-
Ultrafast pulse laser has been widely used in many fields, such as optical communications, military and materials processing. Semiconductor saturable absorber mirror (SESAM) serving as a saturable absorber is an effective way to obtain ultrafast pulse laser with ps-level pulse width. The SESAM needs specially designing to meet different wavelength operations. And the low damage threshold and high fabrication cost of SESAM hinder its development. Exploring novel materials is becoming a hot topic to overcome these drawbacks and obtain ultrafast laser with excellent performance. The discovery of graphene opens the door for two-dimensional nanomaterials due to the unique photoelectric properties of layered materials. Subsequently, two-dimensional (2D) materials such as topological insulators, transition metal sulfides, and black phosphorus are reported. These materials are used as saturable absorber to obtain a pulsed laser. In this paper, we summarize the research status of fiber lasers and solid-state lasers based on 2D materials in recent years. The development status of the lasers in terms of central wavelength, pulse width, repetition frequency, pulse energy and output power are discussed. Finally, the summary and outlook are given. We believe that nonlinear optical devices based on 2D materials will be rapidly developed in the future several decades
-
Keywords:
- two-dimensional materials /
- fiber lasers /
- solid-state lasers
1. 引 言
超短脉冲激光在工业、军事等领域具有较大的需求, 并可用于激光微加工[1]、太赫兹产生[2]、光成像[3]和超连续谱产生[4]. 目前, 工业上主要以光纤激光器和固体激光器为主, 光纤激光器结构简单、成本低、稳定性好, 固体激光器输出能量大、峰值功率高、光束质量好, 两种激光器均具有各自的优势, 可根据现实需要进行选择. 目前, 获得超短脉冲激光的方式主要有两种: 一种是在谐振腔中插入饱和吸收体[5], 另一种是利用光纤中的非线性效应(非线性偏振旋转或非线性放大环形镜)[6]. 在商业系统领域, 普遍使用的饱和吸收体是半导体饱和吸收镜(semiconductor saturated absorption mirror, SESAM), 在过去的几十年间, SESAM得到了迅速发展, 实现了商业化, 并在光纤激光器、固体激光器和薄片激光器等领域均有应用. 然而, SESAM需要通过特定的设计, 才能实现特定波段锁模, 并且无法实现宽波段锁模, 损伤阈值低, 成本高, 制备流程复杂, 这些缺点限制了SESAM的发展. 对于采用非线性偏振旋转效应实现的激光器, 容易受光纤波动的影响, 无法实现自适应脉冲产生, 因此, 探索新型饱和吸收体来实现超短脉冲激光, 仍是一个值得研究的课题.
近几年, 二维材料的出现使得超快激光器得到了迅速的发展, 二维材料指的是原子层状材料, 它的厚度可以为单层或者几层, 具有较强的层内共价键和较弱的层间范德瓦耳斯力, 在没有层间相互作用的干扰下, 电子的运动局限在二维系统内, 这导致二维材料具有许多新颖的电学特性和光学特性. 二维材料中, 石墨烯是最先被发现的单原子层材料, 具有非凡的力、热、电、光等特性, 在鲍桥梁教授和张晗教授的不断努力下, 首次实现了基于石墨烯的超快脉冲激光[5], 由此打开了二维材料和超快激光器相结合的大门, 为超短脉冲激光技术发展注入了新的活力和动力. 随后, 拓扑绝缘体(topology insulators, TIs)、过渡金属硫化物(transition metal dichalcogenides, TMDs)、黑磷 (black phosphorus, BP)、类黑磷材料、MXene和钙钛矿等二维材料被相继报道(图1[7]), 促进了超快激光的发展, 取得了许多突出的成就.
本文首先报道了二维材料的制备技术、非线性特性测量技术以及二维材料与腔体的耦合方式, 然后总结了基于二维材料的锁模和调Q激光器的激光特性, 并对激光器的工作波长、重复频率和脉冲宽度等性能指标进行了讨论, 最后探讨了基于二维材料的超快激光器的发展趋势并给出了相关结论, 有理由相信, 在二维材料的推动下, 超快激光技术的发展将呈现出良好的前景.
2. 二维材料的简介、制备、非线性测试、耦合方法
2.1 二维材料的光电特性
石墨烯是最先被发现的二维材料, 它是一种扁平的单层碳原子, 紧密排列成二维蜂窝状晶格, 是碳元素的同素异形体, 是石墨的基本组成部分(图2(a)[8]). 单层石墨烯对入射的弱光有2.3%的吸收, 在室温下的电子迁移率高达15000 cm2·V–1·s–1, 由于石墨烯具有非线性光学特性和零带隙结构(图2(b)[8]), 石墨烯能在可见光到红外波段实现宽带光响应. 2004年, 石墨烯通过机械剥离法成功制得[9], 并迅速成为最有潜力的光电子材料. 由于石墨烯具有宽带吸收、超快响应和饱和吸收等特性, 在2009年首次应用于锁模激光器[5], 从此拉开了二维材料和超快激光相结合的大门.
TMDs是一种半导体材料, 其通式为MX2, 其中M是过渡金属元素, 例如Mo, W; X是氧属元素, 例如S, Se, Te. TMDs的每一层可看成是三明治结构, 两层X元素夹着一层M元素, 层与层之间通过范德瓦耳斯力相互作用在一起, 其种类较为丰富, 目前已报到的有MoS2, WS2, MoSe2, WSe2, MoTe2, WTe2等. 图2(c)和图2(d)表示的是MoS2的原子结构和带隙结构[8], 在体态下, 它们是一种具有间接带隙的半导体, 当材料为单层状态时, 能带变为直接带隙. 目前, 实验上已证明TMDs的带隙可通过控制材料的层数来进行调节, 这一特性拓宽了TMDs在光电子学的应用领域. 2013年, 过渡金属硫化物MoS2首次应用于超快激光.
TIs是一种狄拉克材料, 目前已报到的有Bi2Te3, Bi2Se3和Sb2Te3, 它们在体态上是绝缘体, 带隙为0.2—0.3 eV, 但表面是无能隙的, 可导电, TIs的带隙可通过改变厚度和制成异质结的方式来进行调节, 图2(e)和图2(f)展示了Bi2Se3二维材料的晶体结构和能带结构[10]. 另外, TIs还具有宽带吸收特性, 在2012年, 拓扑绝缘体(Bi2Te3)作为饱和吸收体首次应用于超快激光[11], 从此以后其他的TIs也纷纷被发现, 并应用于各个波段的超快激光.
BP是一种直接带隙半导体, 在1960s年首次合成[12], 近几年, 单层BP被成功制备[13], 由于其具有带隙可调、高载流子迁移率、各向异性等特性, 引起社会各界的广泛关注, 通过改变BP的层数, 可控制其带隙(0.3—2.2 eV). 图2(g)和图2(h)表示的是BP的原子结构和带隙结构[8], BP的带隙填补了石墨烯和TMDs之间的空白. 2015年, 在1550 nm波段, BP首次应用于锁模激光器[14].
2.2 二维材料的制备方法
目前, 制备二维材料主要有两种方法: 自上而下法和自下而上法(图3). 自上而下法通过破坏二维材料层间的范德瓦耳斯力来制备单层或少层的二维纳米材料, 包括机械剥离法、液相剥离法等方法. 自下而上法是通过化学手段在分子级别形成二维纳米材料, 包括化学气相沉积法、分子束外延法、水热法、脉冲磁控溅射法、脉冲激光沉积法等. 在超快激光应用方面, 广泛应用的二维材料制备方法是机械剥离法、液相剥离法和化学气相沉积法, 接下来会对这三种方法进行重点介绍.
自Geim和Novoselov发现石墨烯以来[9], 机械剥离法被广泛的应用, 并将其用来制备TIs[15]和BP[16]. 机械剥离法是用胶带将块状材料剥离成单层或少层的纳米材料, 这种方法易操作, 也较为容易获得高质量和低缺陷的纳米材料, 该方法适合用于基础研究领域, 它的短板在于产量有限, 而二维材料的产量也是一个较为重要的考虑因素. 对于液相剥离法来说, 它是一种物理方式, 通过利用高强度的超声来产生微气泡, 并不断破坏材料层间的范德瓦耳斯力, 然后再通过离心方式来去除未剥离的纳米材料, 来制备单层或少层二维纳米材料, 这是一种有效且可行的方法, 但是单层、大尺寸的纳米材料产量相对较低. 化学气相沉积法是合成高质量二维材料一种重要的方法, 通常来说, 把所需的气态或粉末状的反应物置于反应室, 在特定的化学反应和合适的条件下, 便可获得二维材料. 当把基底放入反应室, 二维材料可直接在基底上进行生长. 相比于液相剥离法和机械剥离法, 通过化学气相沉积法制备的二维材料, 它们的层数可以通过调整反应参数来进行控制[17], 质量和产量均有了一定的保证, 有望用于商业化生产二维材料, 但其成本和制备流程需要进一步优化.
2.3 二维材料的非线性测试
二维材料的非线性光学特性在光子学和光电子学具有较大的潜力, 特别是利用材料的饱和吸收特性来实现超短脉冲激光. 目前, 许多二维材料被用作饱和吸收体来实现锁模激光, 例如石墨烯、TIs、TMDs和BP. 饱和吸收体有3个重要的参数, 分别是调制深度(αs)、饱和强度(Isat)和非饱和损耗(αns), 通过以下公式便可描述吸收系数(α)和光强(I)的关系[5]:
$\alpha (I) = {\alpha _{{\rm{ns}}}} + \frac{{{\alpha _{\rm{s}}}}}{{1 + {I/{{I_{{\rm{sat}}}}}}}}.$
对于二维材料非线性光学特性的测量手段, 主要有以下两种方式: Z-scan测量法和双臂测量法. Z-scan测量法的实验装置如图4(a)所示[18], 一个皮秒或飞秒光源被一个分束器分成两路: 测量光路和参考光路, 在参考光路, 通过探测器(detector2)来测量光强, 在测量光路, 脉冲光被透镜聚焦到待测样品上, 待测样品安装在一个平移台上, 可沿着光的方向前后移动. 样品在移动的过程中, 在样品上的脉冲光的光斑也会随着变化, 从而造成能量密度的变化, 透过样品后的光通过探测器(detector1)来测量. 在探测器(detector1)前若没有光圈, 这种方法被称为开孔Z-scan测量, 否则, 便是闭孔Z-scan测量. 双臂测量法[19]的实验装置如图4(b)所示, 类似光纤型开孔Z-scan测量装置, 所有的光被局限在光纤内, 脉冲光通过一个衰减器attenuator之后, 被分束分成两路: 参考光路和测量光路. 脉冲光通过待测样品后, 测量光路的光功率用功率计进行测量. 调节脉冲光源的输入功率, 可改变光与材料相互作用的强度.
2.4 耦合方法
二维材料作为饱和吸收体用于固体激光器和光纤激光器, 需要经过特殊的耦合设计使得光与材料相互作用. 对于固体激光器, 二维材料可制成透射式饱和吸收体和反射式饱和吸收体, 二维材料可通过旋涂、滴涂或者化学气相生长的方式置于石英基底上, 光可以穿过材料和基底, 这种方式被称为透射式(图5(a)). 当二维材料置于高反镜上, 会对入射光进行反射, 这种方式称为反射式(图5(b)). 对于光纤激光器, 材料和腔体耦合方法较多, 可根据现实需要进行选择. 首先, 二维材料可以和高分子聚合物混合制成薄膜, 将其放置在两跳纤接头的中间, 这称之为三明治结构(图5(c)). 利用薄膜组成的三明治结构, 薄膜的热损伤和热稳定性是影响激光性能的两个重要的因素. 另外, 通过机械剥离法或化学气相沉积法生长的二维材料, 可通过湿法转移或者干法转移, 将材料转移到光纤接头的端面, 也可制成三明治结构(图5(d)). 另外, 液相剥离法制备的纳米片溶液可通过光沉积法将二维材料沉积在锥形光纤(图5(e))、D型光纤(图5(f))和光纤端面, 从而实现光与物质的相互作用.
3. 基于二维材料的脉冲激光器
3.1 基于二维材料的光纤脉冲激光器
表1总结了基于石墨烯、TIs、TMDs和BP二维材料的锁模光纤激光器的脉冲特性[14-16,20-100]. 从表1可以看出, 材料的制备方式主要以三种方式为主: 化学气相沉积法、机械剥离法和液相剥离法. 光纤激光器的波段范围主要集中在1和1.5 μm, 也有部分中心波长在2 μm, 在3 μm波段的光纤激光器还没有被报道, 这可能与光纤器件的发展有关, 例如, 目前的光纤对3 μm波段具有较大的损耗. 通过对表1的激光性能进行总结发现: 基于二维材料的锁模光纤激光器的脉宽主要集中在0—2 ps, 重复频率和脉冲能量主要集中在0—100 MHz (图6(a)). 目前, 基于二维材料的超快激光器最短脉宽是29 fs[20], 强度自相关曲线如图6(b)所示, 这是由Purdie等在2015年利用石墨烯饱和吸收体实现的输出功率约为52 mW, 脉冲能量为2.8 nJ的超短脉冲激光. 基于二维材料的超快激光器最大重复频率是3.27 GHz, 是由 Koo等[21]在2016年利用MoSe2/PVA饱和吸收体实现的谐波锁模, 图6(c)是212阶谐波锁模脉冲串, 单个脉冲对应的自相关曲线如图6(d)所示, 脉宽为798 fs.
