搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维纳米材料的超快脉冲激光器

王聪 刘杰 张晗

引用本文:
Citation:

基于二维纳米材料的超快脉冲激光器

王聪, 刘杰, 张晗

Ultrafast pulse lasers based on two-dimensinal nanomaterials

Wang Cong, Liu Jie, Zhang Han
PDF
HTML
导出引用
  • 石墨烯以其独特的光电特性打开了二维纳米材料的大门, 随后拓扑绝缘体、过渡金属硫化物、黑磷等二维材料相继被报道, 这些材料由于具有良好的非线性光学特性, 可用作被动饱和吸收体来产生脉冲激光. 本文总结了近年来基于二维材料的光纤激光器和固体激光器的研究状况, 从激光器的中心波长、脉宽、重复频率、脉冲能量和输出功率等基本参数对发展现状进行了阐述, 最后进行了总结和展望.
    Ultrafast pulse laser has been widely used in many fields, such as optical communications, military and materials processing. Semiconductor saturable absorber mirror (SESAM) serving as a saturable absorber is an effective way to obtain ultrafast pulse laser with ps-level pulse width. The SESAM needs specially designing to meet different wavelength operations. And the low damage threshold and high fabrication cost of SESAM hinder its development. Exploring novel materials is becoming a hot topic to overcome these drawbacks and obtain ultrafast laser with excellent performance. The discovery of graphene opens the door for two-dimensional nanomaterials due to the unique photoelectric properties of layered materials. Subsequently, two-dimensional (2D) materials such as topological insulators, transition metal sulfides, and black phosphorus are reported. These materials are used as saturable absorber to obtain a pulsed laser. In this paper, we summarize the research status of fiber lasers and solid-state lasers based on 2D materials in recent years. The development status of the lasers in terms of central wavelength, pulse width, repetition frequency, pulse energy and output power are discussed. Finally, the summary and outlook are given. We believe that nonlinear optical devices based on 2D materials will be rapidly developed in the future several decades
      通信作者: 刘杰, jieliu@sdnu.edu.cn ; 张晗, hzhang@szu.edu.cn
      作者简介:
      刘杰, 山东师范大学物理与电子科学学院教授、博导. 主要从事固体激光器件与技术、非线性光学等方面的研究
      张晗, 深圳大学特聘教授、博士生导师. 主要从事超快光纤激光器、非线性光学、新型二维材料光电器件等方面的研究. 现已发表SCI论文百余篇, 引用次数超过19000次, 高引用论文46篇. 2018年获得教育部自然二等奖
    • 基金项目: 国家自然科学基金(批准号: 61875138)、国家自然科学基金青年科学基金(批准号: 61705140)和中国博士后科学基金(批准号: 2018M643165)资助的课题.
      Corresponding author: Liu Jie, jieliu@sdnu.edu.cn ; Zhang Han, hzhang@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875138), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61705140), and the China Postdoctoral Science Foundation (Grant No. 2018M643165).
    [1]

    Gattass R R, Mazur E 2008 Nat. Photonics 2 219Google Scholar

    [2]

    Dominik S, Christopher M M, Christian S, Mark S S 2010 Opt. Lett. 35 3799Google Scholar

    [3]

    Shuo T, Jian L, Tatiana B K, Chen Z, Bruce J T 2009 J. Biomed. Opt. 14 030508Google Scholar

    [4]

    Sobon G, Klimczak M, Sotor J, Krzempek K, Pysz D, Stepien R 2013 Opt. Mater. Express 4 7Google Scholar

    [5]

    Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [6]

    Krzempek K, Sobon G, Kaczmarek P, Abramski K M 2013 Laser Phys. Lett. 10 105103

    [7]

    Zhang H 2015 ACS Nano. 9 9451Google Scholar

    [8]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics. 8 899Google Scholar

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V 2004 Science 306 666Google Scholar

    [10]

    Zhang H, Liu C, Qi X, Dai X, Fang Z, Zhang S 2009 Nat. Phys. 5 438Google Scholar

    [11]

    Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S 2012 Appl. Phys. Lett. 101 211106Google Scholar

    [12]

    Brown A, Rundqvist S 1965 Acta Crystallogr. 19 684Google Scholar

    [13]

    Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar

    [14]

    Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, et al. 2015 Opt Express 23 12823Google Scholar

    [15]

    Sotor J, Sobon G, Abramski K M 2014 Opt. Express 22 13244Google Scholar

    [16]

    Ahmed M, Latiff A, Arof H, Harun S 2016 Laser Phys. Lett. 13 095104Google Scholar

    [17]

    Xia H, Li H, Lan C, Li C, Zhang X, Zhang S 2014 Opt. Express 22 17341Google Scholar

    [18]

    Guo B 2018 Chin. Opt. Lett. 16 20004Google Scholar

    [19]

    Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G 2017 Sci. Rep. 7 42357Google Scholar

    [20]

    Purdie D G, Popa D, Wittwer V J, Jiang Z, Bonacchini G, Torrisi F, et al. 2015 Appl. Phys. Lett. 106 253101Google Scholar

    [21]

    Koo J, Park J, Lee J, Jhon Y, Lee J 2016 Opt. Express 24 10575

    [22]

    Sobon G, Sotor J, Abramski K 2012 Appl. Phys. Lett. 100 161109Google Scholar

    [23]

    Liu W, Pang L, Han H, Tian W, Chen H, Lei M 2016 Sci. Rep. 6 19997Google Scholar

    [24]

    Yan P, Lin R, Ruan S, Liu A, Chen H 2015 Opt. Express 23 154Google Scholar

    [25]

    Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R 2018 Opt. Express 26 12506Google Scholar

    [26]

    Zhao L, Tang D, Zhang H, Wu X, Bao Q, Loh K 2010 Opt. Lett. 35 3622Google Scholar

    [27]

    Huang P, Lin S, Yeh C, Kuo H, Huang S, Lin G 2012 Opt. Express 20 2460Google Scholar

    [28]

    Tarka J, Boguslawski J, Sobon G, Pasternak I, Przewloka A, Strupinski W 2017 IEEE J. Selec. Top. Quant. 23 60Google Scholar

    [29]

    Sotor J, Pasternak I, Krajewska A, Strupinski W, Sobon G 2015 Opt. Express 23 27503Google Scholar

    [30]

    Liu X, Yang H, Cui Y, Chen G, Yang Y, Wu X 2016 Sci. Rep. 6 26024Google Scholar

    [31]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Mater. Express 5 2884Google Scholar

    [32]

    Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z 2010 Nano Res. 4 297Google Scholar

    [33]

    Zhang H, Tang D, Zhao L, Bao Q, Loh K 2009 Opt. Express 17 17630Google Scholar

    [34]

    Steinberg D, Zapata J, Thoroh de Souza E, Saito L 2018 J. Lightwave Technol. 36 1868Google Scholar

    [35]

    Tarka J, Sobon G, Boguslawski J, Sotor J, Jagiello J, Aksienionek M 2014 Opt. Mater. Express 4 1981Google Scholar

    [36]

    Meng Y, Zhang S, Li X, Li H, Du J, Hao Y 2012 Laser Phys. Lett. 9 537Google Scholar

    [37]

    Sun Z, Popa D, Hasan T, Torrisi F, Wang F, Kelleher E 2010 Nano Research 3 653Google Scholar

    [38]

    Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A 2017 Opt. Lett. 42 1592Google Scholar

    [39]

    Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38Google Scholar

    [40]

    Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X 2016 IEEE Photon. Technol. Lett. 28 7Google Scholar

    [41]

    Ko S, Lee J, Koo J, Joo B, Gu M, Lee J 2016 J. Lightwave Technol. 34 3776Google Scholar

    [42]

    Wang Z, Mu H, Yuan J, Zhao C, Bao Q, Zhang H 2017 IEEE J. Sel. Top. Quant. 23 195Google Scholar

    [43]

    Dou Z, Song Y, Tian J, Liu J, Yu Z, Fang X 2014 Opt. Express 22 24055Google Scholar

    [44]

    Li K, Song Y, Yu Z, Xu R, Dou Z, Tian J 2015 Laser Phys. Lett. 12 105103Google Scholar

    [45]

    Liu H, Zheng X, Liu M, Zhao N, Luo A, Luo Z 2014 Opt. Express 22 6868Google Scholar

    [46]

    Xu Y, Xie H, Jiang G, Miao L, Wang K, Tang S 2017 Opt. Commun. 395 55Google Scholar

    [47]

    Gao L, Zhu T, Huang W, Luo Z 2015 IEEE Photonics J. 7 3300108Google Scholar

    [48]

    Meng Y, Semaan G, Salhi M, Niang A, Guesmi K, Luo Z 2015 Opt. Express 23 23053Google Scholar

    [49]

    Zhao C, Zou Y, Chen Y, Wang Z, Lu S, Zhang H 2012 Opt. Express 20 27888Google Scholar

    [50]

    Guo B, Yao Y, Yang Y, Yuan Y, Wang R, Wang S 2015 J. Appl. Phys. 117 063108Google Scholar

    [51]

    Chi C, Lee J, Koo J, Lee J 2014 Laser Phys. 24 105106Google Scholar

    [52]

    Yan P, Lin R, Chen H, Zhang H, Liu A, Yang H 2015 IEEE Photonics Tech. L. 27 264Google Scholar

    [53]

    Lee J, Koo J, Jhon Y, Lee J 2014 Opt. Express 22 6165Google Scholar

    [54]

    Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y 2015 Sci. Rep. 5 8690Google Scholar

    [55]

    Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C 2015 Photonics Res. 3 A43Google Scholar

    [56]

    Liu M, Zhao N, Liu H, Zheng X, Luo A, Luo Z 2014 IEEE Photon. Technol. Lett. 26 983Google Scholar

    [57]

    Jung M, Lee J, Koo J, Park J, Song Y, Lee K 2014 Opt. Express 22 7865Google Scholar

    [58]

    Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photonics Res. 3 72Google Scholar

    [59]

    Boguslawski J, Sotor J, Sobon G, Tarka J, Jagiello J, Macherzynski W 2014 Laser Phys. Lett. 24 105111Google Scholar

    [60]

    Shaw L, Sotor J, Sobon G, Boguslawski J, Tarka J, Abramski K 2015 Fiber Lasers XII: Technology, Systems, and Applications 9344 93441ZGoogle Scholar

    [61]

    Sotor J, Sobon G, Grodecki K, Abramski K 2014 Appl. Phys. Lett. 104 251112Google Scholar

    [62]

    Boguslawski J, Sobon G, Zybala R, Mars K, Mikula A, Abramski K 2015 Opt. Express 23 29014Google Scholar

    [63]

    Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786Google Scholar

    [64]

    Liu M, Liu W, Pang L, Teng H, Fang S, Wei Z 2018 Opt. Commun. 406 72Google Scholar

    [65]

    Wu K, Zhang X, Wang J, Li X, Chen J 2015 Opt. Express 23 11453Google Scholar

    [66]

    Guo B, Yao Y, Yan P, Xu K, Liu J, Wang S 2016 IEEE Photon. Technol. Lett. 28 323Google Scholar

