搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Weibel不稳定性自生电磁场对探针质子束的偏转作用研究

杜报 蔡洪波 张文帅 陈京 邹士阳 朱少平

引用本文:
Citation:

Weibel不稳定性自生电磁场对探针质子束的偏转作用研究

杜报, 蔡洪波, 张文帅, 陈京, 邹士阳, 朱少平

Deflection effect of electromagnetic field generated byWeibel instability on proton probe

Du Bao, Cai Hong-Bo, Zhang Wen-Shuai, Chen Jing, Zou Shi-Yang, Zhu Shao-Ping
PDF
HTML
导出引用
  • Weibel不稳定性的自生电磁场对于等离子体能量输运、无碰撞冲击波形成等物理过程具有关键的影响. 实验上往往采用质子束照相来诊断其电磁场结构. 一般认为, 探针质子束的轨迹偏转主要来自于磁场, 而自生电场的作用被认为可忽略不计. 本文利用三维粒子模拟程序研究了典型参数下的Weibel不稳定性发展过程, 并使用径迹追踪法评估了Weibel不稳定性的质子束照相过程中电场和磁场对探针质子束的偏转作用. 对比分析发现, 引起探针质子束偏转的主要因素并不是磁场, 而是过去研究中常被忽略的电场. 主要原因为: Weibel不稳定性的自生磁场往往成管状结构, 在使用探针质子束对其进行侧向照相时, 磁场的作用会被自身中和并抵消. 该认识将有助于深入理解Weibel不稳定性质子照相的实验结果.
    The electric and magnetic fields generated by the Weibel instability, most of which have a tube-like structure, are of importance for many relevant physical processes in the astrophysics and the inertial confinement fusion. Experimentally, proton radiography is a commonly used method to diagnose the Weibel instability, where the proton deflection introduced from the self-generated electric field is usually ignored. This assumption, however, is in conflict with the experimental observations by Quinn, Fox and Huntington, et al. because the magnetic field with a tube-like structure cannot introduce parallel flux striations on the deflection plane in the proton radiography. In this paper, we re-examine the nature of the proton radiography of the Weibel instability numerically. Two symmetric counterstreaming plasma flows are used to generate the electron Weibel instability with the three-dimensional particle-in-cell simulations. The proton radiography of the Weibel instability generated electric and magnetic fields are calculated with the ray tracing method. Three cases are considered andcompared: only the self-generated electric field E is included, only the self-generated magnetic field B is included, both the electric field E and magnetic field B are included. It is shown that when only E is included, the probe proton flux density perturbation on the detection plane, i.e., δn/n0, is much larger than that when only B is included. Also, when both E and B are included, δn/n0 is almost the same as that when only E is included. This suggests that in the proton radiography of the Weibel instability generated electric and magnetic fields, the deflection from the electric field dominates the radiography, whereas the magnetic field has an ignorable influence. Our conclusion is quite different from that obtained on the traditional assumption that the electric field is ignorable in the radiography. This mainly comes from the spatial structure of the Weibel instability generated magnetic field, which is tube-like and points to the azimuthal direction around the current filaments. When the probe protons pass through the field region, the deflection from the azimuthal magnetic field can be compensated for completely by itself along the passing trajectories especially if the deflection distance inside the field region is small. Whereas for the electric field, which is in the radial direction, the deflection to the probe protons will not be totally compensated for and will finally introduce an evident flux density perturbation into the detection plane. This understanding can beconducive to the comprehension of the experimental results about the proton radiography of the Weibel instability.
      通信作者: 蔡洪波, Cai_hongbo@iapcm.ac.cn ; 朱少平, zhu_shaoping@iapcm.ac.cn
    • 基金项目: 科学挑战专题(批准号: TZ2016005)、国家重点研发计划(批准号: 2016YFA0401100)、国家自然科学基金联合基金(批准号: U1730449)和国家自然科学基金(批准号: 11575030)资助的课题.
      Corresponding author: Cai Hong-Bo, Cai_hongbo@iapcm.ac.cn ; Zhu Shao-Ping, zhu_shaoping@iapcm.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005), the National Key R&D Program of China (Grant No. 2016YFA0401100), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1730449), and the National Natural Science Foundation of China (Grant No. 11575030)
    [1]

    Weibel E S 1959 Phys. Rev. Lett. 2 83Google Scholar

    [2]

    Fried B D 1959 Phys. Fluids 2 337

    [3]