Material type Fabrication method λ/nm Pulse width Repetition rate Energy Ref. G G CVD 1069.8 580 ps 0.9 MHz 0.41 nJ [26] CVD 1559.12 432.47 fs 25.51 MHz 0.09 nJ [27] CVD 1565.3 148 fs 101 MHz 15 pJ [28] CVD 1545 88 fs 21.15 MHz 71 pJ [29] CVD 1531.3 1.21 ps 1.88 MHz — [30] CVD 1559.34 345 fs 54.28 MHz 38.7 pJ [31] CVD 1561 1.23 ps 2.54 MHz — [32] CVD 1576 415 fs 6.84 MHz 7.3 nJ [33] LPE 1550 29 fs 18.67 MHz 2.8 nJ [20] ME 1567 220 fs 15.7 MHz 83 pJ [34] — 1554 168 fs 63 MHz 55 pJ [35] ME 1560 900 fs 2.22 GHz — [22] — 1560 992 fs 0.49 GHz — [36] LPE 1525—1559 1 ps 8 MHz 125 pJ [37] CVD 1945 205 fs 58.87 MHz 220 pJ [38] — 2060 190 fs 20.98 MHz 2.55 nJ [39] CVD 2780 42 ps 25.4 MHz 0.7 nJ [40] GO — 1556.5 615 fs 17.09 MHz — [41] Graphene-Bi2Te3 CVD 1565.6 1.17 ps 6.91 MHz — [42] TIs Bi2Se3 PM 1031.7 46 ps 44.6 MHz 0.76 nJ [43] PM 1600 360 fs 35.45 MHz 24.3 pJ [44] PM 1557.5 660 fs 12.5 MHz 0.14 nJ [45] LPE 1571 579 fs 12.54 MHz 127 pJ [46] LPE 1559 245 fs 202.7 MHz 37 nJ [47] HM 1610 0.7 ns 640.9 MHz 481 pJ [48] PM 1557—1565 1.57 ps 1.21 MHz — [49] LPE 1567/1568 22 ps 8.83 MHz 1.1 nJ [50] Bi2Te3 ME 1057.82 230 ps 1.44 MHz 0.6 nJ [51] HM 1064.47 960 ps 1.11 MHz — [52] ME 1547 600 fs 15.11 MHz 53 pJ [53] PLD 1560.8 286 fs 18.55 MHz 0.03 nJ [54] HM 1557 1100 fs 8.635 MHz 29 pJ [55] PLD 1562.4 320 fs 2.95 GHz — [24] — 1557.4 3.42 ps 388 MHz — [56] ME 1935 795 fs 27.9 MHz 36 pJ [57] — 1909.5 1.26 ps 21.5 MHz — [58] Sb2Te3 LPE 1556 449 fs 22.13 MHz 39.6 pJ [59] ME 1564 125 fs 22.4 MHz 44.6 pJ [60] ME 1561 270 fs 34.58 MHz 0.03 nJ [61] DFT 1568.6 195 fs 33 MHz 0.27 nJ [62] ME 1565 128 fs 22.32 MHz 45 pJ [15] MS 1558 167 fs 25.38 MHz 0.21 nJ [63] PLD 1542 70 fs 95.4 MHz — [23] TMDs WS2 MS 1560 288 fs 41.4 MHz 0.04 pJ [64] LPE 1550 595 fs — — [65] PLD 1560 220 fs — — [66] LPE 1561/1563 369/563 24.93/20.39 MHz 70/136 pJ [67] CVD 1565 332 fs 31.11 MHz 14 pJ [68] PLD 1559.7 452 fs 1.04 GHz 10.9 pJ PLD 1558.54 585—605 fs 8.83 MHz 1.14 nJ [66] LPE 1941 1.3 ps 34.8 MHz 172 pJ [69] MoS2 HM 1054.3 800 ps 7 MHz 1.3 nJ [70] HM 1569.5 710 fs 12.09 MHz 0.147 nJ [71] ME 1550 200 fs 14.53 MHz — [72] PLD 1561 246 fs 101.4 MHz 1.2 nJ [73] LPE 1573.7 630 fs 27.1 MHz 0.141 nJ [74] HM 1556.8 3 ps 2.5 GHz 2 pJ [75] LPE 1530.4 1.2 ps 125 MHz 344 pJ [76] LPE 1555.6 737 fs 3.27 GHz 7 pJ [21] LPE 1535—1565 0.96—7.1 ps 12.99 MHz — [77] MS 1915.5 1.25 ps 18.72 MHz — [78] WSe2 CVD 1557.4 163.5 fs 63.13 MHz 451 pJ [79] CVD 1863.96 1.16 ps 11.36 MHz 2.9 nJ [80] MoSe2 LPE 1912 920 fs 18.21 MHz — [81] SnS2 LPE 1062.66 656 ps 39.33 MHz 57 pJ [82] LPE 1562.01 623 fs 29.33 MHz 41 pJ [83] ReS2 CVD 1564 1.25 ps 3.43 MHz — [84] LPE 1558.6 1.6 ps 5.48 MHz 73 pJ [85] BP ME 1085.5 7.54 ps 13.5 MHz 5.93 nJ [86] LPE 1030.6 400 ps 46.3 MHz 0.70 nJ [87] LPE 1555 102 fs 23.9 MHz 0.08 nJ [25] LPE 1562 1236 fs 5.426 MHz — [88] LPE 1549—1575 280 fs 60.5 MHz — [89] ME 1560.7 570 fs 6.88 MHz 0.74 nJ [16] LPE 1559.5 670 fs 8.77 MHz — [90] ME 1558.7 786 fs 14.7 MHz 0.11 nJ [91] ME 1571.4 946 fs 5.96 MHz — [14] ME 1560.5 272 fs 28.2 MHz 2.3 nJ [92] LPE 1532—1570 940 fs 4.96 MHz 1.1 nJ [93] LPE 1562.8 291 fs 10.36 MHz — [94] LPE 1562 635 fs 12.5 MHz — [95] LPE 1555 687 fs 37.8 MHz — [96] LPE 1561.7 882 fs 5.47 MHz — LPE 1533 — 20.82 MHz 0.07 nJ [97] ME 1910 739 fs 36.8 MHz 0.05 nJ [98] LPE 1898 1580 fs 19.2 MHz 440 pJ [99] LPE 2094 1300 fs 290 MHz 0.39 nJ [100] 注: LPE, liquid-phase exfoliation; CVD, chemical vapor deposition; ME, mechanical exfoliation; MS, magnetron sputtering; PLD, pulsed laser deposition; HM, hydrothermal method; DFT, direct fusion technique; PM, polyol method; G, graphene; GO, graphene oxide. 对于石墨烯二维材料, 超快光纤激光器主要集中在1.5 μm波段, 对2和3 μm波段的研究还较少. 利用石墨烯作为饱和吸收体实现的谐波锁模激光, 最高的重复频率是2.22 GHz[22]. 对于TIs材料, Liu等利用脉冲激光沉积方法制备了拓扑绝缘体Sb2Te3材料, 通过非线性偏振转化被动锁模实现了中心波长在1542 nm的70 fs和95.4 MHz的脉冲激光, 这是基于TIs的脉宽最短光纤激光器[23]. Yan等[24]利用拓扑绝缘体Bi2Te3实现了脉宽为320 fs的锁模脉冲激光, 通过进一步调整腔内偏振态, 获得了重复频率为2.95 GHz, 输出功率为45.3 mW的谐波孤子锁模脉冲激光. 基于TMDs的超快激光, 获得的最小脉宽和最大重复频率为 200 fs和3.27 GHz [21]. 对于二维材料BP, 制备方法以液相剥离法为主, Jin等[25]利用喷墨打印技术制备的BP饱和吸收体, 实现了长期稳定的全光纤飞秒激光, 脉宽和中心波长分别为102 fs和1555 nm. 谐波锁模可实现GHz的重复频率, 调查发现, 基于BP的谐波锁模目前还没有被报道. 除了以上的二维材料, 近几年也出现了新的二维材料, 例如锑烯[101]、铋烯、MXene、钙钛矿, 它们均在超快激光领域展现出自己各自的优势. MXene材料种类较多, 目前在实验上已经成功制备的已有30多种. John等[102]利用Ti3CN MXene实现了660 fs的超快激光, 重复频率为15.4 MHz, 波长为1557 nm; Jiang等[103]测试了Ti3C2Tx MXene在800—1800 nm波段的非线性光响应和非线性吸收系数, 将该材料作为饱和吸收体, 在通信波段实现了脉宽为159 fs, 重复频率为7 MHz的超快激光(图6(e)和图6(f)). Guo等[104]采用声化学剥离法制备的铋烯纳米片, 首次实现了193 fs的锁模飞秒脉冲激光. Song等[105]通过开孔Z-扫描测量了锑烯的非线性光响应, 并实现了550 fs锁模脉冲激光. 总之, 基于二维材料的锁模激光器可以在宽波段调制, 具有高重频, 通过进一步优化吸收体和腔参数, 可获得更好的激光性能.
基于二维材料的调Q光纤激光器的脉宽虽然不能达到飞秒量级, 但可以获得较高的脉冲能量, 从而满足一些特定需求, 调Q技术类似于锁模技术, 在腔内插入一个饱和吸收体可实现调Q或锁模状态, 对于会实现哪种状态, 这与腔的设计和饱和吸收体的特性有关. 表2总结了目前基于不同二维材料的调Q光纤激光器的发展状况[14,106-152]. 从表2可知, 基于石墨烯、TIs、TMDs和BP的最大脉冲能量分别为8.34, 3.99, 1.18, 7.7 μJ. 在可见光波段, 采用TIs, TMDs和BP吸收体实现了波长为600 nm的调Q光纤激光器, 锁模光纤激光器在可见光波段还需进一步探索. 在2—3 μm波段, 基于二维材料的调Q光纤激光器报道得相对较少, 这与光纤器件的发展有较大关系, 而在固体激光器中, 该波段的固体激光器相继被报道, 下文中会详细介绍. 在调Q激光器中, 最短的脉宽为800 ps, 是由Liu等[106]利用Ho3+:ZBLAN作为增益光纤, 石墨烯作为饱和吸收体, 采用全光纤环形腔, 实现了亚微秒脉宽, 111 kHz重复频率的调Q脉冲激光.
Material type Fabrication methods λ Pulse width Repetation rate Energy Ref. G G — 1075 nm 70 ns 257 kHz 46 nJ [107] — 1192.6 nm 800 ps 111 kHz 0.44 μJ [106] CVD 1560 nm 2.06 μs 73.06 kHz 93.7 nJ [108] HM 1561 nm 4.0 μs 27.2 kHz 29 nJ [109] LPE 1555 nm 2 μs 103 kHz 40 nJ [110] — 2.78 μm 2.9 μs 37.2 kHz 1.67 μJ [111] GO — 1558 nm 2.3 μs 123.5 kHz 1.68 nJ [112] CVD 1044 nm 1.7 μs 215 kHz 8.37 μJ [113] — 2032 nm 3.8 μs 45 kHz 6.71 μJ [114] TIs Bi2Se3 LPE 604 nm 494 ns 187.4 kHz 3.1 nJ [115] LPE 635 nm 244 ns 454.5 kHz 22.3 nJ [116] LPE 1.06 μm 1.95 μs 29.1 kHz 17.9 nJ [117] HM 1562.27 nm 1.6 μs 53.7 kHz 0.08 nJ [118] PM 1.5 μm 13.4 μs 12.88 kHz 13.3 nJ [119] LPE 1.55 μm 2.54 μs 212 kHz — [120] LPE 1530.3 nm 24 μs 40.1 kHz 39.8 nJ [121] LPE 1.98 μm 4.18 μs 26.8 kHz 313 nJ [122] Bi2Te3 ME 1559 nm 4.88 μs 21.24 kHz 89.9 nJ [123] SM 1557.5 nm 3.71 μs 49.40 kHz 2.8 μJ [124] LPE 1.5 μm 13 μs 12.82 kHz 1.5 μJ [125] ME 1.56 μm 2.81 μs 42.8 kHz 12.7 nJ [126] Sb2Te3 MS 1530—1570 nm 400 ns 338 kHz 18 nJ [127] SnS2 — 1532.7 nm 510 ns 233 kHz 40 nJ [128] TMDs MoS2 LPE 604 nm 602 ns 118.4 kHz 5.5 nJ [129] LPE 635 nm 200 ns 512 kHz 28.7 nJ [130] LPE 1030—1070 nm 2.88 μs 89 kHz 126 nJ [131] HM 1.56 μm 3.2 μs 91.7 kHz 17 nJ [132] TEM 1550—1575 nm 6 μs 22 kHz 150 nJ [133] CVD 1529—1570 nm 1.92 μs 114.8 kHz 8.2 nJ [134] LPE 1519—1567 nm 3.3 μs 43.47 kHz 160 nJ [135] PLD 1549.8 nm 660 ns 131 kHz 152 nJ [136] CVD 1549.9 nm 1.66 μs 173 kHz 27.2 nJ [137] LPE 1550 nm 9.92 μs 41.45 kHz 184 nJ [138] LPE 1.06 μm 5.8 μs 28.9 kHz 32.6 nJ [139] 1.56 μm 5.4 μs 27 kHz 63.2 nJ 2.03 μm 1.76 μs 48.1 kHz 1 μJ TMDs WS2 LPE 604 nm 435 ns 132.2 kHz 6.4 nJ [129] CVD 1027—1065 nm 1.65 μs 97 kHz — [140] LPE 1030 nm 3.2 μs 36.7 kHz 13.6 nJ [141] LPE 1.5 μm 0.71 μs 134 kHz 19 nJ [142] LPE 1558 nm 1.1 μs 97 kHz 179 nJ [141] LPE 1547.5 nm 958 ns 120 kHz 44 nJ [143] LPE 1550 nm 3.966 μs 77.92 kHz 1.2 μJ [138] TDMs MoSe2 LPE 635.4 nm 240 ns 555 kHz 11.1 nJ [130] 1060 nm 2.8 μs 60 kHz 116 nJ LPE 1566 nm 4.8 μs 35.4 kHz 825 nJ [144] 1924 nm 5.5 μs 21.8 kHz 42 nJ LPE 1550 nm 4.04 μs 66.8 kHz 369 nJ [138] WSe2 LPE 1550 nm 4.06 μs 85.36 kHz 485 nJ [138] WSe2 LPE 1560 nm 3.1 μs 49.6 kHz 33.2 nJ [145] TiSe2 CVD 1530 nm 1.12 μs 154 kHz 75 nJ [146] BP LPE 635 nm 383 ns 409.8 kHz 27.6 nJ [147] ME 1064.7 nm 2.0 μs 76 kHz 17.8 nJ [148] ME 1.0 μm 1.16 μs 58.73 kHz 2.09 nJ [149] LPE 1.5 μm 1.36 μs 82.64 kHz 148 nJ [150] ME 1561 nm 2.96 μs 34.32 kHz 194 nJ [151] ME 1562.8 nm 10.32 μs 15.78 kHz 94.3 nJ [14] LPE 1912 nm 731 μs 113.3 kHz 632 nJ [152] 注: SM, solvothermal method; TEM, thermal evaporation method. 3.2 基于二维材料的固体脉冲激光器
固体激光器通常由自由空间腔体组成, 腔体主要是由反射镜和固体增益介质构成, 具有功率高、光束质量好的特点. 目前, 固体激光器在工业制造、基础研究和军事等领域具有广泛的应用. 与光纤激光器相比, 脉冲固体激光器发展较早, 早期, 基于SESAM、纳米材料的脉冲固体激光器已有相关的报道, 近年来二维材料的出现, 再次促进了固体激光器的发展. 上述的二维材料除了在光纤激光器中被广泛研究, 在固体激光器领域也展现出各自的优势. 目前, 已有各种各样的增益介质和饱和吸收体相结合实现脉冲激光, 在可见光波段常用的增益介质有Pr:LuLiF4, Pr:GdLiF4, Pr:LiYF4; 在1 μm波段的增益介质有Nd:YAG, Nd:GdVO4, Nd:YLF, Nd,Mg:LiTaO3, Nd:GYSGG, Nd:LYSO, YVO4/Nd:YVO4, Nd:YVO4, Nd:Lu2O3, Nd:YVO4, Nd: YVO4, Yb:GdAl3(BO3), Yb:CYA, Yb:CYB, Yb:GAB, Yb:CLGGG, Yb:KLuW, Yb:LuPO4, Yb:LuYAG, Yb:KGW, Nd:GGG; 在1.3—1.6 μm波段的增益介质有Nd:YVO4, Nd:YAG, Nd:YLF, Nd:GGG, Nd:YGG, Nd;GdVO4, Nd:LuAG, Nd:YLF, Er:YAG, Er:LuYAG, Er:Yb:glass, Cr: YAG, Nd,Lu:CaF2; 在2 μm波段的增益介质有 Ho:YAG, Tm:YAG, Tm:Y:CaF2, Tm:Ho:YGG, Tm:CLNGG, Tm:KLuW, Tm:CYAO, Tm:Ho: YAP, Tm:LuAG, Tm:YAP, Tm:LuAG, Tm:Ho: YAG, Tm:CaYAlO4, Tm:GdVO4, Tm:CLNGG; 在3 μm波段的增益介质有Tm:YAP, Ho:ZBLAN, Er:CaF2, Er:SrF2, Er,Pr:CaF2, Er:Y2O3, Ho,Pr:LLF. 固体激光器在可见光到中红外波段均实现了激光振荡, 这说明二维材料在固体激光领域具有较大的前景.
表3总结了基于石墨烯、TIs、TMDs和BP二维材料的超快固体激光器的性能[153-179]. 可以看出, 目前基于二维材料的超快固体激光还是以石墨烯为主, BP次之, 基于其他二维材料的超快激光报道还较少, 这种现象可能与材料的制备技术有关, 通过化学气相沉积法制备出的石墨烯具有大尺寸、良好的均匀性、层数可控等特点, 这便于实现固体激光器锁模. 除了化学气相沉积法, 在固体激光器领域, 液相剥离法也是一种普遍常用的手段, 通过超声、离心等方式获得层数少、尺寸大的二维纳米材料. 不难看出, 二维材料的制备技术对超快固体激光器的发展具有积极的促进作用.