    [67]

    Khazaeinezhad R, Kassani S, Jeong H, Park K, Kim B, Yeom D 2015 IEEE Photonics Tech. L. 27 1581Google Scholar

    [68]

    Khazaeinezhad R, Hosseinzadeh Kassani S, Jeong H, Yeom D 2015 J. Lightwave Technol. 33 3550Google Scholar

    [69]

    Jung M, Lee J, Park J, Koo J, Jhon Y, Lee J 2015 Opt. Express 23 19996Google Scholar

    [70]

    Zhang H, Lu S, Zheng J, Du J, Wen S, Tang D 2014 Opt. Express 22 7249Google Scholar

    [71]

    Liu H, Luo A, Wang F, Tang R, Liu M, Luo Z 2014 Opt. Lett. 39 4591Google Scholar

    [72]

    Aiub E, Steinberg D, Thoroh de Souza E, Saito L 2017 Opt. Express 25 10546Google Scholar

    [73]

    Liu W, Pang L, Han H, Bi K, Lei M, Wei Z 2017 Nanoscale 9 5806Google Scholar

    [74]

    Ahmed M, Latiff A, Arof H, Ahmad H, Harun S 2016 Opt. Laser Technol. 82 145Google Scholar

    [75]

    Liu M, Zheng X, Qi Y, Liu H, Luo A, Luo Z 2014 Opt. Express 22 22841Google Scholar

    [76]

    Wang Y, Mao D, Gan X, Han L, Ma C, Xi T 2015 Opt. Express 23 205Google Scholar

    [77]

    Zhang M, Howe R, Woodward R, Kelleher E, Torrisi F, Hu G 2015 Nano Research 8 1522Google Scholar

    [78]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J 2017 Opt. Lett. 42 5010Google Scholar

    [79]

    Liu W, Liu M, Ouyang Y, Hou H, Ma G, Lei M, et al. 2018 Nanotechnology 29 174002Google Scholar

    [80]

    Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J 2018 IEEE J. Sel. Top. Quant. 24 1100706Google Scholar

    [81]

    Lee J, Koo J, Jhon Y, Lee J 2017 Opt. Mater. Express 7 2968Google Scholar

    [82]

    Li J, Zhao Y, Chen Q, Niu K, Sun R, Zhang H 2017 IEEE Photonics J. 9 1506707Google Scholar

    [83]

    Niu K, Sun R, Chen Q, Man B, Zhang H 2018 Photonics Res. 6 72Google Scholar

    [84]

    Cui Y, Lu F, Liu X 2017 Sci. Rep. 7 40080Google Scholar

    [85]

    Mao D, Cui X, Gan X, Li M, Zhang W, Lu H 2018 IEEE J. Sel. Top. Quant. 24 1100406Google Scholar

    [86]

    Hisyam M, Rusdi M, Latiff A, Harun S 2017 IEEE J. Sel. Top. Quant. 23 1100205Google Scholar

    [87]

    Song H, Wang Q, Zhang Y, Li L 2017 Opt. Commun. 394 157Google Scholar

    [88]

    Mao D, Li M, Cui X, Zhang W, Lu H, Song K 2018 Opt. Commun. 406 254Google Scholar

    [89]

    Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar

    [90]

    Song Y, Chen S, Zhang Q, Li L, Zhao L, Zhang H 2016 Opt. Express 24 25933Google Scholar

    [91]

    Li D, Jussila H, Karvonen L, Ye G, Lipsanen H, Chen X 2015 Sci. Rep. 5 15899Google Scholar

    [92]

    Sotor J, Sobon G, Macherzynski W, Paletko P, Abramski K 2015 Appl. Phys. Lett. 107 051108Google Scholar

    [93]

    Luo Z, Liu M, Guo Z N, Jiang X, Luo A P, Zhao C 2015 Opt. Express 23 20030Google Scholar

    [94]

    Liu M, Jiang X, Yan Y, Wang X, Luo A, Xu W 2018 Opt. Commun. 406 85Google Scholar

    [95]

    Xu Y, Jiang X, Ge Y, Guo Z, Zeng Z, Xu Q 2017 J. Mater. Chem. C 5 3007Google Scholar

    [96]

    Zhang S, Zhang X, Wang H, Chen B, Wu K, Wang K 2016 Opt. Mater. Express 6 3159Google Scholar

    [97]

    Yun L 2017 Opt. Express 25 32380Google Scholar

    [98]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K 2015 Opt. Lett. 40 3885Google Scholar

    [99]

    Yu H, Zheng X, Yin K, Cheng X, Jiang T 2015 Appl. Opt. 54 10290Google Scholar

    [100]

    Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916Google Scholar

    [101]

    Chai T, Li X, Feng T, Guo P, Song Y, Chen Y 2018 Nanoscale 10 17617Google Scholar

    [102]

    Jhon Y, Koo J, Anasori B, Seo M, Lee J, Gogotsi Y 2017 Adv. Mater. 29 1702496Google Scholar

    [103]

    Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [104]

    Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H 2018 Opt. Express 26 22750Google Scholar

    [105]

    Song Y, Liang Z, Jiang X, Chen Y, Li Z, Lu L 2017 2D Mater. 4 045010Google Scholar

    [106]

    Liu S, Zhu X, Zhu G, Balakrishnan K, Zong J, Wiersma K 2015 Opt. Lett. 40 147Google Scholar

    [107]

    Liu J, Wu S, Yang Q, Wang P 2011 Opt. Lett. 36 4008Google Scholar

    [108]

    Wang R, Liu Y, Jiang M, Xu X, Wu H, Tian Y 2017 Opt. Quant. Electron. 49 137Google Scholar

    [109]

    Ahmad H, Aidit S, Ooi SI, Rezayi M, Tiu Z 2017 Laser Phys. 27 150302Google Scholar

    [110]

    Popa D, Sun Z, Hasan T, Torrisi F, Wang F, Ferrari A 2011 Appl. Phys. Lett. 98 073106Google Scholar

    [111]

    Wei C, Zhu X, Wang F, Xu Y, Balakrishnan K, Song F 2013 Opt. Lett. 38 3233Google Scholar

    [112]

    Mansoor A, Ahmed Hamida B, Eltaif T, Ismail E, Kadir N, Khan S 2018 J. Opt. Commun. 39 307Google Scholar

    [113]

    Yu Z, Song Y, Dong X, Li Y, Tian J, Wang Y 2013 Appl. Opt. 52 7127Google Scholar

    [114]

    Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y 2013 Opt. Express 21 204Google Scholar

    [115]

    Lin H, Li W, Lan J, Guan X, Xu H, Cai Z 2017 Appl. Opt. 56 802Google Scholar

    [116]

    Wu D, Cai Z, Zhong Y, Peng J, Weng J, Luo Z 2015 IEEE Photon Technol. Lett. 27 2379Google Scholar

    [117]

    Luo Z, Huang Y, Weng J, Cheng H, Lin Z, Xu B 2013 Opt. Express 21 29516Google Scholar

    [118]

    Gao L, Huang W, Zhang J D, Zhu T, Zhang H, Zhao C 2014 Appl. Opt. 53 5117Google Scholar

    [119]

    Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z 2013 J. Lightwave Technol. 31 2857Google Scholar

    [120]

    Li W, Zou J, Huang Y, Wang K, Du T, Jiang S 2018 Photonics Res. 6 C29Google Scholar

    [121]

    Sun L, Lin Z, Peng J, Weng J, Huang Y, Luo Z 2014 Sci. Rep. 4 4794Google Scholar

    [122]

    Luo Z, Liu C, Huang Y, Wu D, Wu J, Xu H 2014 IEEE Sel. Top. Quant. 20 0902708Google Scholar

    [123]

    Koo J, Lee J, Lee J 2017 J. Lightwave Technol. 35 2175Google Scholar

    [124]

    Yan K, Lin J, Zhou Y, Gu C, Xu L, Wang A 2016 Appl. Opt. 55 3026Google Scholar

    [125]

    Chen Y, Zhao C, Chen S, Du J, Tang P, Jiang G 2014 IEEE J. Sel. Top. Quant. 20 315Google Scholar

    [126]

    Koo J, Lee J, Chi C, Lee J 2014 J. Opt. Soc. Am. B. 31 2157Google Scholar

    [127]

    Yan P, Chen H, Li K, Guo C, Ruan S, Wang J, et al. 2016 IEEE Photonics J. 8 1500506Google Scholar

    [128]

    Niu K, Chen Q, Sun R, Man B, Zhang H 2017 Opt. Mater. Express 7 3934Google Scholar

    [129]

    Li W, Peng J, Zhong Y, Wu D, Lin H, Cheng Y 2016 Opt. Mater. Express 6 2031Google Scholar

    [130]

    Luo Z, Wu D, Xu B, Xu H, Cai Z, Peng J 2016 Nanoscale 8 1066Google Scholar

    [131]

    Woodward R, Kelleher E, Howe R, Hu G, Torrisi F, Hasan T 2014 Opt. Express 22 31113Google Scholar

    [132]

    Wei R, Zhang H, Hu Z, Qiao T, He X, Guo Q 2016 Nanotechnology 27 305203Google Scholar

    [133]

    Chen J, Deng G, Yan S, Li C, Xi K, Xu F 2015 Opt. Lett. 40 3576Google Scholar

    [134]

    Xia H, Li H, Lan C, Li C, Du J, Zhang S 2015 Photonics Res. 3 A92Google Scholar

    [135]

    Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K 2014 Opt. Express 22 25258Google Scholar

    [136]

    Ren J, Wang S, Cheng Z, Yu H, Zhang H, Chen Y 2015 Opt. Express 23 5607Google Scholar

    [137]

    Li H, Xia H, Lan C, Li C, Zhang X, Li J 2015 IEEE Photon. Technol. Lett. 27 69Google Scholar

    [138]

    Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J 2015 Opt. Express 23 26723Google Scholar

    [139]

    Luo Z, Huang Y, Zhong M, Li Y, Wu J, Xu B 2014 J. Lightwave Tech. 32 4077Google Scholar

    [140]

    Lin J, Hu Y, Chen C, Gu C, Xu L 2015 Opt. Express 23 29059Google Scholar

    [141]

    Zhang M, Hu G, Hu G, Howe RC, Chen L, Zheng Z 2015 Sci. Rep. 5 17482Google Scholar

    [142]

    Kassani S, Khazaeizhad R, Jeong H, Nazari T, Yeom D 2015 Opt. Mater. Express 5 373Google Scholar

    [143]

    Lin J, Yan K, Zhou Y, Xu L, Gu C, Zhan Q 2015 Appl. Phys. Lett. 107 191108Google Scholar

    [144]

    Woodward R, Howe R, Runcorn T, Hu G, Torrisi F, Kelleher E 2015 Opt. Express 23 20051Google Scholar

    [145]

    Chen B, Zhang X, Guo C, Wu K, Chen J, Wang J 2016 Opt. Eng. 55 081306Google Scholar

    [146]

