the weight of telescope will increase with a high speed. The field of view of this telescope is 16′, which is more than the required value of 12′. Finally, the X-ray focusing telescope with 5.25 m focal length, 45 nesting layers, effective area 842 cm2 at 2 keV, 563 cm2 at 6 keV is obtained.
      通信作者: 盛立志, lizhi_sheng@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61471357)和空间科学先导专项(批准号: XDA15020106-03)资助的课题.
      Corresponding author: Sheng Li-Zhi, lizhi_sheng@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471357) and Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020106-03).
    [1]

    Yuan W M, Zhang C, Chen Y. 2018 Sci. China: Phys. Mech. 48 3

    [2]

    Jeong S, Panasyuk M I, Reglero V 2018 Space Sci. Rev. 214 25Google Scholar

    [3]

    Zhang S N, Santangelo A, Feroci M 2019 Sci. China Phys. Mech 62 25

    [4]

    Zand J J M, Bozzo E, Qu J L 2019 Sci. China Phys. Mech. 62 029506Google Scholar

    [5]

    Camilo F, Scholz P, Serylak M 2018 Astrophys. J. 856 11Google Scholar

    [6]

    刘舵, 强鹏飞, 李林森, 苏桐, 盛立志, 刘永安, 赵宝升. 2016 物理学报 65 010703

    Liu D, Qiang P F, Li L S, Su T, Sheng L Z, Liu Y A, Zhao B S 2016 Acta Phys. Sin. 65 010703

    [7]

    Li L S, Qiang P F, Sheng L Z 2017 Chin. Phys. B 26 100703

    [8]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 物理学报 67 200701

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701

    [9]

    方海燕, 丛少鹏, 孙海峰, 李小平, 苏剑宇, 张力, 沈利荣 2019 物理学报 68 089701

    Fang H Y, Cong S P, Sun H F, Li X P, Su J Y, Zhanf L, Shen L R 2019 Acta Phys. Sin. 68 089701

    [10]

    Sheikh S I, Hanson J E, Graven P H 2011 Navigation 58 165Google Scholar

    [11]

    Wang Y, Zheng W, Sun S 2013 Adv. Space Res. 51 2394Google Scholar

    [12]

    Weisskopf M C, Brinkman B, Canizares C 2002 Publ. Astron. Soc. Pac. 114 1Google Scholar

    [13]

    Starling R L C, Wildy C, Wiersema K 2017 Mon. Not. R. Astron. Soc. 468 378Google Scholar

    [14]

    Devasia J, Paul B 2018 Astrophys. Astron. 39 7Google Scholar

    [15]

    Bamba A, Puehlhofer G, Acero F 2012 Astrophys. J. 761 80Google Scholar

    [16]

    Kelley R L, Nakazawa K 2018 J. Astron. Telesc. Inst. 4 1

    [17]

    Balsamo E, Gendreau K, Okajima T 2016 J. Astron. Telesc. Inst. 2 9

    [18]

    Rao K R 1999 Curr. Sci. India 77 1125

    [19]

    Tsujimoto M, Morihana K, Hayashi T 2018 Publ. Astron. Soc. Japan 70 14

    [20]

    Hagino K, Nakazawa K, Sato G 2018 J. Astron. Telesc. Inst. 4 15

    [21]

    Eckart M E, Adams J S, Boyce K R 2018 J. Astron. Telesc. Inst. 4 22

    [22]

    Keek L, Arzoumanian Z, Bult P 2018 Astrophys J Lett. 855 6Google Scholar

  • 图 1  X射线聚焦望远镜的光学原理

    Fig. 1.  Optical principle of X-ray focusing telescope.

    图 2  不同面型精度聚焦镜片的焦斑形状与能量包围函数 (a) RMS 0.04为 μm, PV为0.2 μm, 粗糙度为0.4 nm镜片的焦斑形状尺寸; (b) RMS为0.04 μm, PV为0.2 μm, 粗糙度为0.4 nm镜片的焦斑能量包围函数; (c) RMS为0.2 μm, PV为1 μm, 粗糙度为0.4 nm镜片的焦斑形状尺寸; (d) RMS为0.2 μm, PV为1 μm, 粗糙度为0.4 nm镜片的焦斑能量包围函数

    Fig. 2.  Focal points and energy encircle functions obtained by mirrors with different profile: (a) Focal point obtained by mirror with profile of RMS 0.04 μm, PV 0.2 μm, roughness 0.4 nm; (b) energy encircle functions obtained by mirror with profile of RMS 0.04 μm, PV 0.2 μm roughness 0.4 nm; (c) focal point obtained by mirror with profile of RMS 0.2 μm, PV 1 μm roughness 0.4 nm; (d) energy encircle functions obtained by mirror with profile of RMS 0.2 μm, PV 0.1 μm roughness 0.4 nm.

    图 3  X射线聚焦望远镜的角分辨率与离焦量的关系

    Fig. 3.  Relationship between angular resolution and defocus amount in focusing observatory.

    图 4  (a)膜层材料为Au的X射线聚焦望远镜反射率与不同掠入射角的关系; (b)膜层材料为Au加C复合膜的X射线聚焦望远镜反射率与不同掠入射角的关系

    Fig. 4.  (a) Relationship between reflectivity and degree of focusing mirrors with Au film; (b) relationship between reflectivity and degree of focusing mirrors with Au, C multi-layer film.

    图 5  X射线聚焦望远镜有效面积与偏轴角的关系

    Fig. 5.  Relationship between effective area and off axis in focusing observatory.