Material Fabrication method Integration substrate Bulk laser crystal Center wavelength Pulse width Repetition rate Output power Ref. G CVD Quartz Ti:Sapphire 800 nm 63 fs 99.4 MHz 480 mW [154] LPE Quartz Yb:YAG 1064 nm 4 ps 88 MHz 100 mW [155] CVD GM Yb:YCOB 1.0 μm 152 fs — — [156] CVD Quartz Yb:SC2SiO5 1062.8 nm 14 ps 90.7 MHz 480 mW [157] VEM Quartz Nd:YVO4 1064 nm 8.8 ps 84 MHz 3.06 W [158] CVD Sapphire Yb:KGW 1032 nm 325 fs 66.3 MHz 1.78 W [159] LPE DM Nd:GdVO4 1064 nm 16 ps 43 MHz 360 mW [160] CVD Glass Yb:Y:CaF2 1051 nm 4.8 ps 60 MHz 370 mW [161] CVD Glass Yb:Y2SiO5 1042.6 nm 883 fs 87 MHz 1 W [162] LPE DM Yb:KGW 1031.1 nm 428 fs 86 MHz 504 mW [163] LPE DM Nd;GdVO4 1.34 μm 11 ps 100 MHz 1.29 W [164] CVD Quartz Cr:YAG 1516 nm 91 fs — 100 mW [165] CVD GM Tm:CLNGG 2.0 μm 354 fs — NA [156] CVD DM Tm:CLNGG 2014.4 nm 882 fs 95 MHz 60 mW [166] LPE Quartz Tm:YAP 2023 nm < 10 ps 71.8 MHz 268 mW [167] CVD HRM Cr:ZnS 2400 nm 41 fs 108 MHz 250 mW [168] CVD HRM Tm:CLNGG 2018 nm 729 fs 98.7 MHz 178 mW [169] CVD Quartz Tm:YAP 1988 nm — 62.38 MHz 256 mW [170] GO VEM Quartz Nd:GdVO4 1064 nm 4.5 ps 70 MHz 1.1 W [171] VEM Quartz Yb:Y2SiO5 1059 nm 763 fs 94 MHz 700 mW [172] Bi2Te3 SCCA Sapphire Nd:YVO4 1064 nm 8 ps 0.98 GHz 180 mW [173] MoS2 PLD Quartz Pr:GdLiF4 522 nm 46 ps 101.4 MHz 10 mW [153] MoS2/G PLD HRM Yb:KYW 1037.2 nm 236 fs 41.84 MHz 550 mW [174] MoS2/GO LPE DM Nd:GdVO4 1064 nm 17 ps 1.02 GHz 508 mW [175] BP LPE DM Nd:GdVO4 1064 nm 6.1 ps 140 MHz 460 mW [176] LPE HRM Yb,Lu:CALGO 1053.4 nm 272 fs 63.3 MHz 820 mW [177] LPE Quartz Nd;GdVO4 1.34 μm 9.24 ps 58.14 MHz 350 mW [178] LPE — Ho,Pr:ZBLAN 2.8 μm 8.6 ps 13.98 MHz 87.8 mW [179] 注: VEM, vertical evaporation method; SCCA, spin coating–coreduction approach; DM, dielectric mirror; HRM, high reflective mirror. 基于二维材料的超快固体激光器主要集中在1 μm波段, 在可见光波段和中红外波段也有所进展. 2017年, Zhang等[153]利用MoS2饱和吸收体, 在可见光522, 607和639 nm波段实现了皮秒级的超快激光, 这一报道加快了二维材料在可见光波段实现超快光子学的步伐. 对于中红外3 μm波段, 由于水对该波段具有较强的吸收和增益介质特殊的能级结构等特性, 在3 μm波段实现连续锁模是较为困难的. 在2016年, Li等[179]利用增益光纤和空间光结合的方式, 实现了3 μm波段的锁模, 如图7(a)所示, 他们利用液相剥离法制备出BP材料, 并对BP材料进行了非线性光学测试, 结果表明调制深度为41.2%, 非饱和通量为7.6%, 饱和强度为3.767 MW/cm2 (图7(b)), 图7(c)是实现锁模激光的装置图, 增益光纤采用的是商用的双包层Ho3+/Po3+共掺氟化光纤, 长度为7.1 m, 对抽运光的吸收效率可超过90%, 光纤的高增益特性便于实现高腔内脉冲能量, 这有利于实现连续光锁模. 对比表1和表3不难发现, 基于二维材料的锁模固体激光器相对于光纤激光器报道较少, 这主要是由于在固体激光器中, 二维材料直接插入腔内, 光与材料直接相互作用, 受限于目前的材料制备手段, 基于二维材料的超快固体激光器具有一定的挑战和难度, 对于光纤激光器, 光纤和材料耦合的方式多种多样, 可有效实现超快脉冲激光, 因此, 通过将光纤和空间光结合的方式, 既能满足光与二维材料相互作用, 又能实现高功率超快激光输出. 采用该方式的挑战主要在于实现空间光和光纤的完美耦合, 减少不必要的损耗, 从而能够实现激光振荡. 固体锁模激光器的最大输出功率为87.8 mW, 最大的脉冲能量为6.28 nJ, 中心波长和谱宽分别为2866 nm和4.35 nm, 重复频率为13.987 MHz, 脉宽为8.6 ps (图7(d)) [179]. 目前, 基于二维材料的超快固体激光器的最短脉宽是41 fs, 这是由Tolstik等[168]利用石墨烯饱和吸收镜实现的超短脉冲激光, 中心波长和谱线宽度分别为2.4 μm和190 nm, 脉宽、脉冲能量、平均输出功率和重复频率分别为41 fs, 2.3 nJ, 250 mW和108 MHz. 2015年, Zhao等[175]通过MoS2/graphene异质结材料, 并搭建V-型谐振腔, 实现了重复频率高达1 GHz的锁模激光, 这是目前最大的重复频率.
表4总结了在2—3 μm波段, 基于石墨烯、TIs、TMDs和BP二维材料的调Q固体激光器的性能[111,179-214]. 不难看出, 相对于表3中的锁模激光器, 2—3 μm调Q激光器研究成果较多, 材料的制备手段以液相剥离法为主, 这再次表明, 实现锁模脉冲激光对材料要求较高. 由于石墨烯、TMDs和BP具有宽带吸收特性, 他们均在2—3 μm波段实现了调Q激光, 基于这三种材料, 调Q激光获得的最短脉宽分别为157, 220和181 ns. 随着近几年新材料的不断出现, 锑稀、铋烯和MXene等二维材料也纷纷被用于固体激光器, 2018年, Liu等[215]利用Bi纳米片实现了中红外全固态调Q激光, 重复频率和脉宽分别为56.2 kHz和980 ns. 同年, 山东师范大学刘杰教授课题组, 利用MXene饱和吸收体分别在1和2 μm波段实现了调Q脉冲激光[216,217], 证明了MXene具有宽带吸收调制特性.
Material Fabrication method Integration substrate Bulk laser crystal Center wavelength Pulse width Repitition rate Output power Ref. G — Quartz Ho:YAG 2097 nm 2.6 μs 64 kHz 264 mW [180] — Quartz Tm:LGGG 2003 nm 1.29μs 43.9 kHz 140 mW [181] EG SiC Cr:ZnSe 2.4 μm 157 ns 169 kHz 256 mW [182] CVD CaF2 Er:Y2O3 2.7 μm 296 ns 44.2 kHz 114 mW [183] — HRM Er:ZBLAN 2.78 μm 2.9 μs 37 kHz 62 mW [111] CVD Quartz Er:CaF2 2.8 μm 1.3 μs 62.7 kHz 172 mW [184] CVD Sapphire Ho,Pr:LLF 2.95 μm 937 ns 55.7 kHz 172 mW [185] LPE HRM Ho:ZBLAN 3.0 μm 1.2 μs 92 kHz 102 mW [186] GO LPE — Tm:Y:CaF2 1969 nm 1.32μs 20.2 kHz 400 mW [187] LPE Quartz Tm:YLF 1928 nm 1.0 μs 38 kHz 379 mW [188] TIs Bi2Te3 LPE Quartz Tm:LuAG 2023.6 nm 620 ns 118 kHz 2.03 W [189] HEM CaF2 Ho:ZBLAN 2.979 μm 1.4 μs 81.96 kHz 327 mW [190] Bi2Te3/G SM SiO2 Tm:YAP 1980 nm 238 ns 108 kHz 2.34 W [191] Er:YSGG 2796 nm 243 ns 88 kHz 110 mW TMDs MoS2 PLD Quartz Tm:Ho:YGG 2.1 μm 410 ns 149 kHz 206 mW [192] PLD GM Tm:CLNGG 1979 nm 4.8 μs 110 kHz 62 mW [193] LPE DM Tm:CYAO 1850 nm 0.5 μs 84.9 kHz 490 mW [194] LPE Glass Tm,Ho:YAP 2129 nm 435 ns 55 kHz 275 mW [195] LPE YAG Er:Lu2O3 2.84 μm 335 ns 121 kHz 1.03 W [196] CVD YAG Ho,Pr:LLF 2.95 μm 621 ns 85.8 kHz 70 mW [197] — — Tm:GdVO4 1902 nm 0.8 μs 49.1 kHz 100 mW [198] MoS2/BP LPE SAMs Tm:YAP 1993 nm 488 ns 86 kHz 3.6 W [199] ReS2 LPE Sapphire Er:YSGG 2.8 μm 324 ns 126 kHz 104 mW [200] LPE YAG Er:SrF2 2.79 μm 508 ns 49 kHz 580 mW [201] WS2 TD SiO2 Tm:LuAG 2.0 μm 660 ns 62 kHz 1.08 W [202] SGM HRM Ho3+/Pr3+:ZBLAN 2.86 μm 1.73 us 131 kHz 48 mW [203] LPE YAG Ho,Pr,LLF 2.95 μm 654 ns 90.4 kHz 82 mW [204] BP ME Quartz Tm:Ho:YAG 2.1 μm 636 ns 122 kHz 27 mW [205] LPE Quartz Tm:YAP 1988 nm 1.8 us 19.3 kHz 151 mW [206] LPE DM Tm:YAP 1969 nm 181 ns 81 kHz 3.1 W [207] ME HRM Tm:YAG 2 μm 3.12 us 11.6 kHz 38 mW [208] LPE — Ho:ZBLAN 2.9 μm 2.4 μs 62.5 kHz 309 mW [179] LPE DM Cr:ZnSe 2.4 μm 189 ns 176 kHz 36 mW [209] LPE — Er:CaF2 2.8 μm 955 ns 41.9 kHz 178 mW [210] LPE GM Tm:CaYAlO4 1.93 μm 3.1 μs 17.7 kHz 12 mW [211] LPE GM Er:Y2O3 2.72 μm 4.5 μs 12.6 kHz 6 mW [211] LPE Silicon Er:SrF2 2.79 μm 702 ns 77 kHz 180 mW [212] LPE — Er:ZBLAN 2.8 μm 1.2 μs 63 kHz 485 mW [213] LPE Silicon Er:CaF2 2.8 μm 955 ns 41.9 kHz 178 mW [210] LPE CaF2 Ho,Pr:LLF 2.95 μm 194 ns 159 kHz 385 mW [214] 注: SGM, sulfidation grown method; GM, gold mirror. 4. 总结与展望
本文总结了近年来基于二维材料脉冲激光器的研究进展. 对于二维材料, 讨论了材料的特性、制备方法和测试方法. 二维材料以其独特的光学特性成为一种重要的光学材料, 在开发宽带饱和吸收材料方面具有巨大的潜力. 能否有一种材料从广泛的材料中脱颖而出, 仍是一个待讨论的话题, 这其中包括了材料的可靠性和可重复性、是否可以在光学基片上生长大面积均匀的材料(最好不需要转移)、非线性光学特性能否被精确和灵活地控制, 材料能否承受在各个波长和脉宽下的高强度激光. 就目前来看, 虽然各种二维材料已经满足了部分要求, 但并不是所有的标准都在一种特定的材料中得到满足, 例如, 基于化学气相法生长的石墨烯具有大面积、可靠生长的优点, 然而, 精确控制层数的难题和相对较弱的光与物质相互作用, 限制了它在强吸收和大调制深度方面的发展潜力. 因此, 在发展和探索新型二维材料方面, 仍具有较大的挑战性.
对于脉冲激光器, 本文归纳了基于二维材料的光纤激光器和固体激光器的激光性能, 对目前的相关工作进行了详细总结, 并对这些激光器中的优良性能进行了重点描述, 例如光纤锁模激光器的锁模可达640 MHz, 谐波锁模可达3.27 GHz, 超快固体激光器的最短脉宽是41 fs, 并且, 在可见光到中红外波段均实现了超快激光. 到目前为止, 基于二维材料的脉冲激光器的研究已有10年的时间, 二维材料成功用于各种锁模/调Q激光器 (光纤、固体、薄片和波导), 未来的发展可能是不断提高脉冲激光器的输出性能和宽带响应范围. 通过对腔体进行优化设计、生长高质量的二维材料, 激光性能仍具有较大的上升空间. 由于二维材料具有宽带吸收特性, 在可见光波段到红外波段均有光响应, 激光器可进一步向更短波长或更长波长扩展. 其中, 石墨稀、TIs、TMDs和BP的带隙分别为0 eV, 0—0.7 eV, 1—2.5 eV和0.35—2 eV, 对应的载流子寿命分别为小于200 fs, 0.3—2 ps, 约1—3 ps和360 fs. 波长400 nm的光子对应的光子能量是3.1 eV, 大于石墨烯、TMDs、TIs和BP的带隙, 可以被这些材料所吸收调制. 波长为4000 nm的光子所对应的光子能量是0.3 eV, 这要大于石墨烯和拓扑绝缘体的带隙, 目前, 基于二维材料的超快光纤脉冲激光器, 最短波长和最长波长分别为1 μm和2.78 μm, 对于固体激光器, 实现的最短波长和最长波长分别为522 nm和2.8 μm, 波长为4 μm的超快激光器未见报道, 随着激光增益介质和相关光学器件的发展, 石墨烯和TIs有望作为4 μm波段激光器的饱和吸收体. 另外, 现代的材料工程技术可以通过异质结构、掺杂等方式来改变现有二维材料的带隙, 使得各种材料适用于超快激光器, 这也为发现具有独特光电特性的二维材料提供了可能.
综上所述, 基于二维材料的超快光子学已经成为一个高度活跃的研究领域, 在该领域中, 人们投入了大量的精力来研究脉冲激光器的输出特性, 例如平均功率、脉宽、重复频率和脉冲能量. 由于二维材料除了具有饱和吸收特性外, 还具有较大的非线性折射率, 可用于光调制器[218]和波长转换器. 期望在未来的几十年里, 基于二维材料的非线性光学器件迅速发展, 为人类社会的进步作出贡献.