    Liu W, Liu M, Lei M, Fang S, Wei Z 2018 IEEE J. Sel. Top. Quant. 24 0901005Google Scholar

    [147]

    Wu D, Cai Z, Zhong Y, Peng J, Cheng Y, Weng J 2017 IEEE J. Selec. Top. Quant. 23 7Google Scholar

    [148]

    Huang K, Lu B, Li D, Qi X, Chen H, Wang N 2017 Appl. Opt. 56 6427Google Scholar

    [149]

    Rashid1 F, Azzuhri1 S, Salim M, Shaharuddin R, Ismail1 M, Ismail1 M 2016 Laser Phys. Lett. 13 085102Google Scholar

    [150]

    Zhao R, He J, Su X, Wang Y, Sun X, Nie H 2018 IEEE J. Sel. Top. Quant. 24 0900405Google Scholar

    [151]

    Mu H, Lin S, Wang Z, Xiao S, Li P, Chen Y 2015 Adv. Opt. Mater. 3 1447Google Scholar

    [152]

    Yu H, Zheng X, Yin K, Cheng X, Jiang T 2016 Opt. Mater. Express 6 603Google Scholar

    [153]

    Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y 2017 Opt. Lett. 42 547Google Scholar

    [154]

    Baek I, Lee H, Bae S, Hong B, Ahn Y, Yeom D 2012 Appl. Phys. Express 5 032701Google Scholar

    [155]

    Tan W, Su C, Knize R, Xie G, Li L, Tang D 2010 Appl. Phys. Lett. 96 031106Google Scholar

    [156]

    Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L 2014 Sci. Rep. 4 5016Google Scholar

    [157]

    Cai W, Jiang S, Xu S, Li Y, Liu J, Li C 2015 Opt. Laser Technol. 65 1Google Scholar

    [158]

    Feng C, Wang Y, Liu J, Tsang Y, Song Y, Yu Z 2013 Opt. Commun. 298 168Google Scholar

    [159]

    Xu S, Man B, Jiang S, Feng D, Gao S, Chen C 2014 Opt. Lett. 39 2707Google Scholar

    [160]

    Xu J, Li X, Wu Y, Hao X, He J, Yang K 2011 Opt. Lett. 36 1948Google Scholar

    [161]

    Zhu H, Liu J, Jiang S, Xu S, Su L, Jiang D 2015 Opt. Laser Technol. 75 83Google Scholar

    [162]

    Zhu H, Zhao L, Liu J, Xu S, Cai W, Jiang S 2016 Opt. Eng. 55 081304Google Scholar

    [163]

    Xu J, Li X, He J, Hao X, Wu Y, Yang Y 2011 Appl. Phys. Lett. 99 261107Google Scholar

    [164]

    Xu J, Li X, Wu Y, He J, Liu S, Hao X 2012 Opt. Letter 37 2652Google Scholar

    [165]

    Davide D, Ugolotti E, Schmidt A, Petrov V, Griebner U, Agnesi A 2013 Opt. Lett. 38 1745Google Scholar

    [166]

    Xie G, Ma J, Lv P, Gao W, Yuan P, Qian L 2012 Opt. Mater. Express 2 878Google Scholar

    [167]

    Liu J, Wang Y, Qu Z, Zheng L, Su L, Xu J 2012 Laser Phys. Lett. 9 15Google Scholar

    [168]

    Tolstik N, Sorokin E, Sorokina I 2014 Opt. Express 22 5564Google Scholar

    [169]

    Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L 2012 Opt. Lett. 37 2085Google Scholar

    [170]

    Wan H, Cai W, Wang F, Jiang S, Xu S, Liu J 2015 Opt. Quant. Electron. 48 11Google Scholar

    [171]

    Wang Y, Qu Z, Liu J, Tsang Y 2012 J. Lightwave Technol. 30 3259Google Scholar

    [172]

    Zhu H, Cai W, Wei J, Liu J, Zheng L, Su L 2015 Opt. Laser Technol. 68 120Google Scholar

    [173]

    Wang Y, Sung W, Su X, Zhao Y, Zhang B, Wu C 2018 IEEE Photonics J. 10 1504110Google Scholar

    [174]

    Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y 2018 ACS Nano 12 11376Google Scholar

    [175]

    Zhao G, Hou J, Wu Y, He J, Hao X 2015 Adv. Opt. Mater. 3 937Google Scholar

    [176]

    Zhang B, Lou F, Zhao R, He J, Li J, Su X 2015 Opt. Lett. 40 3691Google Scholar

    [177]

    Su X, Wang Y, Zhang B, Zhao R, Yang K, He J 2016 Opt. Lett. 41 1945Google Scholar

    [178]

    Sun X, Nie H, He J, Zhao R, Su X, Wang Y 2017 Opt. Express 25 20025Google Scholar

    [179]

    Li J, Luo H, Zhai B, Lu R, Guo Z, Zhang H 2016 Sci. Rep. 6 30361Google Scholar

    [180]

    Zhao T, Wang Y, Chen H, Shen D 2014 Appl. Phys. B 116 947Google Scholar

    [181]

    Hou J, Jia Z, Zhang B, Yin Y, Ning J, Mu W 2016 IEEE Photonics Tech. L. 28 825Google Scholar

    [182]

    Wang Z, Chen X, He J, Xu X, Zhang B, Yang K 2015 IEEE J. Quant. Elect. 51 7000105Google Scholar

    [183]

    Guan X, Zhan L, Zhu Z, Xu B, Xu H, Cai Z 2018 Appl. Opt. 57 371Google Scholar

    [184]

    Li C, Liu J, Jiang S, Xu S, Ma W, Wang J 2016 Opt. Mater. Express 6 1570Google Scholar

    [185]

    Nie H, Zhang P, Zhang B, Yang K, Zhang L, Li T 2017 Opt. Lett. 42 699Google Scholar

    [186]

    Zhu G, Zhu X, Balakrishnan K, Norwood R A, Peyghambarian N 2013 Opt. Mater. Express 3 1365Google Scholar

    [187]

    Zhang C, Liu J, Fan X, Peng Q, Guo X, Jiang D 2018 Opt. Laser Technol. 103 89Google Scholar

    [188]

    Zu Y, Zhang C, Wu Y, Liu J, Liu J, Wang Y 2018 Chin. Opt. Lett. 16 020013Google Scholar

    [189]

    Liu X, Yang K, Zhao S, Li T, Qiao W, Zhang H 2017 Photonics Res. 5 461Google Scholar

    [190]

    Li J, Luo H, Wang L, Zhao C, Zhang H, Li H 2015 Opt. Lett. 40 3659Google Scholar

    [191]

    You Z, Sun Y, Sun D, Zhu Z, Wang Y, Li J 2017 Opt. Lett. 42 871Google Scholar

    [192]

    Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y 2014 Adv. Mater. 26 3538Google Scholar

    [193]

    Kong L, Xie G, Yuan P, Qian L, Wang S, Yu H 2015 Photonics Res. 3 A47Google Scholar

    [194]

    Lan J, Zhang X, Zhou Z, Xu B, Xu H, Cai Z 2017 IEEE Photonics Tech. L. 29 515Google Scholar

    [195]

    Luan C, Zhang X, Yang K, Zhao J, Zhao S, Li T 2017 IEEE J. Sel. Top. Quant. 23 66Google Scholar

    [196]

    Fan M, Li T, Zhao S, Li G, Ma H, Gao X 2016 Opt. Lett. 41 540Google Scholar

    [197]

    Zhang S, Liu X, Guo L, Fan M, Lou F, Gao P 2017 IEEE Photonics Tech. L. 29 2258Google Scholar

    [198]

    Ge P, Liu J, Jiang S, Xu Y, Man B 2015 Photonics Res. 3 256Google Scholar

    [199]

    Xue Y, Xie Z, Ye Z, Hu X, Xu J, Zhang H 2018 Chin. Opt. Lett. 16 020018Google Scholar

    [200]

    Su X, Nie H, Wang Y, Li G, Yan B, Zhang B 2017 Opt. Lett. 42 3502Google Scholar

    [201]

    Fan M, Li T, Zhao J, Zhao S, Li G, Yang K 2018 Opt. Lett. 43 1726Google Scholar

    [202]

    Luan C, Yang K, Zhao J, Zhao S, Song L, Li T 2016 Opt. Lett. 41 3783Google Scholar

    [203]

    Wei C, Luo H, Zhang H, Li C, Xie J, Li J 2016 Laser Phys. Lett. 13 105108Google Scholar

    [204]

    Guo L, Li T, Zhang S, Wang M, Zhao S, Yang K 2017 Opt. Mater. Express 7 2090Google Scholar

    [205]

    Zhang R, Zhang Y, Yu H, Zhang H, Yang R, Yang B 2015 Adv. Opt. Mater. 3 1787Google Scholar

    [206]

    Chu Z, Liu J, Guo Z, Zhang H 2016 Opt. Mater. Express 6 2374Google Scholar

    [207]

    Zhang H, He J, Wang Z, Hou J, Zhang B, Zhao R 2016 Opt. Mater. Express 6 2328Google Scholar

    [208]

    Xie Y, Kong L, Qin Z, Xie G, Zhang J 2016 Opt. Eng. 55 081307Google Scholar

    [209]

    Wang Z, Zhao R, He J, Zhang B, Ning J, Wang Y 2016 Opt. Express 24 1598Google Scholar

    [210]

    Li C, Liu J, Guo Z, Zhang H, Ma W, Wang J 2018 Opt. Commun. 406 158Google Scholar

    [211]

    Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P 2016 Laser Phys. Lett. 13 045801Google Scholar

    [212]

    Liu J, Liu J, Guo Z, Zhang H, Ma W, Wang J 2016 Opt. Express 24 30289Google Scholar

    [213]

    Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S 2015 Opt. Express 23 24713Google Scholar

    [214]

    Nie H, Zhang P, Zhang B, Xu M, Yang K, Sun X 2018 IEEE J. Sel. Top. Quant. 24 1600205Google Scholar

    [215]

    Wang C, Wang Y, Jiang X, Xu J, Huang W, Zhang F 2019 Adv. Opt. Mater. 7 1900060Google Scholar

    [216]

    Liu J, Huang H, Zhang F, Zhang Z, Liu J, Zhang H 2018 Photonics Res. 6 762Google Scholar

    [217]

    Zu Y, Zhang C, Guo X, Liang W, Liu J, Su L 2019 Laser Phys. Lett. 16 015803Google Scholar

    [218]

    Feng X, Ding B, Liang W, Zhang F, Ning T, Liu J 2018 Laser Phys. Lett. 15 085805Google Scholar

  • 图 1  不同类型的二维纳米材料示意图[7]

    Fig. 1.  Schematic illustration of different kinds of typical ultrathin two-dimensional nanomaterials [7].