    Honda M, Meyer-ter-Vehn J, Pukhov A 2000 Phys. Rev. Lett. 85 2128Google Scholar

    [4]

    Ross J S, Park H S, Berger R, Divol L, Kugland N L, Rozmus W, Ryutov D, Glenzer S H 2013 Phys. Rev. Lett. 110 145005Google Scholar

    [5]

    Fiuza F, Fonseca R A, Tonge J, Mori W B, Silva L O1 2012 Phys. Rev. Lett. 108 235004Google Scholar

    [6]

    Ardaneh K, Cai D S, Nishikawa K I, Lembége B 2015 Astrophys. J. 811 57Google Scholar

    [7]

    Quinn K, Romagnani L, Ramakrishna B, Sarri G, Dieckmann M E, Wilson P A, Fuchs J, Lancia L, Pipahl A, Toncian T, Willi O, Clarke R J, Notley M, Macchi A, Borghesi M 2012 Phys. Rev. Lett. 108 135001Google Scholar

    [8]

    Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar

    [9]

    Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2013 Phys. Rev. Lett. 111 225002Google Scholar

    [10]

    Huntington C M, Fiuza F, Ross J S, Zylstra A B, Drake R P, Froula D H, Gregori G, Kugland N L, Kuranz C C, Levy M C, Li C K, Meinecke J, Morita T, Petrasso R, Plechaty C, Remington B A, Ryutov D D, SakawaY, Spitkovsky A, Takabe H, Park S H 2015 Nat. Phys. 11 173Google Scholar

    [11]

    Tzoufras M, Ren C, Tsung F S, Tonge J W, Mori W B, Fiore M, Fonseca R A, Silva L O 2006 Phys. Rev. Lett. 96 105002Google Scholar

    [12]

    Dieckmann M E 2009 Plasma Phys. Control. Fusion 51 124042Google Scholar

    [13]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instruments 83 101301Google Scholar

    [14]

    Wang W W, Cai H B, Teng J, Chen J, He S K, Shan L Q, Lu F, Wu Y C, Zhang B, Hong W, Bi B, Zhang F, Liu D X, Xue F B, Li B Y, Liu H J, He W, Jiao J L, Dong K G, Zhang F Q, He Y L, Cui B, Xie N, Yuan Z Q, Tian C, Wang X D, Zhou K N, Deng Z G, Zhang Z M, Zhou W M, Cao L F, Zhang B H, Zhu S P, He X T, Gu Y Q 2018 Phys. Plasmas 25 083111Google Scholar

    [15]

    Bret A, Gremillet L, Dieckmann M E 2010 Phys. Plasmas 17 120501Google Scholar

    [16]

    Gao L, Nilson M P, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar

    [17]

    Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar

    [18]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001Google Scholar

    [19]

    Cagas P, Hakim A, Scales W, Srinivasan B 2017 Phys. Plasmas 24 112116Google Scholar

    [20]

    Alves E P, Zrake J, Fiuza F 2018 Phys. Rev. Lett. 121 245101Google Scholar

    [21]

    Sentoku Y, Mima K, Sheng Z M, Kaw P, Nishihara K, Nishikawa K 2002 Phys. Rev. E 65 046408Google Scholar

    [22]

    Shukla C, Kumar A, Das A, Patel B G 2018 Phys. Plasmas 25 022123Google Scholar

    [23]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [24]

    Cecchetti C A, Borghesi M, Fuchs J, Schurtz G, Kar S, Macchi A, Romagnani, Wilson P A, Antici P, Jung R, Osterholtz J, Pipahl C, Willi O, Schiavi A, Notley M, Neely D 2009 Phys. Plasmas 16 043102Google Scholar

  • 图 1  Weibel不稳定性的质子照相示意图

    Fig. 1.  Schematic diagram of the proton radiography of the Weibel instability

    图 2  Weibel不稳定性 (a)自生磁场By和(b)自生电场Ext = 1.06 ps时的三维空间分布

    Fig. 2.  Three demensional distributions of the Weibel instability generated (a) magnetic field By and (b) electric field Ex at t = 1.06 ps

    图 3  Weibel不稳定性自生磁场和电场能量随着时间的演化

    Fig. 3.  Evolution of the energy of the Weibel instability generated magnetic and electric fields.