[1] Gattass R R, Mazur E 2008 Nat. Photonics 2 219Google Scholar
[2] Dominik S, Christopher M M, Christian S, Mark S S 2010 Opt. Lett. 35 3799Google Scholar
[3] Shuo T, Jian L, Tatiana B K, Chen Z, Bruce J T 2009 J. Biomed. Opt. 14 030508Google Scholar
[4] Sobon G, Klimczak M, Sotor J, Krzempek K, Pysz D, Stepien R 2013 Opt. Mater. Express 4 7Google Scholar
[5] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z 2009 Adv. Funct. Mater. 19 3077Google Scholar
[6] Krzempek K, Sobon G, Kaczmarek P, Abramski K M 2013 Laser Phys. Lett. 10 105103
[7] Zhang H 2015 ACS Nano. 9 9451Google Scholar
[8] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics. 8 899Google Scholar
[9] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V 2004 Science 306 666Google Scholar
[10] Zhang H, Liu C, Qi X, Dai X, Fang Z, Zhang S 2009 Nat. Phys. 5 438Google Scholar
[11] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S 2012 Appl. Phys. Lett. 101 211106Google Scholar
[12] Brown A, Rundqvist S 1965 Acta Crystallogr. 19 684Google Scholar
[13] Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar
[14] Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, et al. 2015 Opt Express 23 12823Google Scholar
[15] Sotor J, Sobon G, Abramski K M 2014 Opt. Express 22 13244Google Scholar
[16] Ahmed M, Latiff A, Arof H, Harun S 2016 Laser Phys. Lett. 13 095104Google Scholar
[17] Xia H, Li H, Lan C, Li C, Zhang X, Zhang S 2014 Opt. Express 22 17341Google Scholar
[18] Guo B 2018 Chin. Opt. Lett. 16 20004Google Scholar
[19] Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G 2017 Sci. Rep. 7 42357Google Scholar
[20] Purdie D G, Popa D, Wittwer V J, Jiang Z, Bonacchini G, Torrisi F, et al. 2015 Appl. Phys. Lett. 106 253101Google Scholar
[21] Koo J, Park J, Lee J, Jhon Y, Lee J 2016 Opt. Express 24 10575
[22] Sobon G, Sotor J, Abramski K 2012 Appl. Phys. Lett. 100 161109Google Scholar
[23] Liu W, Pang L, Han H, Tian W, Chen H, Lei M 2016 Sci. Rep. 6 19997Google Scholar
[24] Yan P, Lin R, Ruan S, Liu A, Chen H 2015 Opt. Express 23 154Google Scholar
[25] Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R 2018 Opt. Express 26 12506Google Scholar
[26] Zhao L, Tang D, Zhang H, Wu X, Bao Q, Loh K 2010 Opt. Lett. 35 3622Google Scholar
[27] Huang P, Lin S, Yeh C, Kuo H, Huang S, Lin G 2012 Opt. Express 20 2460Google Scholar
[28] Tarka J, Boguslawski J, Sobon G, Pasternak I, Przewloka A, Strupinski W 2017 IEEE J. Selec. Top. Quant. 23 60Google Scholar
[29] Sotor J, Pasternak I, Krajewska A, Strupinski W, Sobon G 2015 Opt. Express 23 27503Google Scholar
[30] Liu X, Yang H, Cui Y, Chen G, Yang Y, Wu X 2016 Sci. Rep. 6 26024Google Scholar
[31] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Mater. Express 5 2884Google Scholar
[32] Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z 2010 Nano Res. 4 297Google Scholar
[33] Zhang H, Tang D, Zhao L, Bao Q, Loh K 2009 Opt. Express 17 17630Google Scholar
[34] Steinberg D, Zapata J, Thoroh de Souza E, Saito L 2018 J. Lightwave Technol. 36 1868Google Scholar
[35] Tarka J, Sobon G, Boguslawski J, Sotor J, Jagiello J, Aksienionek M 2014 Opt. Mater. Express 4 1981Google Scholar
[36] Meng Y, Zhang S, Li X, Li H, Du J, Hao Y 2012 Laser Phys. Lett. 9 537Google Scholar
[37] Sun Z, Popa D, Hasan T, Torrisi F, Wang F, Kelleher E 2010 Nano Research 3 653Google Scholar
[38] Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A 2017 Opt. Lett. 42 1592Google Scholar
[39] Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38Google Scholar
[40] Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X 2016 IEEE Photon. Technol. Lett. 28 7Google Scholar
[41] Ko S, Lee J, Koo J, Joo B, Gu M, Lee J 2016 J. Lightwave Technol. 34 3776Google Scholar
[42] Wang Z, Mu H, Yuan J, Zhao C, Bao Q, Zhang H 2017 IEEE J. Sel. Top. Quant. 23 195Google Scholar
[43] Dou Z, Song Y, Tian J, Liu J, Yu Z, Fang X 2014 Opt. Express 22 24055Google Scholar
[44] Li K, Song Y, Yu Z, Xu R, Dou Z, Tian J 2015 Laser Phys. Lett. 12 105103Google Scholar
[45] Liu H, Zheng X, Liu M, Zhao N, Luo A, Luo Z 2014 Opt. Express 22 6868Google Scholar
[46] Xu Y, Xie H, Jiang G, Miao L, Wang K, Tang S 2017 Opt. Commun. 395 55Google Scholar
[47] Gao L, Zhu T, Huang W, Luo Z 2015 IEEE Photonics J. 7 3300108Google Scholar
[48] Meng Y, Semaan G, Salhi M, Niang A, Guesmi K, Luo Z 2015 Opt. Express 23 23053Google Scholar
[49] Zhao C, Zou Y, Chen Y, Wang Z, Lu S, Zhang H 2012 Opt. Express 20 27888Google Scholar
[50] Guo B, Yao Y, Yang Y, Yuan Y, Wang R, Wang S 2015 J. Appl. Phys. 117 063108Google Scholar
[51] Chi C, Lee J, Koo J, Lee J 2014 Laser Phys. 24 105106Google Scholar
[52] Yan P, Lin R, Chen H, Zhang H, Liu A, Yang H 2015 IEEE Photonics Tech. L. 27 264Google Scholar
[53] Lee J, Koo J, Jhon Y, Lee J 2014 Opt. Express 22 6165Google Scholar
[54] Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y 2015 Sci. Rep. 5 8690Google Scholar
[55] Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C 2015 Photonics Res. 3 A43Google Scholar
[56] Liu M, Zhao N, Liu H, Zheng X, Luo A, Luo Z 2014 IEEE Photon. Technol. Lett. 26 983Google Scholar
[57] Jung M, Lee J, Koo J, Park J, Song Y, Lee K 2014 Opt. Express 22 7865Google Scholar
[58] Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photonics Res. 3 72Google Scholar
[59] Boguslawski J, Sotor J, Sobon G, Tarka J, Jagiello J, Macherzynski W 2014 Laser Phys. Lett. 24 105111Google Scholar
[60] Shaw L, Sotor J, Sobon G, Boguslawski J, Tarka J, Abramski K 2015 Fiber Lasers XII: Technology, Systems, and Applications 9344 93441ZGoogle Scholar
[61] Sotor J, Sobon G, Grodecki K, Abramski K 2014 Appl. Phys. Lett. 104 251112Google Scholar
[62] Boguslawski J, Sobon G, Zybala R, Mars K, Mikula A, Abramski K 2015 Opt. Express 23 29014Google Scholar
[63] Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786Google Scholar
[64] Liu M, Liu W, Pang L, Teng H, Fang S, Wei Z 2018 Opt. Commun. 406 72Google Scholar
[65] Wu K, Zhang X, Wang J, Li X, Chen J 2015 Opt. Express 23 11453Google Scholar
[66] Guo B, Yao Y, Yan P, Xu K, Liu J, Wang S 2016 IEEE Photon. Technol. Lett. 28 323Google Scholar
[67] Khazaeinezhad R, Kassani S, Jeong H, Park K, Kim B, Yeom D 2015 IEEE Photonics Tech. L. 27 1581Google Scholar
[68] Khazaeinezhad R, Hosseinzadeh Kassani S, Jeong H, Yeom D 2015 J. Lightwave Technol. 33 3550Google Scholar
[69] Jung M, Lee J, Park J, Koo J, Jhon Y, Lee J 2015 Opt. Express 23 19996Google Scholar
[70] Zhang H, Lu S, Zheng J, Du J, Wen S, Tang D 2014 Opt. Express 22 7249Google Scholar
[71] Liu H, Luo A, Wang F, Tang R, Liu M, Luo Z 2014 Opt. Lett. 39 4591Google Scholar
[72] Aiub E, Steinberg D, Thoroh de Souza E, Saito L 2017 Opt. Express 25 10546Google Scholar
[73] Liu W, Pang L, Han H, Bi K, Lei M, Wei Z 2017 Nanoscale 9 5806Google Scholar
[74] Ahmed M, Latiff A, Arof H, Ahmad H, Harun S 2016 Opt. Laser Technol. 82 145Google Scholar
[75] Liu M, Zheng X, Qi Y, Liu H, Luo A, Luo Z 2014 Opt. Express 22 22841Google Scholar
[76] Wang Y, Mao D, Gan X, Han L, Ma C, Xi T 2015 Opt. Express 23 205Google Scholar
[77] Zhang M, Howe R, Woodward R, Kelleher E, Torrisi F, Hu G 2015 Nano Research 8 1522Google Scholar
[78] Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J 2017 Opt. Lett. 42 5010Google Scholar
[79] Liu W, Liu M, Ouyang Y, Hou H, Ma G, Lei M, et al. 2018 Nanotechnology 29 174002Google Scholar
[80] Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J 2018 IEEE J. Sel. Top. Quant. 24 1100706Google Scholar
[81] Lee J, Koo J, Jhon Y, Lee J 2017 Opt. Mater. Express 7 2968Google Scholar
[82] Li J, Zhao Y, Chen Q, Niu K, Sun R, Zhang H 2017 IEEE Photonics J. 9 1506707Google Scholar
[83] Niu K, Sun R, Chen Q, Man B, Zhang H 2018 Photonics Res. 6 72Google Scholar
[84] Cui Y, Lu F, Liu X 2017 Sci. Rep. 7 40080Google Scholar
[85] Mao D, Cui X, Gan X, Li M, Zhang W, Lu H 2018 IEEE J. Sel. Top. Quant. 24 1100406Google Scholar
[86] Hisyam M, Rusdi M, Latiff A, Harun S 2017 IEEE J. Sel. Top. Quant. 23 1100205Google Scholar
[87] Song H, Wang Q, Zhang Y, Li L 2017 Opt. Commun. 394 157Google Scholar
[88] Mao D, Li M, Cui X, Zhang W, Lu H, Song K 2018 Opt. Commun. 406 254Google Scholar
[89] Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar
[90] Song Y, Chen S, Zhang Q, Li L, Zhao L, Zhang H 2016 Opt. Express 24 25933Google Scholar
[91] Li D, Jussila H, Karvonen L, Ye G, Lipsanen H, Chen X 2015 Sci. Rep. 5 15899Google Scholar
[92] Sotor J, Sobon G, Macherzynski W, Paletko P, Abramski K 2015 Appl. Phys. Lett. 107 051108Google Scholar
[93] Luo Z, Liu M, Guo Z N, Jiang X, Luo A P, Zhao C 2015 Opt. Express 23 20030Google Scholar
[94] Liu M, Jiang X, Yan Y, Wang X, Luo A, Xu W 2018 Opt. Commun. 406 85Google Scholar
[95] Xu Y, Jiang X, Ge Y, Guo Z, Zeng Z, Xu Q 2017 J. Mater. Chem. C 5 3007Google Scholar
[96] Zhang S, Zhang X, Wang H, Chen B, Wu K, Wang K 2016 Opt. Mater. Express 6 3159Google Scholar
[97] Yun L 2017 Opt. Express 25 32380Google Scholar
[98] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K 2015 Opt. Lett. 40 3885Google Scholar
[99] Yu H, Zheng X, Yin K, Cheng X, Jiang T 2015 Appl. Opt. 54 10290Google Scholar
[100] Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916Google Scholar
[101] Chai T, Li X, Feng T, Guo P, Song Y, Chen Y 2018 Nanoscale 10 17617Google Scholar
[102] Jhon Y, Koo J, Anasori B, Seo M, Lee J, Gogotsi Y 2017 Adv. Mater. 29 1702496Google Scholar
[103] Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y 2018 Laser Photonics Rev. 12 1700229Google Scholar
[104] Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H 2018 Opt. Express 26 22750Google Scholar
[105] Song Y, Liang Z, Jiang X, Chen Y, Li Z, Lu L 2017 2D Mater. 4 045010Google Scholar
[106] Liu S, Zhu X, Zhu G, Balakrishnan K, Zong J, Wiersma K 2015 Opt. Lett. 40 147Google Scholar
[107] Liu J, Wu S, Yang Q, Wang P 2011 Opt. Lett. 36 4008Google Scholar
[108] Wang R, Liu Y, Jiang M, Xu X, Wu H, Tian Y 2017 Opt. Quant. Electron. 49 137Google Scholar
[109] Ahmad H, Aidit S, Ooi SI, Rezayi M, Tiu Z 2017 Laser Phys. 27 150302Google Scholar
[110] Popa D, Sun Z, Hasan T, Torrisi F, Wang F, Ferrari A 2011 Appl. Phys. Lett. 98 073106Google Scholar
[111] Wei C, Zhu X, Wang F, Xu Y, Balakrishnan K, Song F 2013 Opt. Lett. 38 3233Google Scholar
[112] Mansoor A, Ahmed Hamida B, Eltaif T, Ismail E, Kadir N, Khan S 2018 J. Opt. Commun. 39 307Google Scholar
[113] Yu Z, Song Y, Dong X, Li Y, Tian J, Wang Y 2013 Appl. Opt. 52 7127Google Scholar
[114] Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y 2013 Opt. Express 21 204Google Scholar
[115] Lin H, Li W, Lan J, Guan X, Xu H, Cai Z 2017 Appl. Opt. 56 802Google Scholar
[116] Wu D, Cai Z, Zhong Y, Peng J, Weng J, Luo Z 2015 IEEE Photon Technol. Lett. 27 2379Google Scholar
[117] Luo Z, Huang Y, Weng J, Cheng H, Lin Z, Xu B 2013 Opt. Express 21 29516Google Scholar
[118] Gao L, Huang W, Zhang J D, Zhu T, Zhang H, Zhao C 2014 Appl. Opt. 53 5117Google Scholar
[119] Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z 2013 J. Lightwave Technol. 31 2857Google Scholar
[120] Li W, Zou J, Huang Y, Wang K, Du T, Jiang S 2018 Photonics Res. 6 C29Google Scholar
[121] Sun L, Lin Z, Peng J, Weng J, Huang Y, Luo Z 2014 Sci. Rep. 4 4794Google Scholar
[122] Luo Z, Liu C, Huang Y, Wu D, Wu J, Xu H 2014 IEEE Sel. Top. Quant. 20 0902708Google Scholar
[123] Koo J, Lee J, Lee J 2017 J. Lightwave Technol. 35 2175Google Scholar
[124] Yan K, Lin J, Zhou Y, Gu C, Xu L, Wang A 2016 Appl. Opt. 55 3026Google Scholar
[125] Chen Y, Zhao C, Chen S, Du J, Tang P, Jiang G 2014 IEEE J. Sel. Top. Quant. 20 315Google Scholar
[126] Koo J, Lee J, Chi C, Lee J 2014 J. Opt. Soc. Am. B. 31 2157Google Scholar