    图 2  石墨烯(a), (b) [8], MoS2 (c), (d) [8], Bi2Se3 (e), (f) [10]和BP (g), (h)[8]的原子结构和带隙结构

    Fig. 2.  Atomic structures and band structures of graphene (a), (b) [8], MoS2 (c), (d) [8], Bi2Se3 (e), (f)[10] and BP (g), (h)[8]. Reprinted by permission from Ref. [8]. Copyright 2014 Nature Publishing Group. Reprinted by permission from Ref. [10]. Copyright 2009 Nature Publishing Group.

    图 3  二维材料的制备方法

    Fig. 3.  Fabrication methods of two-dimensional materials.

    图 4   (a) Z-scan法实验装置[18]; (b) 双臂测量法实验装置[19]

    Fig. 4.  (a) Schematic of the Z-scan measurement setup with permission from Ref. [18] © The Optical Society. (b) Schematic of the two-arm measurement setup. Reprinted by permission from Ref. [19]. Copyright 2017 Nature Publishing Group.

    图 5  二维材料的耦合方式 (a) 二维材料转移至石英片上; (b) 二维材料转移至高反镜上; (c) 三明治结构, 二维材料转移至光纤端面 (d)、锥形光纤(e)和D型光纤(f)

    Fig. 5.  Incorporation schemes for two-dimensional materials: (a) Transferring two-dimensional materials on quartz; (b) transferring two-dimensional materials on high reflection mirror; (c) sandwiching structure; transferring or depositing SA on (d) fiber end, (e) tapered fiber and (f) D-typed fiber.

    图 6   (a) 光纤激光器的脉宽和重复频率分布图; (b) 种子源和压缩脉冲的自相关曲线[20]; (c), (d) 212阶谐波锁模脉冲输出序列和自相关曲线[21]; (e), (f)锁模脉冲序列和自相关曲线[103]

    Fig. 6.  (a) Scattergram of pulse width and repetition rate of fiber lasers. (b) Intensity autocorrelation trace, fitted with a sech2 profile. Both seed and compressed traces are normalized to 1. Selected from Ref. [20]. (c) Measured oscilloscope traces of the 212th-harmonic-output optical pulses with permission from Ref. [21] © The Optical Society. (d) Measured autocorrelation traces of the output pulses at the maximum harmonic order with permission from Ref. [21] © The Optical Society. (e) Typical oscilloscope pulse trains of mode-locking. Reprinted by permission from Ref. [103]. Copyright 2018 Wiley-VCH Verlag. (f) Autocorrelation trace with a sech2 fitting. Reprinted by permission from Ref. [103]. Copyright 2018 Wiley-VCH Verla.

    图 7  (a) 黑磷纳米片溶液; (b) 黑磷饱和吸收体的非线性曲线; (c) Ho3+/Pr3+共掺的被动锁模光纤激光器; (d)锁模脉冲的自相关曲线[179]

    Fig. 7.  (a) Layered BP solution; (b) nonlinear transmission of BP SA; (c) passively mode-locked Ho3+/Pr3+ co-doped fluoride fiber laser; (d) autocorrelation trace of the mode-locked pulses. Reprinted by permission from Ref. [179]. Copyright 2016 Nature Publishing Group.

    表 1  基于石墨烯、TIs、TMDs、BP的锁模光纤激光器的性能总结

    Table 1.  Performance summary of mode-locked fiber lasers based on graphene, TIs, TMDs and BP.

    Material typeFabrication methodλ/nmPulse widthRepetition rateEnergyRef.
    GGCVD1069.8580 ps0.9 MHz0.41 nJ[26]
    CVD1559.12432.47 fs25.51 MHz0.09 nJ[27]
    CVD1565.3148 fs101 MHz15 pJ[28]
    CVD154588 fs21.15 MHz71 pJ[29]
    CVD1531.31.21 ps1.88 MHz[30]
    CVD1559.34345 fs54.28 MHz38.7 pJ[31]
    CVD15611.23 ps2.54 MHz[32]
    CVD1576415 fs6.84 MHz7.3 nJ[33]
    LPE155029 fs18.67 MHz2.8 nJ[20]
    ME1567220 fs15.7 MHz83 pJ[34]
    1554168 fs63 MHz55 pJ[35]
    ME1560900 fs2.22 GHz[22]
    1560992 fs0.49 GHz[36]
    LPE1525—15591 ps8 MHz125 pJ[37]
    CVD1945205 fs58.87 MHz220 pJ[38]
    2060190 fs20.98 MHz2.55 nJ[39]
    CVD278042 ps25.4 MHz0.7 nJ[40]
    GO1556.5615 fs17.09 MHz[41]
    Graphene-Bi2Te3CVD1565.61.17 ps6.91 MHz[42]
    TIsBi2Se3PM1031.746 ps44.6 MHz0.76 nJ[43]
    PM1600360 fs35.45 MHz24.3 pJ[44]
    PM1557.5660 fs12.5 MHz0.14 nJ[45]
    LPE1571579 fs12.54 MHz127 pJ[46]
    LPE1559245 fs202.7 MHz37 nJ[47]
    HM16100.7 ns640.9 MHz481 pJ[48]
    PM1557—15651.57 ps1.21 MHz[49]
    LPE1567/156822 ps8.83 MHz1.1 nJ[50]
    Bi2Te3ME1057.82230 ps1.44 MHz0.6 nJ[51]
    HM1064.47960 ps1.11 MHz[52]
    ME1547600 fs15.11 MHz53 pJ[53]
    PLD1560.8286 fs18.55 MHz0.03 nJ[54]
    HM15571100 fs8.635 MHz29 pJ[55]
    PLD1562.4320 fs2.95 GHz[24]
    1557.43.42 ps388 MHz[56]
    ME1935795 fs27.9 MHz36 pJ[57]
    1909.51.26 ps21.5 MHz[58]
    Sb2Te3LPE1556449 fs22.13 MHz39.6 pJ[59]
    ME1564125 fs22.4 MHz44.6 pJ[60]
    ME1561270 fs34.58 MHz0.03 nJ[61]
    DFT1568.6195 fs33 MHz0.27 nJ[62]
    ME1565128 fs22.32 MHz45 pJ[15]
    MS1558167 fs25.38 MHz0.21 nJ[63]
    PLD154270 fs95.4 MHz[23]
    TMDsWS2MS1560288 fs41.4 MHz0.04 pJ[64]
    LPE1550595 fs[65]
    PLD1560220 fs[66]
    LPE1561/1563369/56324.93/20.39 MHz70/136 pJ[67]
    CVD1565332 fs31.11 MHz14 pJ[68]
    PLD1559.7452 fs1.04 GHz10.9 pJ
    PLD1558.54585—605 fs8.83 MHz1.14 nJ[66]
    LPE19411.3 ps34.8 MHz172 pJ[69]
    MoS2HM1054.3800 ps7 MHz1.3 nJ[70]
    HM1569.5710 fs12.09 MHz0.147 nJ[71]
    ME1550200 fs14.53 MHz[72]
    PLD1561246 fs101.4 MHz1.2 nJ[73]
    LPE1573.7630 fs27.1 MHz0.141 nJ[74]
    HM1556.83 ps2.5 GHz2 pJ[75]
    LPE1530.41.2 ps125 MHz344 pJ[76]
    LPE1555.6737 fs3.27 GHz7 pJ[21]
    LPE1535—15650.96—7.1 ps12.99 MHz[77]
    MS1915.51.25 ps18.72 MHz[78]
    WSe2CVD1557.4163.5 fs63.13 MHz451 pJ[79]
    CVD1863.961.16 ps11.36 MHz2.9 nJ[80]
    MoSe2LPE1912920 fs18.21 MHz[81]
    SnS2LPE1062.66656 ps39.33 MHz57 pJ[82]
    LPE1562.01623 fs29.33 MHz41 pJ[83]
    ReS2CVD15641.25 ps3.43 MHz[84]
    LPE1558.61.6 ps5.48 MHz73 pJ[85]
    BPME1085.57.54 ps13.5 MHz5.93 nJ[86]
    LPE1030.6400 ps46.3 MHz0.70 nJ[87]
    LPE1555102 fs23.9 MHz0.08 nJ[25]
    LPE15621236 fs5.426 MHz[88]
    LPE1549—1575280 fs60.5 MHz[89]
    ME1560.7570 fs6.88 MHz0.74 nJ[16]
    LPE1559.5670 fs8.77 MHz[90]
    ME1558.7786 fs14.7 MHz0.11 nJ[91]
    ME1571.4946 fs5.96 MHz[14]
    ME1560.5272 fs28.2 MHz2.3 nJ[92]
    LPE1532—1570940 fs4.96 MHz1.1 nJ[93]
    LPE1562.8291 fs10.36 MHz[94]
    LPE1562635 fs12.5 MHz[95]
    LPE1555687 fs37.8 MHz[96]
    LPE1561.7882 fs5.47 MHz
    LPE153320.82 MHz0.07 nJ[97]
    ME1910739 fs36.8 MHz0.05 nJ[98]
    LPE18981580 fs19.2 MHz440 pJ[99]
    LPE20941300 fs290 MHz0.39 nJ[100]
    注: LPE, liquid-phase exfoliation; CVD, chemical vapor deposition; ME, mechanical exfoliation; MS, magnetron sputtering; PLD, pulsed laser deposition; HM, hydrothermal method; DFT, direct fusion technique; PM, polyol method; G, graphene; GO, graphene oxide.
    下载: 导出CSV

    表 2  基于石墨烯、TIs、TMDs、BP的调Q光纤激光器的性能总结

    Table 2.  Performance summary of Q-switched fiber lasers based on graphene, TIs, TMDs and BP.