    图 6  (a) X射线聚焦望远镜有效面积与嵌套层数的关系; (b) X射线聚焦望远镜有效面积与镜片重量的关系

    Fig. 6.  (a) Relationship between and effective area and mirror layers in focusing observatory; (b) relationship between and effective area and mirror weight in focusing observatory

  • [1]

    Yuan W M, Zhang C, Chen Y. 2018 Sci. China: Phys. Mech. 48 3

    [2]

    Jeong S, Panasyuk M I, Reglero V 2018 Space Sci. Rev. 214 25Google Scholar

    [3]

    Zhang S N, Santangelo A, Feroci M 2019 Sci. China Phys. Mech 62 25

    [4]

    Zand J J M, Bozzo E, Qu J L 2019 Sci. China Phys. Mech. 62 029506Google Scholar

    [5]

    Camilo F, Scholz P, Serylak M 2018 Astrophys. J. 856 11Google Scholar

    [6]

    刘舵, 强鹏飞, 李林森, 苏桐, 盛立志, 刘永安, 赵宝升. 2016 物理学报 65 010703

    Liu D, Qiang P F, Li L S, Su T, Sheng L Z, Liu Y A, Zhao B S 2016 Acta Phys. Sin. 65 010703

    [7]

    Li L S, Qiang P F, Sheng L Z 2017 Chin. Phys. B 26 100703

    [8]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 物理学报 67 200701

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701

    [9]

    方海燕, 丛少鹏, 孙海峰, 李小平, 苏剑宇, 张力, 沈利荣 2019 物理学报 68 089701

    Fang H Y, Cong S P, Sun H F, Li X P, Su J Y, Zhanf L, Shen L R 2019 Acta Phys. Sin. 68 089701

    [10]

    Sheikh S I, Hanson J E, Graven P H 2011 Navigation 58 165Google Scholar

    [11]

    Wang Y, Zheng W, Sun S 2013 Adv. Space Res. 51 2394Google Scholar

    [12]

    Weisskopf M C, Brinkman B, Canizares C 2002 Publ. Astron. Soc. Pac. 114 1Google Scholar

    [13]

    Starling R L C, Wildy C, Wiersema K 2017 Mon. Not. R. Astron. Soc. 468 378Google Scholar

    [14]

    Devasia J, Paul B 2018 Astrophys. Astron. 39 7Google Scholar

    [15]

    Bamba A, Puehlhofer G, Acero F 2012 Astrophys. J. 761 80Google Scholar

    [16]

    Kelley R L, Nakazawa K 2018 J. Astron. Telesc. Inst. 4 1

    [17]

    Balsamo E, Gendreau K, Okajima T 2016 J. Astron. Telesc. Inst. 2 9

    [18]

    Rao K R 1999 Curr. Sci. India 77 1125

    [19]

    Tsujimoto M, Morihana K, Hayashi T 2018 Publ. Astron. Soc. Japan 70 14

    [20]

    Hagino K, Nakazawa K, Sato G 2018 J. Astron. Telesc. Inst. 4 15

    [21]

    Eckart M E, Adams J S, Boyce K R 2018 J. Astron. Telesc. Inst. 4 22

    [22]

    Keek L, Arzoumanian Z, Bult P 2018 Astrophys J Lett. 855 6Google Scholar

  • [1] 梅策香, 张小安, 周贤明, 梁昌慧, 曾利霞, 张艳宁, 杜树斌, 郭义盼, 杨治虎. 类氦C离子诱发不同金属厚靶原子的K-X射线. 物理学报, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [4] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [5] 周少彤, 任晓东, 黄显宾, 徐强. 一种用于Z箍缩实验的软X射线成像系统. 物理学报, 2021, 70(4): 045203. doi: 10.7498/aps.70.20200957
    [6] 李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升. 等离子体中X射线透过率分析及潜在通信应用研究. 物理学报, 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [7] 张瑶, 汤善治, 李明, 王立超, 高俊祥. 同步辐射中双压电片反射镜的研究现状. 物理学报, 2016, 65(1): 010702. doi: 10.7498/aps.65.010702
    [8] 闻铭武, 杨笑微, 王占山. 基于X射线塔尔博特效应的纳米光栅制作模拟研究. 物理学报, 2015, 64(11): 114102. doi: 10.7498/aps.64.114102
    [9] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 周贤明, 肖国青. 不同电荷态的129Xeq+激发Au的X射线发射研究. 物理学报, 2015, 64(5): 053201. doi: 10.7498/aps.64.053201
    [10] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 不同动能的129Xe26+与Au表面作用产生的X射线谱. 物理学报, 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [11] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹. CSR上C6+脉冲束激发Au靶的X射线辐射. 物理学报, 2013, 62(17): 173401. doi: 10.7498/aps.62.173401
    [12] 梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 程锐, 周贤明, 雷瑜, 王兴, 孙渊博, 肖国青. 近Bohr速度的152Eu20+入射Au表面产生的X射线谱. 物理学报, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [13] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青. Arq+入射金表面激发靶原子M-X射线的动能和势能的阈值. 物理学报, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [14] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [15] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [16] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [17] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [18] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
    [20] 徐荣昆, 李正宏, 郭 存, 杨建伦, 李林波, 宋凤军, 宁佳敏, 夏广新, 许泽平. 一维时空分辨x射线辐射功率测量系统. 物理学报, 2003, 52(5): 1203-1206. doi: 10.7498/aps.52.1203
计量
  • 文章访问数:  9782
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-10
  • 修回日期:  2019-06-12
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回