[127] Yan P, Chen H, Li K, Guo C, Ruan S, Wang J, et al. 2016 IEEE Photonics J. 8 1500506Google Scholar
[128] Niu K, Chen Q, Sun R, Man B, Zhang H 2017 Opt. Mater. Express 7 3934Google Scholar
[129] Li W, Peng J, Zhong Y, Wu D, Lin H, Cheng Y 2016 Opt. Mater. Express 6 2031Google Scholar
[130] Luo Z, Wu D, Xu B, Xu H, Cai Z, Peng J 2016 Nanoscale 8 1066Google Scholar
[131] Woodward R, Kelleher E, Howe R, Hu G, Torrisi F, Hasan T 2014 Opt. Express 22 31113Google Scholar
[132] Wei R, Zhang H, Hu Z, Qiao T, He X, Guo Q 2016 Nanotechnology 27 305203Google Scholar
[133] Chen J, Deng G, Yan S, Li C, Xi K, Xu F 2015 Opt. Lett. 40 3576Google Scholar
[134] Xia H, Li H, Lan C, Li C, Du J, Zhang S 2015 Photonics Res. 3 A92Google Scholar
[135] Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K 2014 Opt. Express 22 25258Google Scholar
[136] Ren J, Wang S, Cheng Z, Yu H, Zhang H, Chen Y 2015 Opt. Express 23 5607Google Scholar
[137] Li H, Xia H, Lan C, Li C, Zhang X, Li J 2015 IEEE Photon. Technol. Lett. 27 69Google Scholar
[138] Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J 2015 Opt. Express 23 26723Google Scholar
[139] Luo Z, Huang Y, Zhong M, Li Y, Wu J, Xu B 2014 J. Lightwave Tech. 32 4077Google Scholar
[140] Lin J, Hu Y, Chen C, Gu C, Xu L 2015 Opt. Express 23 29059Google Scholar
[141] Zhang M, Hu G, Hu G, Howe RC, Chen L, Zheng Z 2015 Sci. Rep. 5 17482Google Scholar
[142] Kassani S, Khazaeizhad R, Jeong H, Nazari T, Yeom D 2015 Opt. Mater. Express 5 373Google Scholar
[143] Lin J, Yan K, Zhou Y, Xu L, Gu C, Zhan Q 2015 Appl. Phys. Lett. 107 191108Google Scholar
[144] Woodward R, Howe R, Runcorn T, Hu G, Torrisi F, Kelleher E 2015 Opt. Express 23 20051Google Scholar
[145] Chen B, Zhang X, Guo C, Wu K, Chen J, Wang J 2016 Opt. Eng. 55 081306Google Scholar
[146] Liu W, Liu M, Lei M, Fang S, Wei Z 2018 IEEE J. Sel. Top. Quant. 24 0901005Google Scholar
[147] Wu D, Cai Z, Zhong Y, Peng J, Cheng Y, Weng J 2017 IEEE J. Selec. Top. Quant. 23 7Google Scholar
[148] Huang K, Lu B, Li D, Qi X, Chen H, Wang N 2017 Appl. Opt. 56 6427Google Scholar
[149] Rashid1 F, Azzuhri1 S, Salim M, Shaharuddin R, Ismail1 M, Ismail1 M 2016 Laser Phys. Lett. 13 085102Google Scholar
[150] Zhao R, He J, Su X, Wang Y, Sun X, Nie H 2018 IEEE J. Sel. Top. Quant. 24 0900405Google Scholar
[151] Mu H, Lin S, Wang Z, Xiao S, Li P, Chen Y 2015 Adv. Opt. Mater. 3 1447Google Scholar
[152] Yu H, Zheng X, Yin K, Cheng X, Jiang T 2016 Opt. Mater. Express 6 603Google Scholar
[153] Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y 2017 Opt. Lett. 42 547Google Scholar
[154] Baek I, Lee H, Bae S, Hong B, Ahn Y, Yeom D 2012 Appl. Phys. Express 5 032701Google Scholar
[155] Tan W, Su C, Knize R, Xie G, Li L, Tang D 2010 Appl. Phys. Lett. 96 031106Google Scholar
[156] Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L 2014 Sci. Rep. 4 5016Google Scholar
[157] Cai W, Jiang S, Xu S, Li Y, Liu J, Li C 2015 Opt. Laser Technol. 65 1Google Scholar
[158] Feng C, Wang Y, Liu J, Tsang Y, Song Y, Yu Z 2013 Opt. Commun. 298 168Google Scholar
[159] Xu S, Man B, Jiang S, Feng D, Gao S, Chen C 2014 Opt. Lett. 39 2707Google Scholar
[160] Xu J, Li X, Wu Y, Hao X, He J, Yang K 2011 Opt. Lett. 36 1948Google Scholar
[161] Zhu H, Liu J, Jiang S, Xu S, Su L, Jiang D 2015 Opt. Laser Technol. 75 83Google Scholar
[162] Zhu H, Zhao L, Liu J, Xu S, Cai W, Jiang S 2016 Opt. Eng. 55 081304Google Scholar
[163] Xu J, Li X, He J, Hao X, Wu Y, Yang Y 2011 Appl. Phys. Lett. 99 261107Google Scholar
[164] Xu J, Li X, Wu Y, He J, Liu S, Hao X 2012 Opt. Letter 37 2652Google Scholar
[165] Davide D, Ugolotti E, Schmidt A, Petrov V, Griebner U, Agnesi A 2013 Opt. Lett. 38 1745Google Scholar
[166] Xie G, Ma J, Lv P, Gao W, Yuan P, Qian L 2012 Opt. Mater. Express 2 878Google Scholar
[167] Liu J, Wang Y, Qu Z, Zheng L, Su L, Xu J 2012 Laser Phys. Lett. 9 15Google Scholar
[168] Tolstik N, Sorokin E, Sorokina I 2014 Opt. Express 22 5564Google Scholar
[169] Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L 2012 Opt. Lett. 37 2085Google Scholar
[170] Wan H, Cai W, Wang F, Jiang S, Xu S, Liu J 2015 Opt. Quant. Electron. 48 11Google Scholar
[171] Wang Y, Qu Z, Liu J, Tsang Y 2012 J. Lightwave Technol. 30 3259Google Scholar
[172] Zhu H, Cai W, Wei J, Liu J, Zheng L, Su L 2015 Opt. Laser Technol. 68 120Google Scholar
[173] Wang Y, Sung W, Su X, Zhao Y, Zhang B, Wu C 2018 IEEE Photonics J. 10 1504110Google Scholar
[174] Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y 2018 ACS Nano 12 11376Google Scholar
[175] Zhao G, Hou J, Wu Y, He J, Hao X 2015 Adv. Opt. Mater. 3 937Google Scholar
[176] Zhang B, Lou F, Zhao R, He J, Li J, Su X 2015 Opt. Lett. 40 3691Google Scholar
[177] Su X, Wang Y, Zhang B, Zhao R, Yang K, He J 2016 Opt. Lett. 41 1945Google Scholar
[178] Sun X, Nie H, He J, Zhao R, Su X, Wang Y 2017 Opt. Express 25 20025Google Scholar
[179] Li J, Luo H, Zhai B, Lu R, Guo Z, Zhang H 2016 Sci. Rep. 6 30361Google Scholar
[180] Zhao T, Wang Y, Chen H, Shen D 2014 Appl. Phys. B 116 947Google Scholar
[181] Hou J, Jia Z, Zhang B, Yin Y, Ning J, Mu W 2016 IEEE Photonics Tech. L. 28 825Google Scholar
[182] Wang Z, Chen X, He J, Xu X, Zhang B, Yang K 2015 IEEE J. Quant. Elect. 51 7000105Google Scholar
[183] Guan X, Zhan L, Zhu Z, Xu B, Xu H, Cai Z 2018 Appl. Opt. 57 371Google Scholar
[184] Li C, Liu J, Jiang S, Xu S, Ma W, Wang J 2016 Opt. Mater. Express 6 1570Google Scholar
[185] Nie H, Zhang P, Zhang B, Yang K, Zhang L, Li T 2017 Opt. Lett. 42 699Google Scholar
[186] Zhu G, Zhu X, Balakrishnan K, Norwood R A, Peyghambarian N 2013 Opt. Mater. Express 3 1365Google Scholar
[187] Zhang C, Liu J, Fan X, Peng Q, Guo X, Jiang D 2018 Opt. Laser Technol. 103 89Google Scholar
[188] Zu Y, Zhang C, Wu Y, Liu J, Liu J, Wang Y 2018 Chin. Opt. Lett. 16 020013Google Scholar
[189] Liu X, Yang K, Zhao S, Li T, Qiao W, Zhang H 2017 Photonics Res. 5 461Google Scholar
[190] Li J, Luo H, Wang L, Zhao C, Zhang H, Li H 2015 Opt. Lett. 40 3659Google Scholar
[191] You Z, Sun Y, Sun D, Zhu Z, Wang Y, Li J 2017 Opt. Lett. 42 871Google Scholar
[192] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y 2014 Adv. Mater. 26 3538Google Scholar
[193] Kong L, Xie G, Yuan P, Qian L, Wang S, Yu H 2015 Photonics Res. 3 A47Google Scholar
[194] Lan J, Zhang X, Zhou Z, Xu B, Xu H, Cai Z 2017 IEEE Photonics Tech. L. 29 515Google Scholar
[195] Luan C, Zhang X, Yang K, Zhao J, Zhao S, Li T 2017 IEEE J. Sel. Top. Quant. 23 66Google Scholar
[196] Fan M, Li T, Zhao S, Li G, Ma H, Gao X 2016 Opt. Lett. 41 540Google Scholar
[197] Zhang S, Liu X, Guo L, Fan M, Lou F, Gao P 2017 IEEE Photonics Tech. L. 29 2258Google Scholar
[198] Ge P, Liu J, Jiang S, Xu Y, Man B 2015 Photonics Res. 3 256Google Scholar
[199] Xue Y, Xie Z, Ye Z, Hu X, Xu J, Zhang H 2018 Chin. Opt. Lett. 16 020018Google Scholar
[200] Su X, Nie H, Wang Y, Li G, Yan B, Zhang B 2017 Opt. Lett. 42 3502Google Scholar
[201] Fan M, Li T, Zhao J, Zhao S, Li G, Yang K 2018 Opt. Lett. 43 1726Google Scholar
[202] Luan C, Yang K, Zhao J, Zhao S, Song L, Li T 2016 Opt. Lett. 41 3783Google Scholar
[203] Wei C, Luo H, Zhang H, Li C, Xie J, Li J 2016 Laser Phys. Lett. 13 105108Google Scholar
[204] Guo L, Li T, Zhang S, Wang M, Zhao S, Yang K 2017 Opt. Mater. Express 7 2090Google Scholar
[205] Zhang R, Zhang Y, Yu H, Zhang H, Yang R, Yang B 2015 Adv. Opt. Mater. 3 1787Google Scholar
[206] Chu Z, Liu J, Guo Z, Zhang H 2016 Opt. Mater. Express 6 2374Google Scholar
[207] Zhang H, He J, Wang Z, Hou J, Zhang B, Zhao R 2016 Opt. Mater. Express 6 2328Google Scholar
[208] Xie Y, Kong L, Qin Z, Xie G, Zhang J 2016 Opt. Eng. 55 081307Google Scholar
[209] Wang Z, Zhao R, He J, Zhang B, Ning J, Wang Y 2016 Opt. Express 24 1598Google Scholar
[210] Li C, Liu J, Guo Z, Zhang H, Ma W, Wang J 2018 Opt. Commun. 406 158Google Scholar
[211] Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P 2016 Laser Phys. Lett. 13 045801Google Scholar
[212] Liu J, Liu J, Guo Z, Zhang H, Ma W, Wang J 2016 Opt. Express 24 30289Google Scholar
[213] Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S 2015 Opt. Express 23 24713Google Scholar
[214] Nie H, Zhang P, Zhang B, Xu M, Yang K, Sun X 2018 IEEE J. Sel. Top. Quant. 24 1600205Google Scholar
[215] Wang C, Wang Y, Jiang X, Xu J, Huang W, Zhang F 2019 Adv. Opt. Mater. 7 1900060Google Scholar
[216] Liu J, Huang H, Zhang F, Zhang Z, Liu J, Zhang H 2018 Photonics Res. 6 762Google Scholar
[217] Zu Y, Zhang C, Guo X, Liang W, Liu J, Su L 2019 Laser Phys. Lett. 16 015803Google Scholar
[218] Feng X, Ding B, Liang W, Zhang F, Ning T, Liu J 2018 Laser Phys. Lett. 15 085805Google Scholar
期刊类型引用(9)
1. 庞修洋,赵新新,俞强,邓海芹,刘方奇,张严,殳博王,贤天浩,朱思聪,吴坚,侯义锋,张凯,姜宗福. 用于产生红外脉冲的碲烯纳米片的化学气相输运生长. 中国激光. 2023(01): 236-243 . 百度学术 2. 李斌,林欢,申福花. 二硫化钼导热性能研究进展. 微纳电子技术. 2022(06): 529-537+605 . 百度学术 3. 王聪,杨飒,段敏,王子聪,周仁龙,宋宇锋. 二维非线性材料MXene增强的全光波长转换器. 光学学报. 2021(14): 169-174 . 百度学术 4. 王凯,孙靖雅,潘昌基,王飞飞,张可,陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制. 物理学报. 2021(20): 143-150 . 百度学术 5. 何建林,刘贵立,李欣玥. 扭转变形对掺金黑磷烯电子结构和光学性质的影响. 物理学报. 2021(22): 246-253 . 百度学术 6. 龙慧,胡建伟,吴福根,董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报. 2020(18): 119-137 . 百度学术 7. 俞强,郭琨,陈捷,王涛,汪进,史鑫尧,吴坚,张凯,周朴. MnPS_3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报. 2020(18): 173-180 . 百度学术 8. 郝倩倩,宗梦雨,张振,黄浩,张峰,刘杰,刘丹华,苏良碧,张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报. 2020(18): 167-172 . 百度学术 9. 徐依全,王聪. 基于二维材料的全光器件. 物理学报. 2020(18): 89-107 . 百度学术 其他类型引用(16)
-
图 2 石墨烯(a), (b) [8], MoS2 (c), (d) [8], Bi2Se3 (e), (f) [10]和BP (g), (h)[8]的原子结构和带隙结构
Fig. 2. Atomic structures and band structures of graphene (a), (b) [8], MoS2 (c), (d) [8], Bi2Se3 (e), (f)[10] and BP (g), (h)[8]. Reprinted by permission from Ref. [8]. Copyright 2014 Nature Publishing Group. Reprinted by permission from Ref. [10]. Copyright 2009 Nature Publishing Group.
图 5 二维材料的耦合方式 (a) 二维材料转移至石英片上; (b) 二维材料转移至高反镜上; (c) 三明治结构, 二维材料转移至光纤端面 (d)、锥形光纤(e)和D型光纤(f)
Fig. 5. Incorporation schemes for two-dimensional materials: (a) Transferring two-dimensional materials on quartz; (b) transferring two-dimensional materials on high reflection mirror; (c) sandwiching structure; transferring or depositing SA on (d) fiber end, (e) tapered fiber and (f) D-typed fiber.
图 6 (a) 光纤激光器的脉宽和重复频率分布图; (b) 种子源和压缩脉冲的自相关曲线[20]; (c), (d) 212阶谐波锁模脉冲输出序列和自相关曲线[21]; (e), (f)锁模脉冲序列和自相关曲线[103]
Fig. 6. (a) Scattergram of pulse width and repetition rate of fiber lasers. (b) Intensity autocorrelation trace, fitted with a sech2 profile. Both seed and compressed traces are normalized to 1. Selected from Ref. [20]. (c) Measured oscilloscope traces of the 212th-harmonic-output optical pulses with permission from Ref. [21] © The Optical Society. (d) Measured autocorrelation traces of the output pulses at the maximum harmonic order with permission from Ref. [21] © The Optical Society. (e) Typical oscilloscope pulse trains of mode-locking. Reprinted by permission from Ref. [103]. Copyright 2018 Wiley-VCH Verlag. (f) Autocorrelation trace with a sech2 fitting. Reprinted by permission from Ref. [103]. Copyright 2018 Wiley-VCH Verla.
图 7 (a) 黑磷纳米片溶液; (b) 黑磷饱和吸收体的非线性曲线; (c) Ho3+/Pr3+共掺的被动锁模光纤激光器; (d)锁模脉冲的自相关曲线[179]
Fig. 7. (a) Layered BP solution; (b) nonlinear transmission of BP SA; (c) passively mode-locked Ho3+/Pr3+ co-doped fluoride fiber laser; (d) autocorrelation trace of the mode-locked pulses. Reprinted by permission from Ref. [179]. Copyright 2016 Nature Publishing Group.
表 1 基于石墨烯、TIs、TMDs、BP的锁模光纤激光器的性能总结
Table 1. Performance summary of mode-locked fiber lasers based on graphene, TIs, TMDs and BP.