    Material typeFabrication methodsλPulse widthRepetation rateEnergyRef.
    GG1075 nm70 ns257 kHz46 nJ[107]
    1192.6 nm800 ps111 kHz0.44 μJ[106]
    CVD1560 nm2.06 μs73.06 kHz93.7 nJ[108]
    HM1561 nm4.0 μs27.2 kHz29 nJ[109]
    LPE1555 nm2 μs103 kHz40 nJ[110]
    2.78 μm2.9 μs37.2 kHz1.67 μJ[111]
    GO1558 nm2.3 μs123.5 kHz1.68 nJ[112]
    CVD1044 nm1.7 μs215 kHz8.37 μJ[113]
    2032 nm3.8 μs45 kHz6.71 μJ[114]
    TIsBi2Se3LPE604 nm494 ns187.4 kHz3.1 nJ[115]
    LPE635 nm244 ns454.5 kHz22.3 nJ[116]
    LPE1.06 μm1.95 μs29.1 kHz17.9 nJ[117]
    HM1562.27 nm1.6 μs53.7 kHz0.08 nJ[118]
    PM1.5 μm13.4 μs12.88 kHz13.3 nJ[119]
    LPE1.55 μm2.54 μs212 kHz[120]
    LPE1530.3 nm24 μs40.1 kHz39.8 nJ[121]
    LPE1.98 μm4.18 μs26.8 kHz313 nJ[122]
    Bi2Te3ME1559 nm4.88 μs21.24 kHz89.9 nJ[123]
    SM1557.5 nm3.71 μs49.40 kHz2.8 μJ[124]
    LPE1.5 μm13 μs12.82 kHz1.5 μJ[125]
    ME1.56 μm2.81 μs42.8 kHz12.7 nJ[126]
    Sb2Te3MS1530—1570 nm400 ns338 kHz18 nJ[127]
    SnS21532.7 nm510 ns233 kHz40 nJ[128]
    TMDsMoS2LPE604 nm602 ns118.4 kHz5.5 nJ[129]
    LPE635 nm200 ns512 kHz28.7 nJ[130]
    LPE1030—1070 nm2.88 μs89 kHz126 nJ[131]
    HM1.56 μm3.2 μs91.7 kHz17 nJ[132]
    TEM1550—1575 nm6 μs22 kHz150 nJ[133]
    CVD1529—1570 nm1.92 μs114.8 kHz8.2 nJ[134]
    LPE1519—1567 nm3.3 μs43.47 kHz160 nJ[135]
    PLD1549.8 nm660 ns131 kHz152 nJ[136]
    CVD1549.9 nm1.66 μs173 kHz27.2 nJ[137]
    LPE1550 nm9.92 μs41.45 kHz184 nJ[138]
    LPE1.06 μm5.8 μs28.9 kHz32.6 nJ[139]
    1.56 μm5.4 μs27 kHz63.2 nJ
    2.03 μm1.76 μs48.1 kHz1 μJ
    TMDsWS2LPE604 nm435 ns132.2 kHz6.4 nJ[129]
    CVD1027—1065 nm1.65 μs97 kHz[140]
    LPE1030 nm3.2 μs36.7 kHz13.6 nJ[141]
    LPE1.5 μm0.71 μs134 kHz19 nJ[142]
    LPE1558 nm1.1 μs97 kHz179 nJ[141]
    LPE1547.5 nm958 ns120 kHz44 nJ[143]
    LPE1550 nm3.966 μs77.92 kHz1.2 μJ[138]
    TDMs MoSe2LPE635.4 nm240 ns555 kHz11.1 nJ[130]
    1060 nm2.8 μs60 kHz116 nJ
    LPE1566 nm4.8 μs35.4 kHz825 nJ[144]
    1924 nm5.5 μs21.8 kHz42 nJ
    LPE1550 nm4.04 μs66.8 kHz369 nJ[138]
    WSe2LPE1550 nm4.06 μs85.36 kHz485 nJ[138]
    WSe2LPE1560 nm3.1 μs49.6 kHz33.2 nJ[145]
    TiSe2CVD1530 nm1.12 μs154 kHz75 nJ[146]
    BPLPE635 nm383 ns409.8 kHz27.6 nJ[147]
    ME1064.7 nm2.0 μs76 kHz17.8 nJ[148]
    ME1.0 μm1.16 μs58.73 kHz2.09 nJ[149]
    LPE1.5 μm1.36 μs82.64 kHz148 nJ[150]
    ME1561 nm2.96 μs34.32 kHz194 nJ[151]
    ME1562.8 nm10.32 μs15.78 kHz94.3 nJ[14]
    LPE1912 nm731 μs113.3 kHz632 nJ[152]
    注: SM, solvothermal method; TEM, thermal evaporation method.
    下载: 导出CSV

    表 3  基于石墨烯、TIs、TMDs、BP的锁模固体激光器的性能总结

    Table 3.  Performance summary of mode-locked solid-state lasers based on graphene, TIs, TMDs and BP.

    MaterialFabrication methodIntegration substrateBulk laser crystalCenter wavelengthPulse
    width
    Repetition
    rate
    Output
    power
    Ref.
    GCVDQuartzTi:Sapphire800 nm63 fs99.4 MHz480 mW[154]
    LPEQuartzYb:YAG1064 nm4 ps88 MHz100 mW[155]
    CVDGMYb:YCOB1.0 μm152 fs[156]
    CVDQuartzYb:SC2SiO51062.8 nm14 ps90.7 MHz480 mW[157]
    VEMQuartzNd:YVO41064 nm8.8 ps84 MHz3.06 W[158]
    CVDSapphireYb:KGW1032 nm325 fs66.3 MHz1.78 W[159]
    LPEDMNd:GdVO41064 nm16 ps43 MHz360 mW[160]
    CVDGlassYb:Y:CaF21051 nm4.8 ps60 MHz370 mW[161]
    CVDGlassYb:Y2SiO51042.6 nm883 fs87 MHz1 W[162]
    LPEDMYb:KGW1031.1 nm428 fs86 MHz504 mW[163]
    LPEDMNd;GdVO41.34 μm11 ps100 MHz1.29 W[164]
    CVDQuartzCr:YAG1516 nm91 fs100 mW[165]
    CVDGMTm:CLNGG2.0 μm354 fsNA[156]
    CVDDMTm:CLNGG2014.4 nm882 fs95 MHz60 mW[166]
    LPEQuartzTm:YAP2023 nm < 10 ps71.8 MHz268 mW[167]
    CVDHRMCr:ZnS2400 nm41 fs108 MHz250 mW[168]
    CVDHRMTm:CLNGG2018 nm729 fs98.7 MHz178 mW[169]
    CVDQuartzTm:YAP1988 nm62.38 MHz256 mW[170]
    GOVEMQuartzNd:GdVO41064 nm4.5 ps70 MHz1.1 W[171]
    VEMQuartzYb:Y2SiO51059 nm763 fs94 MHz700 mW[172]
    Bi2Te3SCCASapphireNd:YVO41064 nm8 ps0.98 GHz180 mW[173]
    MoS2PLDQuartzPr:GdLiF4522 nm46 ps101.4 MHz10 mW[153]
    MoS2/GPLDHRMYb:KYW1037.2 nm236 fs41.84 MHz550 mW[174]
    MoS2/GOLPEDMNd:GdVO41064 nm17 ps1.02 GHz508 mW[175]
    BPLPEDMNd:GdVO41064 nm6.1 ps140 MHz460 mW[176]
    LPEHRMYb,Lu:CALGO1053.4 nm272 fs63.3 MHz820 mW[177]
    LPEQuartzNd;GdVO41.34 μm9.24 ps58.14 MHz350 mW[178]
    LPEHo,Pr:ZBLAN2.8 μm8.6 ps13.98 MHz87.8 mW[179]
    注: VEM, vertical evaporation method; SCCA, spin coating–coreduction approach; DM, dielectric mirror; HRM, high reflective mirror.
    下载: 导出CSV

    表 4  在2—3 μm波段下, 基于石墨烯、TIs、TMDs、BP的调Q固体激光器的性能总结

    Table 4.  Performance summary of Q-switched solid-state lasers based on graphene, TIs, TMDs and BP at the wavelength of 2-3 μm.

    MaterialFabrication methodIntegration substrateBulk laser
    crystal
    Center wavelengthPulse
    width
    Repitition rateOutput powerRef.
    GQuartzHo:YAG2097 nm2.6 μs64 kHz264 mW[180]
    QuartzTm:LGGG2003 nm1.29μs43.9 kHz140 mW[181]
    EGSiCCr:ZnSe2.4 μm157 ns169 kHz256 mW[182]
    CVDCaF2Er:Y2O32.7 μm296 ns44.2 kHz114 mW[183]
    HRMEr:ZBLAN2.78 μm2.9 μs37 kHz62 mW[111]
    CVDQuartzEr:CaF22.8 μm1.3 μs62.7 kHz172 mW[184]
    CVDSapphireHo,Pr:LLF2.95 μm937 ns55.7 kHz172 mW[185]
    LPEHRMHo:ZBLAN3.0 μm1.2 μs92 kHz102 mW[186]
    GOLPETm:Y:CaF21969 nm1.32μs20.2 kHz400 mW[187]
    LPEQuartzTm:YLF1928 nm1.0 μs38 kHz379 mW[188]
    TIsBi2Te3LPEQuartzTm:LuAG2023.6 nm620 ns118 kHz2.03 W[189]
    HEMCaF2Ho:ZBLAN2.979 μm1.4 μs81.96 kHz327 mW[190]
    Bi2Te3/GSMSiO2Tm:YAP1980 nm238 ns108 kHz2.34 W[191]
    Er:YSGG2796 nm243 ns88 kHz110 mW
    TMDsMoS2PLDQuartzTm:Ho:YGG2.1 μm410 ns149 kHz206 mW[192]
    PLDGMTm:CLNGG1979 nm4.8 μs110 kHz62 mW[193]
    LPEDMTm:CYAO1850 nm0.5 μs84.9 kHz490 mW[194]
    LPEGlassTm,Ho:YAP2129 nm435 ns55 kHz275 mW[195]
    LPEYAGEr:Lu2O32.84 μm335 ns121 kHz1.03 W[196]
    CVDYAGHo,Pr:LLF2.95 μm621 ns85.8 kHz70 mW[197]
    Tm:GdVO41902 nm0.8 μs49.1 kHz100 mW[198]
    MoS2/BPLPESAMsTm:YAP1993 nm488 ns86 kHz3.6 W[199]
    ReS2LPESapphireEr:YSGG2.8 μm324 ns126 kHz104 mW[200]
    LPEYAGEr:SrF22.79 μm508 ns49 kHz580 mW[201]
    WS2TDSiO2Tm:LuAG2.0 μm660 ns62 kHz1.08 W[202]
    SGMHRMHo3+/Pr3+:ZBLAN2.86 μm1.73 us131 kHz48 mW[203]
    LPEYAGHo,Pr,LLF2.95 μm654 ns90.4 kHz82 mW[204]
    BPMEQuartzTm:Ho:YAG2.1 μm636 ns122 kHz27 mW[205]
    LPEQuartzTm:YAP1988 nm1.8 us19.3 kHz151 mW[206]
    LPEDMTm:YAP1969 nm181 ns81 kHz3.1 W[207]
    MEHRMTm:YAG2 μm3.12 us11.6 kHz38 mW[208]
    LPEHo:ZBLAN2.9 μm2.4 μs62.5 kHz309 mW[179]
    LPEDMCr:ZnSe2.4 μm189 ns176 kHz36 mW[209]
    LPEEr:CaF22.8 μm955 ns41.9 kHz178 mW[210]
    LPEGMTm:CaYAlO41.93 μm3.1 μs17.7 kHz12 mW[211]
    LPEGMEr:Y2O32.72 μm4.5 μs12.6 kHz6 mW[211]
    LPESiliconEr:SrF22.79 μm702 ns77 kHz180 mW[212]
    LPE— Er:ZBLAN2.8 μm1.2 μs63 kHz485 mW[213]
    LPESiliconEr:CaF22.8 μm955 ns41.9 kHz178 mW[210]
    LPECaF2Ho,Pr:LLF2.95 μm194 ns159 kHz385 mW[214]
    注: SGM, sulfidation grown method; GM, gold mirror.
    下载: 导出CSV
  • [1]

    Gattass R R, Mazur E 2008 Nat. Photonics 2 219Google Scholar

    [2]

    Dominik S, Christopher M M, Christian S, Mark S S 2010 Opt. Lett. 35 3799Google Scholar

    [3]