Material type Fabrication method λ/nm Pulse width Repetition rate Energy Ref. G G CVD 1069.8 580 ps 0.9 MHz 0.41 nJ [26] CVD 1559.12 432.47 fs 25.51 MHz 0.09 nJ [27] CVD 1565.3 148 fs 101 MHz 15 pJ [28] CVD 1545 88 fs 21.15 MHz 71 pJ [29] CVD 1531.3 1.21 ps 1.88 MHz — [30] CVD 1559.34 345 fs 54.28 MHz 38.7 pJ [31] CVD 1561 1.23 ps 2.54 MHz — [32] CVD 1576 415 fs 6.84 MHz 7.3 nJ [33] LPE 1550 29 fs 18.67 MHz 2.8 nJ [20] ME 1567 220 fs 15.7 MHz 83 pJ [34] — 1554 168 fs 63 MHz 55 pJ [35] ME 1560 900 fs 2.22 GHz — [22] — 1560 992 fs 0.49 GHz — [36] LPE 1525—1559 1 ps 8 MHz 125 pJ [37] CVD 1945 205 fs 58.87 MHz 220 pJ [38] — 2060 190 fs 20.98 MHz 2.55 nJ [39] CVD 2780 42 ps 25.4 MHz 0.7 nJ [40] GO — 1556.5 615 fs 17.09 MHz — [41] Graphene-Bi2Te3 CVD 1565.6 1.17 ps 6.91 MHz — [42] TIs Bi2Se3 PM 1031.7 46 ps 44.6 MHz 0.76 nJ [43] PM 1600 360 fs 35.45 MHz 24.3 pJ [44] PM 1557.5 660 fs 12.5 MHz 0.14 nJ [45] LPE 1571 579 fs 12.54 MHz 127 pJ [46] LPE 1559 245 fs 202.7 MHz 37 nJ [47] HM 1610 0.7 ns 640.9 MHz 481 pJ [48] PM 1557—1565 1.57 ps 1.21 MHz — [49] LPE 1567/1568 22 ps 8.83 MHz 1.1 nJ [50] Bi2Te3 ME 1057.82 230 ps 1.44 MHz 0.6 nJ [51] HM 1064.47 960 ps 1.11 MHz — [52] ME 1547 600 fs 15.11 MHz 53 pJ [53] PLD 1560.8 286 fs 18.55 MHz 0.03 nJ [54] HM 1557 1100 fs 8.635 MHz 29 pJ [55] PLD 1562.4 320 fs 2.95 GHz — [24] — 1557.4 3.42 ps 388 MHz — [56] ME 1935 795 fs 27.9 MHz 36 pJ [57] — 1909.5 1.26 ps 21.5 MHz — [58] Sb2Te3 LPE 1556 449 fs 22.13 MHz 39.6 pJ [59] ME 1564 125 fs 22.4 MHz 44.6 pJ [60] ME 1561 270 fs 34.58 MHz 0.03 nJ [61] DFT 1568.6 195 fs 33 MHz 0.27 nJ [62] ME 1565 128 fs 22.32 MHz 45 pJ [15] MS 1558 167 fs 25.38 MHz 0.21 nJ [63] PLD 1542 70 fs 95.4 MHz — [23] TMDs WS2 MS 1560 288 fs 41.4 MHz 0.04 pJ [64] LPE 1550 595 fs — — [65] PLD 1560 220 fs — — [66] LPE 1561/1563 369/563 24.93/20.39 MHz 70/136 pJ [67] CVD 1565 332 fs 31.11 MHz 14 pJ [68] PLD 1559.7 452 fs 1.04 GHz 10.9 pJ PLD 1558.54 585—605 fs 8.83 MHz 1.14 nJ [66] LPE 1941 1.3 ps 34.8 MHz 172 pJ [69] MoS2 HM 1054.3 800 ps 7 MHz 1.3 nJ [70] HM 1569.5 710 fs 12.09 MHz 0.147 nJ [71] ME 1550 200 fs 14.53 MHz — [72] PLD 1561 246 fs 101.4 MHz 1.2 nJ [73] LPE 1573.7 630 fs 27.1 MHz 0.141 nJ [74] HM 1556.8 3 ps 2.5 GHz 2 pJ [75] LPE 1530.4 1.2 ps 125 MHz 344 pJ [76] LPE 1555.6 737 fs 3.27 GHz 7 pJ [21] LPE 1535—1565 0.96—7.1 ps 12.99 MHz — [77] MS 1915.5 1.25 ps 18.72 MHz — [78] WSe2 CVD 1557.4 163.5 fs 63.13 MHz 451 pJ [79] CVD 1863.96 1.16 ps 11.36 MHz 2.9 nJ [80] MoSe2 LPE 1912 920 fs 18.21 MHz — [81] SnS2 LPE 1062.66 656 ps 39.33 MHz 57 pJ [82] LPE 1562.01 623 fs 29.33 MHz 41 pJ [83] ReS2 CVD 1564 1.25 ps 3.43 MHz — [84] LPE 1558.6 1.6 ps 5.48 MHz 73 pJ [85] BP ME 1085.5 7.54 ps 13.5 MHz 5.93 nJ [86] LPE 1030.6 400 ps 46.3 MHz 0.70 nJ [87] LPE 1555 102 fs 23.9 MHz 0.08 nJ [25] LPE 1562 1236 fs 5.426 MHz — [88] LPE 1549—1575 280 fs 60.5 MHz — [89] ME 1560.7 570 fs 6.88 MHz 0.74 nJ [16] LPE 1559.5 670 fs 8.77 MHz — [90] ME 1558.7 786 fs 14.7 MHz 0.11 nJ [91] ME 1571.4 946 fs 5.96 MHz — [14] ME 1560.5 272 fs 28.2 MHz 2.3 nJ [92] LPE 1532—1570 940 fs 4.96 MHz 1.1 nJ [93] LPE 1562.8 291 fs 10.36 MHz — [94] LPE 1562 635 fs 12.5 MHz — [95] LPE 1555 687 fs 37.8 MHz — [96] LPE 1561.7 882 fs 5.47 MHz — LPE 1533 — 20.82 MHz 0.07 nJ [97] ME 1910 739 fs 36.8 MHz 0.05 nJ [98] LPE 1898 1580 fs 19.2 MHz 440 pJ [99] LPE 2094 1300 fs 290 MHz 0.39 nJ [100] 注: LPE, liquid-phase exfoliation; CVD, chemical vapor deposition; ME, mechanical exfoliation; MS, magnetron sputtering; PLD, pulsed laser deposition; HM, hydrothermal method; DFT, direct fusion technique; PM, polyol method; G, graphene; GO, graphene oxide. 表 2 基于石墨烯、TIs、TMDs、BP的调Q光纤激光器的性能总结
Table 2. Performance summary of Q-switched fiber lasers based on graphene, TIs, TMDs and BP.
Material type Fabrication methods λ Pulse width Repetation rate Energy Ref. G G — 1075 nm 70 ns 257 kHz 46 nJ [107] — 1192.6 nm 800 ps 111 kHz 0.44 μJ [106] CVD 1560 nm 2.06 μs 73.06 kHz 93.7 nJ [108] HM 1561 nm 4.0 μs 27.2 kHz 29 nJ [109] LPE 1555 nm 2 μs 103 kHz 40 nJ [110] — 2.78 μm 2.9 μs 37.2 kHz 1.67 μJ [111] GO — 1558 nm 2.3 μs 123.5 kHz 1.68 nJ [112] CVD 1044 nm 1.7 μs 215 kHz 8.37 μJ [113] — 2032 nm 3.8 μs 45 kHz 6.71 μJ [114] TIs Bi2Se3 LPE 604 nm 494 ns 187.4 kHz 3.1 nJ [115] LPE 635 nm 244 ns 454.5 kHz 22.3 nJ [116] LPE 1.06 μm 1.95 μs 29.1 kHz 17.9 nJ [117] HM 1562.27 nm 1.6 μs 53.7 kHz 0.08 nJ [118] PM 1.5 μm 13.4 μs 12.88 kHz 13.3 nJ [119] LPE 1.55 μm 2.54 μs 212 kHz — [120] LPE 1530.3 nm 24 μs 40.1 kHz 39.8 nJ [121] LPE 1.98 μm 4.18 μs 26.8 kHz 313 nJ [122] Bi2Te3 ME 1559 nm 4.88 μs 21.24 kHz 89.9 nJ [123] SM 1557.5 nm 3.71 μs 49.40 kHz 2.8 μJ [124] LPE 1.5 μm 13 μs 12.82 kHz 1.5 μJ [125] ME 1.56 μm 2.81 μs 42.8 kHz 12.7 nJ [126] Sb2Te3 MS 1530—1570 nm 400 ns 338 kHz 18 nJ [127] SnS2 — 1532.7 nm 510 ns 233 kHz 40 nJ [128] TMDs MoS2 LPE 604 nm 602 ns 118.4 kHz 5.5 nJ [129] LPE 635 nm 200 ns 512 kHz 28.7 nJ [130] LPE 1030—1070 nm 2.88 μs 89 kHz 126 nJ [131] HM 1.56 μm 3.2 μs 91.7 kHz 17 nJ [132] TEM 1550—1575 nm 6 μs 22 kHz 150 nJ [133] CVD 1529—1570 nm 1.92 μs 114.8 kHz 8.2 nJ [134] LPE 1519—1567 nm 3.3 μs 43.47 kHz 160 nJ [135] PLD 1549.8 nm 660 ns 131 kHz 152 nJ [136] CVD 1549.9 nm 1.66 μs 173 kHz 27.2 nJ [137] LPE 1550 nm 9.92 μs 41.45 kHz 184 nJ [138] LPE 1.06 μm 5.8 μs 28.9 kHz 32.6 nJ [139] 1.56 μm 5.4 μs 27 kHz 63.2 nJ 2.03 μm 1.76 μs 48.1 kHz 1 μJ TMDs WS2 LPE 604 nm 435 ns 132.2 kHz 6.4 nJ [129] CVD 1027—1065 nm 1.65 μs 97 kHz — [140] LPE 1030 nm 3.2 μs 36.7 kHz 13.6 nJ [141] LPE 1.5 μm 0.71 μs 134 kHz 19 nJ [142] LPE 1558 nm 1.1 μs 97 kHz 179 nJ [141] LPE 1547.5 nm 958 ns 120 kHz 44 nJ [143] LPE 1550 nm 3.966 μs 77.92 kHz 1.2 μJ [138] TDMs MoSe2 LPE 635.4 nm 240 ns 555 kHz 11.1 nJ [130] 1060 nm 2.8 μs 60 kHz 116 nJ LPE 1566 nm 4.8 μs 35.4 kHz 825 nJ [144] 1924 nm 5.5 μs 21.8 kHz 42 nJ LPE 1550 nm 4.04 μs 66.8 kHz 369 nJ [138] WSe2 LPE 1550 nm 4.06 μs 85.36 kHz 485 nJ [138] WSe2 LPE 1560 nm 3.1 μs 49.6 kHz 33.2 nJ [145] TiSe2 CVD 1530 nm 1.12 μs 154 kHz 75 nJ [146] BP LPE 635 nm 383 ns 409.8 kHz 27.6 nJ [147] ME 1064.7 nm 2.0 μs 76 kHz 17.8 nJ [148] ME 1.0 μm 1.16 μs 58.73 kHz 2.09 nJ [149] LPE 1.5 μm 1.36 μs 82.64 kHz 148 nJ [150] ME 1561 nm 2.96 μs 34.32 kHz 194 nJ [151] ME 1562.8 nm 10.32 μs 15.78 kHz 94.3 nJ [14] LPE 1912 nm 731 μs 113.3 kHz 632 nJ [152] 注: SM, solvothermal method; TEM, thermal evaporation method. 表 3 基于石墨烯、TIs、TMDs、BP的锁模固体激光器的性能总结
Table 3. Performance summary of mode-locked solid-state lasers based on graphene, TIs, TMDs and BP.
Material Fabrication method Integration substrate Bulk laser crystal Center wavelength Pulse width Repetition rate Output power Ref. G CVD Quartz Ti:Sapphire 800 nm 63 fs 99.4 MHz 480 mW [154] LPE Quartz Yb:YAG 1064 nm 4 ps 88 MHz 100 mW [155] CVD GM Yb:YCOB 1.0 μm 152 fs — — [156] CVD Quartz Yb:SC2SiO5 1062.8 nm 14 ps 90.7 MHz 480 mW [157] VEM Quartz Nd:YVO4 1064 nm 8.8 ps 84 MHz 3.06 W [158] CVD Sapphire Yb:KGW 1032 nm 325 fs 66.3 MHz 1.78 W [159] LPE DM Nd:GdVO4 1064 nm 16 ps 43 MHz 360 mW [160] CVD Glass Yb:Y:CaF2 1051 nm 4.8 ps 60 MHz 370 mW [161] CVD Glass Yb:Y2SiO5 1042.6 nm 883 fs 87 MHz 1 W [162] LPE DM Yb:KGW 1031.1 nm 428 fs 86 MHz 504 mW [163] LPE DM Nd;GdVO4 1.34 μm 11 ps 100 MHz 1.29 W [164] CVD Quartz Cr:YAG 1516 nm 91 fs — 100 mW [165] CVD GM Tm:CLNGG 2.0 μm 354 fs — NA [156] CVD DM Tm:CLNGG 2014.4 nm 882 fs 95 MHz 60 mW [166] LPE Quartz Tm:YAP 2023 nm < 10 ps 71.8 MHz 268 mW [167] CVD HRM Cr:ZnS 2400 nm 41 fs 108 MHz 250 mW [168] CVD HRM Tm:CLNGG 2018 nm 729 fs 98.7 MHz 178 mW [169] CVD Quartz Tm:YAP 1988 nm — 62.38 MHz 256 mW [170] GO VEM Quartz Nd:GdVO4 1064 nm 4.5 ps 70 MHz 1.1 W [171] VEM Quartz Yb:Y2SiO5 1059 nm 763 fs 94 MHz 700 mW [172] Bi2Te3 SCCA Sapphire Nd:YVO4 1064 nm 8 ps 0.98 GHz 180 mW [173] MoS2 PLD Quartz Pr:GdLiF4 522 nm 46 ps 101.4 MHz 10 mW [153] MoS2/G PLD HRM Yb:KYW 1037.2 nm 236 fs 41.84 MHz 550 mW [174] MoS2/GO LPE DM Nd:GdVO4 1064 nm 17 ps 1.02 GHz 508 mW [175] BP LPE DM Nd:GdVO4 1064 nm 6.1 ps 140 MHz 460 mW [176] LPE HRM Yb,Lu:CALGO 1053.4 nm 272 fs 63.3 MHz 820 mW [177] LPE Quartz Nd;GdVO4 1.34 μm 9.24 ps 58.14 MHz 350 mW [178] LPE — Ho,Pr:ZBLAN 2.8 μm 8.6 ps 13.98 MHz 87.8 mW [179] 注: VEM, vertical evaporation method; SCCA, spin coating–coreduction approach; DM, dielectric mirror; HRM, high reflective mirror. 表 4 在2—3 μm波段下, 基于石墨烯、TIs、TMDs、BP的调Q固体激光器的性能总结
Table 4. Performance summary of Q-switched solid-state lasers based on graphene, TIs, TMDs and BP at the wavelength of 2-3 μm.