    Shuo T, Jian L, Tatiana B K, Chen Z, Bruce J T 2009 J. Biomed. Opt. 14 030508Google Scholar

    [4]

    Sobon G, Klimczak M, Sotor J, Krzempek K, Pysz D, Stepien R 2013 Opt. Mater. Express 4 7Google Scholar

    [5]

    Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z 2009 Adv. Funct. Mater. 19 3077Google Scholar

    [6]

    Krzempek K, Sobon G, Kaczmarek P, Abramski K M 2013 Laser Phys. Lett. 10 105103

    [7]

    Zhang H 2015 ACS Nano. 9 9451Google Scholar

    [8]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics. 8 899Google Scholar

    [9]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V 2004 Science 306 666Google Scholar

    [10]

    Zhang H, Liu C, Qi X, Dai X, Fang Z, Zhang S 2009 Nat. Phys. 5 438Google Scholar

    [11]

    Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S 2012 Appl. Phys. Lett. 101 211106Google Scholar

    [12]

    Brown A, Rundqvist S 1965 Acta Crystallogr. 19 684Google Scholar

    [13]

    Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar

    [14]

    Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, et al. 2015 Opt Express 23 12823Google Scholar

    [15]

    Sotor J, Sobon G, Abramski K M 2014 Opt. Express 22 13244Google Scholar

    [16]

    Ahmed M, Latiff A, Arof H, Harun S 2016 Laser Phys. Lett. 13 095104Google Scholar

    [17]

    Xia H, Li H, Lan C, Li C, Zhang X, Zhang S 2014 Opt. Express 22 17341Google Scholar

    [18]

    Guo B 2018 Chin. Opt. Lett. 16 20004Google Scholar

    [19]

    Du J, Zhang M, Guo Z, Chen J, Zhu X, Hu G 2017 Sci. Rep. 7 42357Google Scholar

    [20]

    Purdie D G, Popa D, Wittwer V J, Jiang Z, Bonacchini G, Torrisi F, et al. 2015 Appl. Phys. Lett. 106 253101Google Scholar

    [21]

    Koo J, Park J, Lee J, Jhon Y, Lee J 2016 Opt. Express 24 10575

    [22]

    Sobon G, Sotor J, Abramski K 2012 Appl. Phys. Lett. 100 161109Google Scholar

    [23]

    Liu W, Pang L, Han H, Tian W, Chen H, Lei M 2016 Sci. Rep. 6 19997Google Scholar

    [24]

    Yan P, Lin R, Ruan S, Liu A, Chen H 2015 Opt. Express 23 154Google Scholar

    [25]

    Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R 2018 Opt. Express 26 12506Google Scholar

    [26]

    Zhao L, Tang D, Zhang H, Wu X, Bao Q, Loh K 2010 Opt. Lett. 35 3622Google Scholar

    [27]

    Huang P, Lin S, Yeh C, Kuo H, Huang S, Lin G 2012 Opt. Express 20 2460Google Scholar

    [28]

    Tarka J, Boguslawski J, Sobon G, Pasternak I, Przewloka A, Strupinski W 2017 IEEE J. Selec. Top. Quant. 23 60Google Scholar

    [29]

    Sotor J, Pasternak I, Krajewska A, Strupinski W, Sobon G 2015 Opt. Express 23 27503Google Scholar

    [30]

    Liu X, Yang H, Cui Y, Chen G, Yang Y, Wu X 2016 Sci. Rep. 6 26024Google Scholar

    [31]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Mater. Express 5 2884Google Scholar

    [32]

    Bao Q, Zhang H, Ni Z, Wang Y, Polavarapu L, Shen Z 2010 Nano Res. 4 297Google Scholar

    [33]

    Zhang H, Tang D, Zhao L, Bao Q, Loh K 2009 Opt. Express 17 17630Google Scholar

    [34]

    Steinberg D, Zapata J, Thoroh de Souza E, Saito L 2018 J. Lightwave Technol. 36 1868Google Scholar

    [35]

    Tarka J, Sobon G, Boguslawski J, Sotor J, Jagiello J, Aksienionek M 2014 Opt. Mater. Express 4 1981Google Scholar

    [36]

    Meng Y, Zhang S, Li X, Li H, Du J, Hao Y 2012 Laser Phys. Lett. 9 537Google Scholar

    [37]

    Sun Z, Popa D, Hasan T, Torrisi F, Wang F, Kelleher E 2010 Nano Research 3 653Google Scholar

    [38]

    Sotor J, Boguslawski J, Martynkien T, Mergo P, Krajewska A, Przewloka A 2017 Opt. Lett. 42 1592Google Scholar

    [39]

    Pawliszewska M, Martynkien T, Przewloka A, Sotor J 2018 Opt. Lett. 43 38Google Scholar

    [40]

    Zhu G, Zhu X, Wang F, Xu S, Li Y, Guo X 2016 IEEE Photon. Technol. Lett. 28 7Google Scholar

    [41]

    Ko S, Lee J, Koo J, Joo B, Gu M, Lee J 2016 J. Lightwave Technol. 34 3776Google Scholar

    [42]

    Wang Z, Mu H, Yuan J, Zhao C, Bao Q, Zhang H 2017 IEEE J. Sel. Top. Quant. 23 195Google Scholar

    [43]

    Dou Z, Song Y, Tian J, Liu J, Yu Z, Fang X 2014 Opt. Express 22 24055Google Scholar

    [44]

    Li K, Song Y, Yu Z, Xu R, Dou Z, Tian J 2015 Laser Phys. Lett. 12 105103Google Scholar

    [45]

    Liu H, Zheng X, Liu M, Zhao N, Luo A, Luo Z 2014 Opt. Express 22 6868Google Scholar

    [46]

    Xu Y, Xie H, Jiang G, Miao L, Wang K, Tang S 2017 Opt. Commun. 395 55Google Scholar

    [47]

    Gao L, Zhu T, Huang W, Luo Z 2015 IEEE Photonics J. 7 3300108Google Scholar

    [48]

    Meng Y, Semaan G, Salhi M, Niang A, Guesmi K, Luo Z 2015 Opt. Express 23 23053Google Scholar

    [49]

    Zhao C, Zou Y, Chen Y, Wang Z, Lu S, Zhang H 2012 Opt. Express 20 27888Google Scholar

    [50]

    Guo B, Yao Y, Yang Y, Yuan Y, Wang R, Wang S 2015 J. Appl. Phys. 117 063108Google Scholar

    [51]

    Chi C, Lee J, Koo J, Lee J 2014 Laser Phys. 24 105106Google Scholar

    [52]

    Yan P, Lin R, Chen H, Zhang H, Liu A, Yang H 2015 IEEE Photonics Tech. L. 27 264Google Scholar

    [53]

    Lee J, Koo J, Jhon Y, Lee J 2014 Opt. Express 22 6165Google Scholar

    [54]

    Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y 2015 Sci. Rep. 5 8690Google Scholar

    [55]

    Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C 2015 Photonics Res. 3 A43Google Scholar

    [56]

    Liu M, Zhao N, Liu H, Zheng X, Luo A, Luo Z 2014 IEEE Photon. Technol. Lett. 26 983Google Scholar

    [57]

    Jung M, Lee J, Koo J, Park J, Song Y, Lee K 2014 Opt. Express 22 7865Google Scholar

    [58]

    Yin K, Zhang B, Li L, Jiang T, Zhou X, Hou J 2015 Photonics Res. 3 72Google Scholar

    [59]

    Boguslawski J, Sotor J, Sobon G, Tarka J, Jagiello J, Macherzynski W 2014 Laser Phys. Lett. 24 105111Google Scholar

    [60]

    Shaw L, Sotor J, Sobon G, Boguslawski J, Tarka J, Abramski K 2015 Fiber Lasers XII: Technology, Systems, and Applications 9344 93441ZGoogle Scholar

    [61]

    Sotor J, Sobon G, Grodecki K, Abramski K 2014 Appl. Phys. Lett. 104 251112Google Scholar

    [62]

    Boguslawski J, Sobon G, Zybala R, Mars K, Mikula A, Abramski K 2015 Opt. Express 23 29014Google Scholar

    [63]

    Boguslawski J, Sobon G, Zybala R, Sotor J 2015 Opt. Lett. 40 2786Google Scholar

    [64]

    Liu M, Liu W, Pang L, Teng H, Fang S, Wei Z 2018 Opt. Commun. 406 72Google Scholar

    [65]

    Wu K, Zhang X, Wang J, Li X, Chen J 2015 Opt. Express 23 11453Google Scholar

    [66]

    Guo B, Yao Y, Yan P, Xu K, Liu J, Wang S 2016 IEEE Photon. Technol. Lett. 28 323Google Scholar

    [67]

    Khazaeinezhad R, Kassani S, Jeong H, Park K, Kim B, Yeom D 2015 IEEE Photonics Tech. L. 27 1581Google Scholar

    [68]

    Khazaeinezhad R, Hosseinzadeh Kassani S, Jeong H, Yeom D 2015 J. Lightwave Technol. 33 3550Google Scholar

    [69]

    Jung M, Lee J, Park J, Koo J, Jhon Y, Lee J 2015 Opt. Express 23 19996Google Scholar

    [70]

    Zhang H, Lu S, Zheng J, Du J, Wen S, Tang D 2014 Opt. Express 22 7249Google Scholar

    [71]

    Liu H, Luo A, Wang F, Tang R, Liu M, Luo Z 2014 Opt. Lett. 39 4591Google Scholar

    [72]

    Aiub E, Steinberg D, Thoroh de Souza E, Saito L 2017 Opt. Express 25 10546Google Scholar

    [73]

    Liu W, Pang L, Han H, Bi K, Lei M, Wei Z 2017 Nanoscale 9 5806Google Scholar

    [74]

    Ahmed M, Latiff A, Arof H, Ahmad H, Harun S 2016 Opt. Laser Technol. 82 145Google Scholar

    [75]

    Liu M, Zheng X, Qi Y, Liu H, Luo A, Luo Z 2014 Opt. Express 22 22841Google Scholar

    [76]

    Wang Y, Mao D, Gan X, Han L, Ma C, Xi T 2015 Opt. Express 23 205Google Scholar

    [77]

    Zhang M, Howe R, Woodward R, Kelleher E, Torrisi F, Hu G 2015 Nano Research 8 1522Google Scholar

    [78]

    Wang J, Jiang Z, Chen H, Li J, Yin J, Wang J 2017 Opt. Lett. 42 5010Google Scholar

    [79]

    Liu W, Liu M, Ouyang Y, Hou H, Ma G, Lei M, et al. 2018 Nanotechnology 29 174002Google Scholar

    [80]

    Wang J, Lu W, Li J, Chen H, Jiang Z, Wang J 2018 IEEE J. Sel. Top. Quant. 24 1100706Google Scholar

    [81]

    Lee J, Koo J, Jhon Y, Lee J 2017 Opt. Mater. Express 7 2968Google Scholar

    [82]

    Li J, Zhao Y, Chen Q, Niu K, Sun R, Zhang H 2017 IEEE Photonics J. 9 1506707Google Scholar

    [83]

    Niu K, Sun R, Chen Q, Man B, Zhang H 2018 Photonics Res. 6 72Google Scholar

    [84]

    Cui Y, Lu F, Liu X 2017 Sci. Rep. 7 40080Google Scholar

    [85]

    Mao D, Cui X, Gan X, Li M, Zhang W, Lu H 2018 IEEE J. Sel. Top. Quant. 24 1100406Google Scholar

    [86]

    Hisyam M, Rusdi M, Latiff A, Harun S 2017 IEEE J. Sel. Top. Quant. 23 1100205Google Scholar

    [87]

    Song H, Wang Q, Zhang Y, Li L 2017 Opt. Commun. 394 157Google Scholar

    [88]

    Mao D, Li M, Cui X, Zhang W, Lu H, Song K 2018 Opt. Commun. 406 254Google Scholar

    [89]

    Chen Y, Chen S, Liu J, Gao Y, Zhang W 2016 Opt. Express 24 13316Google Scholar

    [90]

    Song Y, Chen S, Zhang Q, Li L, Zhao L, Zhang H 2016 Opt. Express 24 25933Google Scholar

    [91]

    Li D, Jussila H, Karvonen L, Ye G, Lipsanen H, Chen X 2015 Sci. Rep. 5 15899Google Scholar

    [92]

    Sotor J, Sobon G, Macherzynski W, Paletko P, Abramski K 2015 Appl. Phys. Lett. 107 051108Google Scholar

    [93]

    Luo Z, Liu M, Guo Z N, Jiang X, Luo A P, Zhao C 2015 Opt. Express 23 20030Google Scholar

    [94]

    Liu M, Jiang X, Yan Y, Wang X, Luo A, Xu W 2018 Opt. Commun. 406 85Google Scholar

    [95]

    Xu Y, Jiang X, Ge Y, Guo Z, Zeng Z, Xu Q 2017 J. Mater. Chem. C 5 3007Google Scholar

    [96]

    Zhang S, Zhang X, Wang H, Chen B, Wu K, Wang K 2016 Opt. Mater. Express 6 3159Google Scholar

    [97]

    Yun L 2017 Opt. Express 25 32380Google Scholar

    [98]

    Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P, Abramski K 2015 Opt. Lett. 40 3885Google Scholar

    [99]

    Yu H, Zheng X, Yin K, Cheng X, Jiang T 2015 Appl. Opt. 54 10290Google Scholar

    [100]

    Pawliszewska M, Ge Y, Li Z, Zhang H, Sotor J 2017 Opt. Express 25 16916Google Scholar

    [101]

    Chai T, Li X, Feng T, Guo P, Song Y, Chen Y 2018 Nanoscale 10 17617Google Scholar

    [102]

    Jhon Y, Koo J, Anasori B, Seo M, Lee J, Gogotsi Y 2017 Adv. Mater. 29 1702496Google Scholar

    [103]

    Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y 2018 Laser Photonics Rev. 12 1700229Google Scholar

    [104]

    Guo B, Wang S, Wu Z, Wang Z, Wang D, Huang H 2018 Opt. Express 26 22750Google Scholar

    [105]

    Song Y, Liang Z, Jiang X, Chen Y, Li Z, Lu L 2017 2D Mater. 4 045010Google Scholar

    [106]

    Liu S, Zhu X, Zhu G, Balakrishnan K, Zong J, Wiersma K 2015 Opt. Lett. 40 147Google Scholar

    [107]

    Liu J, Wu S, Yang Q, Wang P 2011 Opt. Lett. 36 4008Google Scholar

    [108]

    Wang R, Liu Y, Jiang M, Xu X, Wu H, Tian Y 2017 Opt. Quant. Electron. 49 137Google Scholar

    [109]

    Ahmad H, Aidit S, Ooi SI, Rezayi M, Tiu Z 2017 Laser Phys. 27 150302Google Scholar

    [110]

    Popa D, Sun Z, Hasan T, Torrisi F, Wang F, Ferrari A 2011 Appl. Phys. Lett. 98 073106Google Scholar

    [111]

    Wei C, Zhu X, Wang F, Xu Y, Balakrishnan K, Song F 2013 Opt. Lett. 38 3233Google Scholar

    [112]

    Mansoor A, Ahmed Hamida B, Eltaif T, Ismail E, Kadir N, Khan S 2018 J. Opt. Commun. 39 307Google Scholar

    [113]

    Yu Z, Song Y, Dong X, Li Y, Tian J, Wang Y 2013 Appl. Opt. 52 7127Google Scholar

    [114]

    Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y 2013 Opt. Express 21 204Google Scholar

    [115]

    Lin H, Li W, Lan J, Guan X, Xu H, Cai Z 2017 Appl. Opt. 56 802Google Scholar

    [116]

    Wu D, Cai Z, Zhong Y, Peng J, Weng J, Luo Z 2015 IEEE Photon Technol. Lett. 27 2379Google Scholar

    [117]

    Luo Z, Huang Y, Weng J, Cheng H, Lin Z, Xu B 2013 Opt. Express 21 29516Google Scholar

    [118]

    Gao L, Huang W, Zhang J D, Zhu T, Zhang H, Zhao C 2014 Appl. Opt. 53 5117Google Scholar

    [119]

    Chen Y, Zhao C, Huang H, Chen S, Tang P, Wang Z 2013 J. Lightwave Technol. 31 2857Google Scholar

    [120]

    Li W, Zou J, Huang Y, Wang K, Du T, Jiang S 2018 Photonics Res. 6 C29Google Scholar

    [121]

    Sun L, Lin Z, Peng J, Weng J, Huang Y, Luo Z 2014 Sci. Rep. 4 4794Google Scholar

    [122]

    Luo Z, Liu C, Huang Y, Wu D, Wu J, Xu H 2014 IEEE Sel. Top. Quant. 20 0902708Google Scholar

    [123]

    Koo J, Lee J, Lee J 2017 J. Lightwave Technol. 35 2175Google Scholar

    [124]

    Yan K, Lin J, Zhou Y, Gu C, Xu L, Wang A 2016 Appl. Opt. 55 3026Google Scholar

    [125]

    Chen Y, Zhao C, Chen S, Du J, Tang P, Jiang G 2014 IEEE J. Sel. Top. Quant. 20 315Google Scholar

    [126]

    Koo J, Lee J, Chi C, Lee J 2014 J. Opt. Soc. Am. B. 31 2157Google Scholar

    [127]

    Yan P, Chen H, Li K, Guo C, Ruan S, Wang J, et al. 2016 IEEE Photonics J. 8 1500506Google Scholar

    [128]

    Niu K, Chen Q, Sun R, Man B, Zhang H 2017 Opt. Mater. Express 7 3934Google Scholar

    [129]

    Li W, Peng J, Zhong Y, Wu D, Lin H, Cheng Y 2016 Opt. Mater. Express 6 2031Google Scholar

    [130]

    Luo Z, Wu D, Xu B, Xu H, Cai Z, Peng J 2016 Nanoscale 8 1066Google Scholar

    [131]

    Woodward R, Kelleher E, Howe R, Hu G, Torrisi F, Hasan T 2014 Opt. Express 22 31113Google Scholar

    [132]

    Wei R, Zhang H, Hu Z, Qiao T, He X, Guo Q 2016 Nanotechnology 27 305203Google Scholar

    [133]

    Chen J, Deng G, Yan S, Li C, Xi K, Xu F 2015 Opt. Lett. 40 3576Google Scholar

    [134]

    Xia H, Li H, Lan C, Li C, Du J, Zhang S 2015 Photonics Res. 3 A92Google Scholar

    [135]

    Huang Y, Luo Z, Li Y, Zhong M, Xu B, Che K 2014 Opt. Express 22 25258Google Scholar

    [136]

    Ren J, Wang S, Cheng Z, Yu H, Zhang H, Chen Y 2015 Opt. Express 23 5607Google Scholar

    [137]

    Li H, Xia H, Lan C, Li C, Zhang X, Li J 2015 IEEE Photon. Technol. Lett. 27 69Google Scholar

    [138]

    Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J 2015 Opt. Express 23 26723Google Scholar

    [139]

    Luo Z, Huang Y, Zhong M, Li Y, Wu J, Xu B 2014 J. Lightwave Tech. 32 4077Google Scholar

    [140]

    Lin J, Hu Y, Chen C, Gu C, Xu L 2015 Opt. Express 23 29059Google Scholar

    [141]

    Zhang M, Hu G, Hu G, Howe RC, Chen L, Zheng Z 2015 Sci. Rep. 5 17482Google Scholar

    [142]

    Kassani S, Khazaeizhad R, Jeong H, Nazari T, Yeom D 2015 Opt. Mater. Express 5 373Google Scholar

    [143]

    Lin J, Yan K, Zhou Y, Xu L, Gu C, Zhan Q 2015 Appl. Phys. Lett. 107 191108Google Scholar

    [144]

    Woodward R, Howe R, Runcorn T, Hu G, Torrisi F, Kelleher E 2015 Opt. Express 23 20051Google Scholar

    [145]

    Chen B, Zhang X, Guo C, Wu K, Chen J, Wang J 2016 Opt. Eng. 55 081306Google Scholar

    [146]

    Liu W, Liu M, Lei M, Fang S, Wei Z 2018 IEEE J. Sel. Top. Quant. 24 0901005Google Scholar

    [147]

    Wu D, Cai Z, Zhong Y, Peng J, Cheng Y, Weng J 2017 IEEE J. Selec. Top. Quant. 23 7Google Scholar

    [148]

    Huang K, Lu B, Li D, Qi X, Chen H, Wang N 2017 Appl. Opt. 56 6427Google Scholar

    [149]

    Rashid1 F, Azzuhri1 S, Salim M, Shaharuddin R, Ismail1 M, Ismail1 M 2016 Laser Phys. Lett. 13 085102Google Scholar

    [150]

    Zhao R, He J, Su X, Wang Y, Sun X, Nie H 2018 IEEE J. Sel. Top. Quant. 24 0900405Google Scholar

    [151]

    Mu H, Lin S, Wang Z, Xiao S, Li P, Chen Y 2015 Adv. Opt. Mater. 3 1447Google Scholar

    [152]

    Yu H, Zheng X, Yin K, Cheng X, Jiang T 2016 Opt. Mater. Express 6 603Google Scholar

    [153]

    Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y 2017 Opt. Lett. 42 547Google Scholar

    [154]

    Baek I, Lee H, Bae S, Hong B, Ahn Y, Yeom D 2012 Appl. Phys. Express 5 032701Google Scholar

    [155]

    Tan W, Su C, Knize R, Xie G, Li L, Tang D 2010 Appl. Phys. Lett. 96 031106Google Scholar

    [156]

    Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L 2014 Sci. Rep. 4 5016Google Scholar

    [157]

    Cai W, Jiang S, Xu S, Li Y, Liu J, Li C 2015 Opt. Laser Technol. 65 1Google Scholar

    [158]