Material Fabrication method Integration substrate Bulk laser crystal Center wavelength Pulse width Repitition rate Output power Ref. G — Quartz Ho:YAG 2097 nm 2.6 μs 64 kHz 264 mW [180] — Quartz Tm:LGGG 2003 nm 1.29μs 43.9 kHz 140 mW [181] EG SiC Cr:ZnSe 2.4 μm 157 ns 169 kHz 256 mW [182] CVD CaF2 Er:Y2O3 2.7 μm 296 ns 44.2 kHz 114 mW [183] — HRM Er:ZBLAN 2.78 μm 2.9 μs 37 kHz 62 mW [111] CVD Quartz Er:CaF2 2.8 μm 1.3 μs 62.7 kHz 172 mW [184] CVD Sapphire Ho,Pr:LLF 2.95 μm 937 ns 55.7 kHz 172 mW [185] LPE HRM Ho:ZBLAN 3.0 μm 1.2 μs 92 kHz 102 mW [186] GO LPE — Tm:Y:CaF2 1969 nm 1.32μs 20.2 kHz 400 mW [187] LPE Quartz Tm:YLF 1928 nm 1.0 μs 38 kHz 379 mW [188] TIs Bi2Te3 LPE Quartz Tm:LuAG 2023.6 nm 620 ns 118 kHz 2.03 W [189] HEM CaF2 Ho:ZBLAN 2.979 μm 1.4 μs 81.96 kHz 327 mW [190] Bi2Te3/G SM SiO2 Tm:YAP 1980 nm 238 ns 108 kHz 2.34 W [191] Er:YSGG 2796 nm 243 ns 88 kHz 110 mW TMDs MoS2 PLD Quartz Tm:Ho:YGG 2.1 μm 410 ns 149 kHz 206 mW [192] PLD GM Tm:CLNGG 1979 nm 4.8 μs 110 kHz 62 mW [193] LPE DM Tm:CYAO 1850 nm 0.5 μs 84.9 kHz 490 mW [194] LPE Glass Tm,Ho:YAP 2129 nm 435 ns 55 kHz 275 mW [195] LPE YAG Er:Lu2O3 2.84 μm 335 ns 121 kHz 1.03 W [196] CVD YAG Ho,Pr:LLF 2.95 μm 621 ns 85.8 kHz 70 mW [197] — — Tm:GdVO4 1902 nm 0.8 μs 49.1 kHz 100 mW [198] MoS2/BP LPE SAMs Tm:YAP 1993 nm 488 ns 86 kHz 3.6 W [199] ReS2 LPE Sapphire Er:YSGG 2.8 μm 324 ns 126 kHz 104 mW [200] LPE YAG Er:SrF2 2.79 μm 508 ns 49 kHz 580 mW [201] WS2 TD SiO2 Tm:LuAG 2.0 μm 660 ns 62 kHz 1.08 W [202] SGM HRM Ho3+/Pr3+:ZBLAN 2.86 μm 1.73 us 131 kHz 48 mW [203] LPE YAG Ho,Pr,LLF 2.95 μm 654 ns 90.4 kHz 82 mW [204] BP ME Quartz Tm:Ho:YAG 2.1 μm 636 ns 122 kHz 27 mW [205] LPE Quartz Tm:YAP 1988 nm 1.8 us 19.3 kHz 151 mW [206] LPE DM Tm:YAP 1969 nm 181 ns 81 kHz 3.1 W [207] ME HRM Tm:YAG 2 μm 3.12 us 11.6 kHz 38 mW [208] LPE — Ho:ZBLAN 2.9 μm 2.4 μs 62.5 kHz 309 mW [179] LPE DM Cr:ZnSe 2.4 μm 189 ns 176 kHz 36 mW [209] LPE — Er:CaF2 2.8 μm 955 ns 41.9 kHz 178 mW [210] LPE GM Tm:CaYAlO4 1.93 μm 3.1 μs 17.7 kHz 12 mW [211] LPE GM Er:Y2O3 2.72 μm 4.5 μs 12.6 kHz 6 mW [211] LPE Silicon Er:SrF2 2.79 μm 702 ns 77 kHz 180 mW [212] LPE — Er:ZBLAN 2.8 μm 1.2 μs 63 kHz 485 mW [213] LPE Silicon Er:CaF2 2.8 μm 955 ns 41.9 kHz 178 mW [210] LPE CaF2 Ho,Pr:LLF 2.95 μm 194 ns 159 kHz 385 mW [214] 注: SGM, sulfidation grown method; GM, gold mirror. -
[1] Gattass R R, Mazur E 2008 Nat. Photonics 2 219Google Scholar
[2] Dominik S, Christopher M M, Christian S, Mark S S 2010 Opt. Lett. 35 3799Google Scholar
[3] Shuo T, Jian L, Tatiana B K, Chen Z, Bruce J T 2009 J. Biomed. Opt. 14 030508Google Scholar
[4] Sobon G, Klimczak M, Sotor J, Krzempek K, Pysz D, Stepien R 2013 Opt. Mater. Express 4 7Google Scholar
[5] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z 2009 Adv. Funct. Mater. 19 3077Google Scholar
[6] Krzempek K, Sobon G, Kaczmarek P, Abramski K M 2013 Laser Phys. Lett. 10 105103
[7] Zhang H 2015 ACS Nano. 9 9451Google Scholar
[8] Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics. 8 899Google Scholar
[9] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V 2004 Science 306 666Google Scholar
[10] Zhang H, Liu C, Qi X, Dai X, Fang Z, Zhang S 2009 Nat. Phys. 5 438Google Scholar
[11] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S 2012 Appl. Phys. Lett. 101 211106Google Scholar
[12] Brown A, Rundqvist S 1965 Acta Crystallogr. 19 684Google Scholar
[13] Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar
[14] Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, et al. 2015 Opt Express 23 12823Google Scholar
[15] Sotor J, Sobon G, Abramski K M 2014 Opt. Express 22 13244Google Scholar
[16] Ahmed M, Latiff A, Arof H, Harun S 2016 Laser Phys. Lett. 13 095104Google Scholar
[17] Xia H, Li H, Lan C, Li C, Zhang X, Zhang S 2014 Opt. Express 22 17341Google Scholar
[18] Guo B 2018 Chin. Opt. Lett. 16 20004Google Scholar
[19] Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G 2017 Sci. Rep. 7 42357Google Scholar
[20] Purdie D G, Popa D, Wittwer V J, Jiang Z, Bonacchini G, Torrisi F, et al. 2015 Appl. Phys. Lett. 106 253101Google Scholar
[21] Koo J, Park J, Lee J, Jhon Y, Lee J 2016 Opt. Express 24 10575
[22] Sobon G, Sotor J, Abramski K 2012 Appl. Phys. Lett. 100 161109Google Scholar
[23] Liu W, Pang L, Han H, Tian W, Chen H, Lei M 2016 Sci. Rep. 6 19997Google Scholar
[24] Yan P, Lin R, Ruan S, Liu A, Chen H 2015 Opt. Express 23 154Google Scholar
[25] Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R 2018 Opt. Express 26 12506Google Scholar
[26] Zhao L, Tang D, Zhang H, Wu X, Bao Q, Loh K 2010 Opt. Lett. 35 3622Google Scholar
[27] Huang P, Lin S, Yeh C, Kuo H, Huang S, Lin G 2012 Opt. Express 20 2460Google Scholar
[28] Tarka J, Boguslawski J, Sobon G, Pasternak I, Przewloka A, Strupinski W 2017 IEEE J. Selec. Top. Quant. 23 60Google Scholar
[29] Sotor J, Pasternak I, Krajewska A, Strupinski W, Sobon G 2015 Opt. Express 23 27503Google Scholar
[30] Liu X, Yang H, Cui Y, Chen G, Yang Y, Wu X 2016 Sci. Rep. 6 26024Google Scholar
[31] Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Mater. Express 5 2884Google Scholar
[32] Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z 2010 Nano Res. 4 297Google Scholar
[33] Zhang H, Tang D, Zhao L, Bao Q, Loh K 2009 Opt. Express 17 17630Google Scholar
[34] Steinberg D, Zapata J, Thoroh de Souza E, Saito L 2018 J. Lightwave Technol. 36 1868Google Scholar
[35] Tarka J, Sobon G, Boguslawski J, Sotor J, Jagiello J, Aksienionek M 2014 Opt. Mater. Express 4 1981Google Scholar
[36] Meng Y, Zhang S, Li X, Li H, Du J, Hao Y 2012 Laser Phys. Lett. 9 537Google Scholar
[37] Sun Z, Popa D, Hasan T, Torrisi F, Wang F, Kelleher E 2010 Nano Research 3 653Google Scholar
[38] Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A 2017 Opt. Lett. 42 1592Google Scholar
[39] Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38Google Scholar
[40] Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X 2016 IEEE Photon. Technol. Lett. 28 7Google Scholar
[41] Ko S, Lee J, Koo J, Joo B, Gu M, Lee J 2016 J. Lightwave Technol. 34 3776Google Scholar
[42] Wang Z, Mu H, Yuan J, Zhao C, Bao Q, Zhang H 2017 IEEE J. Sel. Top. Quant. 23 195Google Scholar
[43] Dou Z, Song Y, Tian J, Liu J, Yu Z, Fang X 2014 Opt. Express 22 24055Google Scholar
[44] Li K, Song Y, Yu Z, Xu R, Dou Z, Tian J 2015 Laser Phys. Lett. 12 105103Google Scholar
[45] Liu H, Zheng X, Liu M, Zhao N, Luo A, Luo Z 2014 Opt. Express 22 6868Google Scholar
[46] Xu Y, Xie H, Jiang G, Miao L, Wang K, Tang S 2017 Opt. Commun. 395 55Google Scholar
[47] Gao L, Zhu T, Huang W, Luo Z 2015 IEEE Photonics J. 7 3300108Google Scholar
[48] Meng Y, Semaan G, Salhi M, Niang A, Guesmi K, Luo Z 2015 Opt. Express 23 23053Google Scholar
[49] Zhao C, Zou Y, Chen Y, Wang Z, Lu S, Zhang H 2012 Opt. Express 20 27888Google Scholar
[50] Guo B, Yao Y, Yang Y, Yuan Y, Wang R, Wang S 2015 J. Appl. Phys. 117 063108Google Scholar
[51] Chi C, Lee J, Koo J, Lee J 2014 Laser Phys. 24 105106Google Scholar
[52] Yan P, Lin R, Chen H, Zhang H, Liu A, Yang H 2015 IEEE Photonics Tech. L. 27 264Google Scholar
[53] Lee J, Koo J, Jhon Y, Lee J 2014 Opt. Express 22 6165Google Scholar
[54] Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y 2015 Sci. Rep. 5 8690Google Scholar
[55] Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C 2015 Photonics Res. 3 A43Google Scholar
[56] Liu M, Zhao N, Liu H, Zheng X, Luo A, Luo Z 2014 IEEE Photon. Technol. Lett. 26 983Google Scholar
[57] Jung M, Lee J, Koo J, Park J, Song Y, Lee K 2014 Opt. Express 22 7865Google Scholar
[58] Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photonics Res. 3 72Google Scholar
[59] Boguslawski J, Sotor J, Sobon G, Tarka J, Jagiello J, Macherzynski W 2014 Laser Phys. Lett. 24 105111Google Scholar
[60] Shaw L, Sotor J, Sobon G, Boguslawski J, Tarka J, Abramski K 2015 Fiber Lasers XII: Technology, Systems, and Applications 9344 93441ZGoogle Scholar
[61] Sotor J, Sobon G, Grodecki K, Abramski K 2014 Appl. Phys. Lett. 104 251112Google Scholar
[62] Boguslawski J, Sobon G, Zybala R, Mars K, Mikula A, Abramski K 2015 Opt. Express 23 29014Google Scholar
[63] Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786Google Scholar
[64] Liu M, Liu W, Pang L, Teng H, Fang S, Wei Z 2018 Opt. Commun. 406 72Google Scholar
[65] Wu K, Zhang X, Wang J, Li X, Chen J 2015 Opt. Express 23 11453Google Scholar
[66] Guo B, Yao Y, Yan P, Xu K, Liu J, Wang S 2016 IEEE Photon. Technol. Lett. 28 323Google Scholar
[67] Khazaeinezhad R, Kassani S, Jeong H, Park K, Kim B, Yeom D 2015 IEEE Photonics Tech. L. 27 1581Google Scholar
[68] Khazaeinezhad R, Hosseinzadeh Kassani S, Jeong H, Yeom D 2015 J. Lightwave Technol. 33 3550Google Scholar
[69] Jung M, Lee J, Park J, Koo J, Jhon Y, Lee J 2015 Opt. Express 23 19996Google Scholar
[70] Zhang H, Lu S, Zheng J, Du J, Wen S, Tang D 2014 Opt. Express 22 7249Google Scholar
[71] Liu H, Luo A, Wang F, Tang R, Liu M, Luo Z 2014 Opt. Lett. 39 4591Google Scholar
[72] Aiub E, Steinberg D, Thoroh de Souza E, Saito L 2017 Opt. Express 25 10546Google Scholar
[73] Liu W, Pang L, Han H, Bi K, Lei M, Wei Z 2017 Nanoscale 9 5806Google Scholar
[74] Ahmed M, Latiff A, Arof H, Ahmad H, Harun S 2016 Opt. Laser Technol. 82 145Google Scholar
[75] Liu M, Zheng X, Qi Y, Liu H, Luo A, Luo Z 2014 Opt. Express 22 22841Google Scholar
[76] Wang Y, Mao D, Gan X, Han L, Ma C, Xi T 2015 Opt. Express 23 205Google Scholar
[77] Zhang M, Howe R, Woodward R, Kelleher E, Torrisi F, Hu G 2015 Nano Research 8 1522Google Scholar
[78] Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J 2017 Opt. Lett. 42 5010Google Scholar
[79] Liu W, Liu M, Ouyang Y, Hou H, Ma G, Lei M, et al. 2018 Nanotechnology 29 174002Google Scholar
[80] Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J 2018 IEEE J. Sel. Top. Quant. 24 1100706Google Scholar
[81] Lee J, Koo J, Jhon Y, Lee J 2017 Opt. Mater. Express 7 2968Google Scholar
[82] Li J, Zhao Y, Chen Q, Niu K, Sun R, Zhang H 2017 IEEE Photonics J. 9 1506707Google Scholar
[83] Niu K, Sun R, Chen Q, Man B, Zhang H 2018 Photonics Res. 6 72Google Scholar
[84] Cui Y, Lu F, Liu X 2017 Sci. Rep. 7 40080Google Scholar
[85] Mao D, Cui X, Gan X, Li M, Zhang W, Lu H 2018 IEEE J. Sel. Top. Quant. 24 1100406Google Scholar
[86] Hisyam M, Rusdi M, Latiff A, Harun S 2017 IEEE J. Sel. Top. Quant. 23 1100205Google Scholar
[87] Song H, Wang Q, Zhang Y, Li L 2017 Opt. Commun. 394 157Google Scholar
[88] Mao D, Li M, Cui X, Zhang W, Lu H, Song K 2018 Opt. Commun. 406 254Google Scholar
[89] Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar
[90] Song Y, Chen S, Zhang Q, Li L, Zhao L, Zhang H 2016 Opt. Express 24 25933Google Scholar
[91] Li D, Jussila H, Karvonen L, Ye G, Lipsanen H, Chen X 2015 Sci. Rep. 5 15899Google Scholar
[92] Sotor J, Sobon G, Macherzynski W, Paletko P, Abramski K 2015 Appl. Phys. Lett. 107 051108Google Scholar
[93] Luo Z, Liu M, Guo Z N, Jiang X, Luo A P, Zhao C 2015 Opt. Express 23 20030Google Scholar
[94] Liu M, Jiang X, Yan Y, Wang X, Luo A, Xu W 2018 Opt. Commun. 406 85Google Scholar
[95] Xu Y, Jiang X, Ge Y, Guo Z, Zeng Z, Xu Q 2017 J. Mater. Chem. C 5 3007Google Scholar
[96] Zhang S, Zhang X, Wang H, Chen B, Wu K, Wang K 2016 Opt. Mater. Express 6 3159Google Scholar
[97] Yun L 2017 Opt. Express 25 32380Google Scholar
[98] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K 2015 Opt. Lett. 40 3885Google Scholar
[99] Yu H, Zheng X, Yin K, Cheng X, Jiang T 2015 Appl. Opt. 54 10290Google Scholar
[100] Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916Google Scholar
[101] Chai T, Li X, Feng T, Guo P, Song Y, Chen Y 2018 Nanoscale 10 17617Google Scholar
[102] Jhon Y, Koo J, Anasori B, Seo M, Lee J, Gogotsi Y 2017 Adv. Mater. 29 1702496Google Scholar