    Feng C, Wang Y, Liu J, Tsang Y, Song Y, Yu Z 2013 Opt. Commun. 298 168Google Scholar

    [159]

    Xu S, Man B, Jiang S, Feng D, Gao S, Chen C 2014 Opt. Lett. 39 2707Google Scholar

    [160]

    Xu J, Li X, Wu Y, Hao X, He J, Yang K 2011 Opt. Lett. 36 1948Google Scholar

    [161]

    Zhu H, Liu J, Jiang S, Xu S, Su L, Jiang D 2015 Opt. Laser Technol. 75 83Google Scholar

    [162]

    Zhu H, Zhao L, Liu J, Xu S, Cai W, Jiang S 2016 Opt. Eng. 55 081304Google Scholar

    [163]

    Xu J, Li X, He J, Hao X, Wu Y, Yang Y 2011 Appl. Phys. Lett. 99 261107Google Scholar

    [164]

    Xu J, Li X, Wu Y, He J, Liu S, Hao X 2012 Opt. Letter 37 2652Google Scholar

    [165]

    Davide D, Ugolotti E, Schmidt A, Petrov V, Griebner U, Agnesi A 2013 Opt. Lett. 38 1745Google Scholar

    [166]

    Xie G, Ma J, Lv P, Gao W, Yuan P, Qian L 2012 Opt. Mater. Express 2 878Google Scholar

    [167]

    Liu J, Wang Y, Qu Z, Zheng L, Su L, Xu J 2012 Laser Phys. Lett. 9 15Google Scholar

    [168]

    Tolstik N, Sorokin E, Sorokina I 2014 Opt. Express 22 5564Google Scholar

    [169]

    Ma J, Xie G, Lv P, Gao W, Yuan P, Qian L 2012 Opt. Lett. 37 2085Google Scholar

    [170]

    Wan H, Cai W, Wang F, Jiang S, Xu S, Liu J 2015 Opt. Quant. Electron. 48 11Google Scholar

    [171]

    Wang Y, Qu Z, Liu J, Tsang Y 2012 J. Lightwave Technol. 30 3259Google Scholar

    [172]

    Zhu H, Cai W, Wei J, Liu J, Zheng L, Su L 2015 Opt. Laser Technol. 68 120Google Scholar

    [173]

    Wang Y, Sung W, Su X, Zhao Y, Zhang B, Wu C 2018 IEEE Photonics J. 10 1504110Google Scholar

    [174]

    Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y 2018 ACS Nano 12 11376Google Scholar

    [175]

    Zhao G, Hou J, Wu Y, He J, Hao X 2015 Adv. Opt. Mater. 3 937Google Scholar

    [176]

    Zhang B, Lou F, Zhao R, He J, Li J, Su X 2015 Opt. Lett. 40 3691Google Scholar

    [177]

    Su X, Wang Y, Zhang B, Zhao R, Yang K, He J 2016 Opt. Lett. 41 1945Google Scholar

    [178]

    Sun X, Nie H, He J, Zhao R, Su X, Wang Y 2017 Opt. Express 25 20025Google Scholar

    [179]

    Li J, Luo H, Zhai B, Lu R, Guo Z, Zhang H 2016 Sci. Rep. 6 30361Google Scholar

    [180]

    Zhao T, Wang Y, Chen H, Shen D 2014 Appl. Phys. B 116 947Google Scholar

    [181]

    Hou J, Jia Z, Zhang B, Yin Y, Ning J, Mu W 2016 IEEE Photonics Tech. L. 28 825Google Scholar

    [182]

    Wang Z, Chen X, He J, Xu X, Zhang B, Yang K 2015 IEEE J. Quant. Elect. 51 7000105Google Scholar

    [183]

    Guan X, Zhan L, Zhu Z, Xu B, Xu H, Cai Z 2018 Appl. Opt. 57 371Google Scholar

    [184]

    Li C, Liu J, Jiang S, Xu S, Ma W, Wang J 2016 Opt. Mater. Express 6 1570Google Scholar

    [185]

    Nie H, Zhang P, Zhang B, Yang K, Zhang L, Li T 2017 Opt. Lett. 42 699Google Scholar

    [186]

    Zhu G, Zhu X, Balakrishnan K, Norwood R A, Peyghambarian N 2013 Opt. Mater. Express 3 1365Google Scholar

    [187]

    Zhang C, Liu J, Fan X, Peng Q, Guo X, Jiang D 2018 Opt. Laser Technol. 103 89Google Scholar

    [188]

    Zu Y, Zhang C, Wu Y, Liu J, Liu J, Wang Y 2018 Chin. Opt. Lett. 16 020013Google Scholar

    [189]

    Liu X, Yang K, Zhao S, Li T, Qiao W, Zhang H 2017 Photonics Res. 5 461Google Scholar

    [190]

    Li J, Luo H, Wang L, Zhao C, Zhang H, Li H 2015 Opt. Lett. 40 3659Google Scholar

    [191]

    You Z, Sun Y, Sun D, Zhu Z, Wang Y, Li J 2017 Opt. Lett. 42 871Google Scholar

    [192]

    Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y 2014 Adv. Mater. 26 3538Google Scholar

    [193]

    Kong L, Xie G, Yuan P, Qian L, Wang S, Yu H 2015 Photonics Res. 3 A47Google Scholar

    [194]

    Lan J, Zhang X, Zhou Z, Xu B, Xu H, Cai Z 2017 IEEE Photonics Tech. L. 29 515Google Scholar

    [195]

    Luan C, Zhang X, Yang K, Zhao J, Zhao S, Li T 2017 IEEE J. Sel. Top. Quant. 23 66Google Scholar

    [196]

    Fan M, Li T, Zhao S, Li G, Ma H, Gao X 2016 Opt. Lett. 41 540Google Scholar

    [197]

    Zhang S, Liu X, Guo L, Fan M, Lou F, Gao P 2017 IEEE Photonics Tech. L. 29 2258Google Scholar

    [198]

    Ge P, Liu J, Jiang S, Xu Y, Man B 2015 Photonics Res. 3 256Google Scholar

    [199]

    Xue Y, Xie Z, Ye Z, Hu X, Xu J, Zhang H 2018 Chin. Opt. Lett. 16 020018Google Scholar

    [200]

    Su X, Nie H, Wang Y, Li G, Yan B, Zhang B 2017 Opt. Lett. 42 3502Google Scholar

    [201]

    Fan M, Li T, Zhao J, Zhao S, Li G, Yang K 2018 Opt. Lett. 43 1726Google Scholar

    [202]

    Luan C, Yang K, Zhao J, Zhao S, Song L, Li T 2016 Opt. Lett. 41 3783Google Scholar

    [203]

    Wei C, Luo H, Zhang H, Li C, Xie J, Li J 2016 Laser Phys. Lett. 13 105108Google Scholar

    [204]

    Guo L, Li T, Zhang S, Wang M, Zhao S, Yang K 2017 Opt. Mater. Express 7 2090Google Scholar

    [205]

    Zhang R, Zhang Y, Yu H, Zhang H, Yang R, Yang B 2015 Adv. Opt. Mater. 3 1787Google Scholar

    [206]

    Chu Z, Liu J, Guo Z, Zhang H 2016 Opt. Mater. Express 6 2374Google Scholar

    [207]

    Zhang H, He J, Wang Z, Hou J, Zhang B, Zhao R 2016 Opt. Mater. Express 6 2328Google Scholar

    [208]

    Xie Y, Kong L, Qin Z, Xie G, Zhang J 2016 Opt. Eng. 55 081307Google Scholar

    [209]

    Wang Z, Zhao R, He J, Zhang B, Ning J, Wang Y 2016 Opt. Express 24 1598Google Scholar

    [210]

    Li C, Liu J, Guo Z, Zhang H, Ma W, Wang J 2018 Opt. Commun. 406 158Google Scholar

    [211]

    Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P 2016 Laser Phys. Lett. 13 045801Google Scholar

    [212]

    Liu J, Liu J, Guo Z, Zhang H, Ma W, Wang J 2016 Opt. Express 24 30289Google Scholar

    [213]

    Qin Z, Xie G, Zhang H, Zhao C, Yuan P, Wen S 2015 Opt. Express 23 24713Google Scholar

    [214]

    Nie H, Zhang P, Zhang B, Xu M, Yang K, Sun X 2018 IEEE J. Sel. Top. Quant. 24 1600205Google Scholar

    [215]

    Wang C, Wang Y, Jiang X, Xu J, Huang W, Zhang F 2019 Adv. Opt. Mater. 7 1900060Google Scholar

    [216]

    Liu J, Huang H, Zhang F, Zhang Z, Liu J, Zhang H 2018 Photonics Res. 6 762Google Scholar

    [217]

    Zu Y, Zhang C, Guo X, Liang W, Liu J, Su L 2019 Laser Phys. Lett. 16 015803Google Scholar

    [218]

    Feng X, Ding B, Liang W, Zhang F, Ning T, Liu J 2018 Laser Phys. Lett. 15 085805Google Scholar

  • [1] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构. 物理学报, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [2] 罗实, 魏大鹏, 魏大程. 二维材料在生物传感器中的应用. 物理学报, 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [3] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [4] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [5] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [6] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [7] 魏钟鸣, 夏建白. 低维半导体偏振光探测器研究进展. 物理学报, 2019, 68(16): 163201. doi: 10.7498/aps.68.20191002
    [8] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究. 物理学报, 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [9] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 物理学报, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [10] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [11] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [12] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性. 物理学报, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [13] 李 磊, 赵长明, 张 鹏, 杨苏辉. 激光二极管抽运频差可调谐双频固体激光器的研究. 物理学报, 2007, 56(5): 2663-2669. doi: 10.7498/aps.56.2663
    [14] 武丁二, 周 睿, 张晓华, 丁 欣, 姚建铨, 颜彩繁, 张光寅. LD端抽运平直腔Nd:YVO4固态激光器的输出功率特性研究. 物理学报, 2006, 55(3): 1196-1200. doi: 10.7498/aps.55.1196
    [15] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦. 高平均功率调Q准连续Nd:YAG激光器. 物理学报, 2006, 55(3): 1171-1175. doi: 10.7498/aps.55.1171
    [16] 柳 强, 巩马理, 潘圆圆, 李 晨. 边缘抽运复合Yb:YAG/YAG薄片激光器设计与功率扩展. 物理学报, 2004, 53(7): 2159-2164. doi: 10.7498/aps.53.2159
    [17] 关 俊, 李金萍, 程光华, 陈国夫, 侯 洵. 端面抽运固体激光器热透镜效应的实验研究. 物理学报, 2004, 53(6): 1804-1809. doi: 10.7498/aps.53.1804
    [18] 尚连聚. 端面抽运固体激光器的腔模匹配分析. 物理学报, 2003, 52(6): 1408-1411. doi: 10.7498/aps.52.1408
    [19] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 薛海中, 唐映德. 激光二极管抽运固体激光器场分布的热不稳定性研究. 物理学报, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [20] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距. 物理学报, 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
计量
  • 文章访问数:  23773
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2019-06-21
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回