[103] Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y 2018 Laser Photonics Rev. 12 1700229Google Scholar
[104] Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H 2018 Opt. Express 26 22750Google Scholar
[105] Song Y, Liang Z, Jiang X, Chen Y, Li Z, Lu L 2017 2D Mater. 4 045010Google Scholar
[106] Liu S, Zhu X, Zhu G, Balakrishnan K, Zong J, Wiersma K 2015 Opt. Lett. 40 147Google Scholar
[107] Liu J, Wu S, Yang Q, Wang P 2011 Opt. Lett. 36 4008Google Scholar
[108] Wang R, Liu Y, Jiang M, Xu X, Wu H, Tian Y 2017 Opt. Quant. Electron. 49 137Google Scholar
[109] Ahmad H, Aidit S, Ooi SI, Rezayi M, Tiu Z 2017 Laser Phys. 27 150302Google Scholar
[110] Popa D, Sun Z, Hasan T, Torrisi F, Wang F, Ferrari A 2011 Appl. Phys. Lett. 98 073106Google Scholar
[111] Wei C, Zhu X, Wang F, Xu Y, Balakrishnan K, Song F 2013 Opt. Lett. 38 3233Google Scholar
[112] Mansoor A, Ahmed Hamida B, Eltaif T, Ismail E, Kadir N, Khan S 2018 J. Opt. Commun. 39 307Google Scholar
[113] Yu Z, Song Y, Dong X, Li Y, Tian J, Wang Y 2013 Appl. Opt. 52 7127Google Scholar
[114] Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y 2013 Opt. Express 21 204Google Scholar
[115] Lin H, Li W, Lan J, Guan X, Xu H, Cai Z 2017 Appl. Opt. 56 802Google Scholar
[116] Wu D, Cai Z, Zhong Y, Peng J, Weng J, Luo Z 2015 IEEE Photon Technol. Lett. 27 2379Google Scholar
[117] Luo Z, Huang Y, Weng J, Cheng H, Lin Z, Xu B 2013 Opt. Express 21 29516Google Scholar
[118] Gao L, Huang W, Zhang J D, Zhu T, Zhang H, Zhao C 2014 Appl. Opt. 53 5117Google Scholar
[119] Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z 2013 J. Lightwave Technol. 31 2857Google Scholar
[120] Li W, Zou J, Huang Y, Wang K, Du T, Jiang S 2018 Photonics Res. 6 C29Google Scholar
[121] Sun L, Lin Z, Peng J, Weng J, Huang Y, Luo Z 2014 Sci. Rep. 4 4794Google Scholar
[122] Luo Z, Liu C, Huang Y, Wu D, Wu J, Xu H 2014 IEEE Sel. Top. Quant. 20 0902708Google Scholar
[123] Koo J, Lee J, Lee J 2017 J. Lightwave Technol. 35 2175Google Scholar
[124] Yan K, Lin J, Zhou Y, Gu C, Xu L, Wang A 2016 Appl. Opt. 55 3026Google Scholar
[125] Chen Y, Zhao C, Chen S, Du J, Tang P, Jiang G 2014 IEEE J. Sel. Top. Quant. 20 315Google Scholar
[126] Koo J, Lee J, Chi C, Lee J 2014 J. Opt. Soc. Am. B. 31 2157Google Scholar
[127] Yan P, Chen H, Li K, Guo C, Ruan S, Wang J, et al. 2016 IEEE Photonics J. 8 1500506Google Scholar
[128] Niu K, Chen Q, Sun R, Man B, Zhang H 2017 Opt. Mater. Express 7 3934Google Scholar
[129] Li W, Peng J, Zhong Y, Wu D, Lin H, Cheng Y 2016 Opt. Mater. Express 6 2031Google Scholar
[130] Luo Z, Wu D, Xu B, Xu H, Cai Z, Peng J 2016 Nanoscale 8 1066Google Scholar
[131] Woodward R, Kelleher E, Howe R, Hu G, Torrisi F, Hasan T 2014 Opt. Express 22 31113Google Scholar
[132] Wei R, Zhang H, Hu Z, Qiao T, He X, Guo Q 2016 Nanotechnology 27 305203Google Scholar
[133] Chen J, Deng G, Yan S, Li C, Xi K, Xu F 2015 Opt. Lett. 40 3576Google Scholar
[134] Xia H, Li H, Lan C, Li C, Du J, Zhang S 2015 Photonics Res. 3 A92Google Scholar
[135] Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K 2014 Opt. Express 22 25258Google Scholar
[136] Ren J, Wang S, Cheng Z, Yu H, Zhang H, Chen Y 2015 Opt. Express 23 5607Google Scholar
[137] Li H, Xia H, Lan C, Li C, Zhang X, Li J 2015 IEEE Photon. Technol. Lett. 27 69Google Scholar
[138] Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J 2015 Opt. Express 23 26723Google Scholar
[139] Luo Z, Huang Y, Zhong M, Li Y, Wu J, Xu B 2014 J. Lightwave Tech. 32 4077Google Scholar
[140] Lin J, Hu Y, Chen C, Gu C, Xu L 2015 Opt. Express 23 29059Google Scholar
[141] Zhang M, Hu G, Hu G, Howe RC, Chen L, Zheng Z 2015 Sci. Rep. 5 17482Google Scholar
[142] Kassani S, Khazaeizhad R, Jeong H, Nazari T, Yeom D 2015 Opt. Mater. Express 5 373Google Scholar
[143] Lin J, Yan K, Zhou Y, Xu L, Gu C, Zhan Q 2015 Appl. Phys. Lett. 107 191108Google Scholar
[144] Woodward R, Howe R, Runcorn T, Hu G, Torrisi F, Kelleher E 2015 Opt. Express 23 20051Google Scholar
[145] Chen B, Zhang X, Guo C, Wu K, Chen J, Wang J 2016 Opt. Eng. 55 081306Google Scholar
[146] Liu W, Liu M, Lei M, Fang S, Wei Z 2018 IEEE J. Sel. Top. Quant. 24 0901005Google Scholar
[147] Wu D, Cai Z, Zhong Y, Peng J, Cheng Y, Weng J 2017 IEEE J. Selec. Top. Quant. 23 7Google Scholar
[148] Huang K, Lu B, Li D, Qi X, Chen H, Wang N 2017 Appl. Opt. 56 6427Google Scholar
[149] Rashid1 F, Azzuhri1 S, Salim M, Shaharuddin R, Ismail1 M, Ismail1 M 2016 Laser Phys. Lett. 13 085102Google Scholar
[150] Zhao R, He J, Su X, Wang Y, Sun X, Nie H 2018 IEEE J. Sel. Top. Quant. 24 0900405Google Scholar
[151] Mu H, Lin S, Wang Z, Xiao S, Li P, Chen Y 2015 Adv. Opt. Mater. 3 1447Google Scholar
[152] Yu H, Zheng X, Yin K, Cheng X, Jiang T 2016 Opt. Mater. Express 6 603Google Scholar
[153] Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y 2017 Opt. Lett. 42 547Google Scholar
[154] Baek I, Lee H, Bae S, Hong B, Ahn Y, Yeom D 2012 Appl. Phys. Express 5 032701Google Scholar
[155] Tan W, Su C, Knize R, Xie G, Li L, Tang D 2010 Appl. Phys. Lett. 96 031106Google Scholar
[156] Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L 2014 Sci. Rep. 4 5016Google Scholar
[157] Cai W, Jiang S, Xu S, Li Y, Liu J, Li C 2015 Opt. Laser Technol. 65 1Google Scholar
[158] Feng C, Wang Y, Liu J, Tsang Y, Song Y, Yu Z 2013 Opt. Commun. 298 168Google Scholar
[159] Xu S, Man B, Jiang S, Feng D, Gao S, Chen C 2014 Opt. Lett. 39 2707Google Scholar
[160] Xu J, Li X, Wu Y, Hao X, He J, Yang K 2011 Opt. Lett. 36 1948Google Scholar
[161] Zhu H, Liu J, Jiang S, Xu S, Su L, Jiang D 2015 Opt. Laser Technol. 75 83Google Scholar
[162] Zhu H, Zhao L, Liu J, Xu S, Cai W, Jiang S 2016 Opt. Eng. 55 081304Google Scholar
[163] Xu J, Li X, He J, Hao X, Wu Y, Yang Y 2011 Appl. Phys. Lett. 99 261107Google Scholar
[164] Xu J, Li X, Wu Y, He J, Liu S, Hao X 2012 Opt. Letter 37 2652Google Scholar
[165] Davide D, Ugolotti E, Schmidt A, Petrov V, Griebner U, Agnesi A 2013 Opt. Lett. 38 1745Google Scholar
[166] Xie G, Ma J, Lv P, Gao W, Yuan P, Qian L 2012 Opt. Mater. Express 2 878Google Scholar
[167] Liu J, Wang Y, Qu Z, Zheng L, Su L, Xu J 2012 Laser Phys. Lett. 9 15Google Scholar
[168] Tolstik N, Sorokin E, Sorokina I 2014 Opt. Express 22 5564Google Scholar
[169] Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L 2012 Opt. Lett. 37 2085Google Scholar
[170] Wan H, Cai W, Wang F, Jiang S, Xu S, Liu J 2015 Opt. Quant. Electron. 48 11Google Scholar
[171] Wang Y, Qu Z, Liu J, Tsang Y 2012 J. Lightwave Technol. 30 3259Google Scholar
[172] Zhu H, Cai W, Wei J, Liu J, Zheng L, Su L 2015 Opt. Laser Technol. 68 120Google Scholar
[173] Wang Y, Sung W, Su X, Zhao Y, Zhang B, Wu C 2018 IEEE Photonics J. 10 1504110Google Scholar
[174] Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y 2018 ACS Nano 12 11376Google Scholar
[175] Zhao G, Hou J, Wu Y, He J, Hao X 2015 Adv. Opt. Mater. 3 937Google Scholar
[176] Zhang B, Lou F, Zhao R, He J, Li J, Su X 2015 Opt. Lett. 40 3691Google Scholar
[177] Su X, Wang Y, Zhang B, Zhao R, Yang K, He J 2016 Opt. Lett. 41 1945Google Scholar
[178] Sun X, Nie H, He J, Zhao R, Su X, Wang Y 2017 Opt. Express 25 20025Google Scholar
[179] Li J, Luo H, Zhai B, Lu R, Guo Z, Zhang H 2016 Sci. Rep. 6 30361Google Scholar
[180] Zhao T, Wang Y, Chen H, Shen D 2014 Appl. Phys. B 116 947Google Scholar
[181] Hou J, Jia Z, Zhang B, Yin Y, Ning J, Mu W 2016 IEEE Photonics Tech. L. 28 825Google Scholar
[182] Wang Z, Chen X, He J, Xu X, Zhang B, Yang K 2015 IEEE J. Quant. Elect. 51 7000105Google Scholar
[183] Guan X, Zhan L, Zhu Z, Xu B, Xu H, Cai Z 2018 Appl. Opt. 57 371Google Scholar
[184] Li C, Liu J, Jiang S, Xu S, Ma W, Wang J 2016 Opt. Mater. Express 6 1570Google Scholar
[185] Nie H, Zhang P, Zhang B, Yang K, Zhang L, Li T 2017 Opt. Lett. 42 699Google Scholar
[186] Zhu G, Zhu X, Balakrishnan K, Norwood R A, Peyghambarian N 2013 Opt. Mater. Express 3 1365Google Scholar
[187] Zhang C, Liu J, Fan X, Peng Q, Guo X, Jiang D 2018 Opt. Laser Technol. 103 89Google Scholar
[188] Zu Y, Zhang C, Wu Y, Liu J, Liu J, Wang Y 2018 Chin. Opt. Lett. 16 020013Google Scholar
[189] Liu X, Yang K, Zhao S, Li T, Qiao W, Zhang H 2017 Photonics Res. 5 461Google Scholar
[190] Li J, Luo H, Wang L, Zhao C, Zhang H, Li H 2015 Opt. Lett. 40 3659Google Scholar
[191] You Z, Sun Y, Sun D, Zhu Z, Wang Y, Li J 2017 Opt. Lett. 42 871Google Scholar
[192] Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y 2014 Adv. Mater. 26 3538Google Scholar
[193] Kong L, Xie G, Yuan P, Qian L, Wang S, Yu H 2015 Photonics Res. 3 A47Google Scholar
[194] Lan J, Zhang X, Zhou Z, Xu B, Xu H, Cai Z 2017 IEEE Photonics Tech. L. 29 515Google Scholar
[195] Luan C, Zhang X, Yang K, Zhao J, Zhao S, Li T 2017 IEEE J. Sel. Top. Quant. 23 66Google Scholar
[196] Fan M, Li T, Zhao S, Li G, Ma H, Gao X 2016 Opt. Lett. 41 540Google Scholar
[197] Zhang S, Liu X, Guo L, Fan M, Lou F, Gao P 2017 IEEE Photonics Tech. L. 29 2258Google Scholar
[198] Ge P, Liu J, Jiang S, Xu Y, Man B 2015 Photonics Res. 3 256Google Scholar
[199] Xue Y, Xie Z, Ye Z, Hu X, Xu J, Zhang H 2018 Chin. Opt. Lett. 16 020018Google Scholar
[200] Su X, Nie H, Wang Y, Li G, Yan B, Zhang B 2017 Opt. Lett. 42 3502Google Scholar
[201] Fan M, Li T, Zhao J, Zhao S, Li G, Yang K 2018 Opt. Lett. 43 1726Google Scholar
[202] Luan C, Yang K, Zhao J, Zhao S, Song L, Li T 2016 Opt. Lett. 41 3783Google Scholar
[203] Wei C, Luo H, Zhang H, Li C, Xie J, Li J 2016 Laser Phys. Lett. 13 105108Google Scholar
[204] Guo L, Li T, Zhang S, Wang M, Zhao S, Yang K 2017 Opt. Mater. Express 7 2090Google Scholar
[205] Zhang R, Zhang Y, Yu H, Zhang H, Yang R, Yang B 2015 Adv. Opt. Mater. 3 1787Google Scholar
[206] Chu Z, Liu J, Guo Z, Zhang H 2016 Opt. Mater. Express 6 2374Google Scholar
[207] Zhang H, He J, Wang Z, Hou J, Zhang B, Zhao R 2016 Opt. Mater. Express 6 2328Google Scholar
[208] Xie Y, Kong L, Qin Z, Xie G, Zhang J 2016 Opt. Eng. 55 081307Google Scholar
[209] Wang Z, Zhao R, He J, Zhang B, Ning J, Wang Y 2016 Opt. Express 24 1598Google Scholar
[210] Li C, Liu J, Guo Z, Zhang H, Ma W, Wang J 2018 Opt. Commun. 406 158Google Scholar
[211] Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P 2016 Laser Phys. Lett. 13 045801Google Scholar
[212] Liu J, Liu J, Guo Z, Zhang H, Ma W, Wang J 2016 Opt. Express 24 30289Google Scholar
[213] Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S 2015 Opt. Express 23 24713Google Scholar
[214] Nie H, Zhang P, Zhang B, Xu M, Yang K, Sun X 2018 IEEE J. Sel. Top. Quant. 24 1600205Google Scholar
[215] Wang C, Wang Y, Jiang X, Xu J, Huang W, Zhang F 2019 Adv. Opt. Mater. 7 1900060Google Scholar
[216] Liu J, Huang H, Zhang F, Zhang Z, Liu J, Zhang H 2018 Photonics Res. 6 762Google Scholar
[217] Zu Y, Zhang C, Guo X, Liang W, Liu J, Su L 2019 Laser Phys. Lett. 16 015803Google Scholar
[218] Feng X, Ding B, Liang W, Zhang F, Ning T, Liu J 2018 Laser Phys. Lett. 15 085805Google Scholar
期刊类型引用(9)
1. 庞修洋,赵新新,俞强,邓海芹,刘方奇,张严,殳博王,贤天浩,朱思聪,吴坚,侯义锋,张凯,姜宗福. 用于产生红外脉冲的碲烯纳米片的化学气相输运生长. 中国激光. 2023(01): 236-243 . 百度学术 2. 李斌,林欢,申福花. 二硫化钼导热性能研究进展. 微纳电子技术. 2022(06): 529-537+605 . 百度学术 3. 王聪,杨飒,段敏,王子聪,周仁龙,宋宇锋. 二维非线性材料MXene增强的全光波长转换器. 光学学报. 2021(14): 169-174 . 百度学术 4. 王凯,孙靖雅,潘昌基,王飞飞,张可,陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制. 物理学报. 2021(20): 143-150 . 百度学术 5. 何建林,刘贵立,李欣玥. 扭转变形对掺金黑磷烯电子结构和光学性质的影响. 物理学报. 2021(22): 246-253 . 百度学术 6. 龙慧,胡建伟,吴福根,董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报. 2020(18): 119-137 . 百度学术 7. 俞强,郭琨,陈捷,王涛,汪进,史鑫尧,吴坚,张凯,周朴. MnPS_3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报. 2020(18): 173-180 . 百度学术 8. 郝倩倩,宗梦雨,张振,黄浩,张峰,刘杰,刘丹华,苏良碧,张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报. 2020(18): 167-172 . 百度学术 9. 徐依全,王聪. 基于二维材料的全光器件. 物理学报. 2020(18): 89-107 . 百度学术 其他类型引用(16)
计量
- 文章访问数: 23892
- PDF下载量: 452
- 被引次数: 25