    图 4  t = 1.06 ps时, z = 0平面上(a)磁场强度|B|、(b)电场强度|E|、(c)磁场方向和(d)电场方向的分布情况以及y = 0平面上(e) y向磁场By和(f) y向电场Ey的分布情况

    Fig. 4.  Spatial distributions of (a) the magnetic field strength |B|, (b) the electric field strength |E|, (c) the direction of B and (d) the direction of E on the z = 0 plane, (e) the y component of the magnetic field By and (f) the y component of the electric field Ey on the y = 0 plane at t = 1.06 ps.

    图 5  t = 4.78 ps时, z = 0平面上(a)磁场强度|B|、(b)电场强度|E|、(c)磁场方向和(d)电场方向的分布情况以及y = 0平面上(e) y向磁场By和(f) y向电场Ey的分布情况

    Fig. 5.  Spatial distributions of (a) the magnetic field strength |B|, (b) the electric field strength |E|, (c) the direction of B and (d) the direction of E on the z = 0 plane, (e) the y component of the magnetic field By and (f) the y component of the electric field Ey on the y = 0 plane at t = 4.78 ps.

    图 6  t = 1.06 ps时, (a)只考虑电场E、(b)只考虑磁场B以及(c)同时考虑电场E和磁场B三种情况下探测面上的质子通量密度扰动分布信息

    Fig. 6.  Proton flux density perturbations on the detection plane when (a) only the electric field is included, (b) only the magnetic field is included and (c) both the electric and magnetic fields are included at t = 1.06 ps.

    图 7  t = 4.78 ps时(a)只考虑电场E、(b)只考虑磁场B以及(c)同时考虑电场E和磁场B三种情况下探测面上的质子通量密度扰动分布信息

    Fig. 7.  Proton flux density perturbations on the detection plane when (a) only the electric field is included, (b) only the magnetic field is included and (c) both the electric and magnetic fields are included at t = 4.78 ps.

  • [1]

    Weibel E S 1959 Phys. Rev. Lett. 2 83Google Scholar

    [2]

    Fried B D 1959 Phys. Fluids 2 337

    [3]

    Honda M, Meyer-ter-Vehn J, Pukhov A 2000 Phys. Rev. Lett. 85 2128Google Scholar

    [4]

    Ross J S, Park H S, Berger R, Divol L, Kugland N L, Rozmus W, Ryutov D, Glenzer S H 2013 Phys. Rev. Lett. 110 145005Google Scholar

    [5]

    Fiuza F, Fonseca R A, Tonge J, Mori W B, Silva L O1 2012 Phys. Rev. Lett. 108 235004Google Scholar

    [6]

    Ardaneh K, Cai D S, Nishikawa K I, Lembége B 2015 Astrophys. J. 811 57Google Scholar

    [7]

    Quinn K, Romagnani L, Ramakrishna B, Sarri G, Dieckmann M E, Wilson P A, Fuchs J, Lancia L, Pipahl A, Toncian T, Willi O, Clarke R J, Notley M, Macchi A, Borghesi M 2012 Phys. Rev. Lett. 108 135001Google Scholar

    [8]

    Kugland N L, Ryutov D D, Chang P Y, Drake R P, Fiksel G, Froula D H, Glenzer S H, Gregori G, Grosskopf M, Koenig M, Kuramitsu Y, Kuranz C, Levy M C, Liang E, Meinecke J, Miniati F, Morita T, Pelka A, Plechaty C, Presura R, Ravasio A, Remington B A, Reville B, Ross J S, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2012 Nat. Phys. 8 809Google Scholar

    [9]

    Fox W, Fiksel G, Bhattacharjee A, Chang P Y, Germaschewski K, Hu S X, Nilson P M 2013 Phys. Rev. Lett. 111 225002Google Scholar

    [10]

    Huntington C M, Fiuza F, Ross J S, Zylstra A B, Drake R P, Froula D H, Gregori G, Kugland N L, Kuranz C C, Levy M C, Li C K, Meinecke J, Morita T, Petrasso R, Plechaty C, Remington B A, Ryutov D D, SakawaY, Spitkovsky A, Takabe H, Park S H 2015 Nat. Phys. 11 173Google Scholar

    [11]

    Tzoufras M, Ren C, Tsung F S, Tonge J W, Mori W B, Fiore M, Fonseca R A, Silva L O 2006 Phys. Rev. Lett. 96 105002Google Scholar

    [12]

    Dieckmann M E 2009 Plasma Phys. Control. Fusion 51 124042Google Scholar

    [13]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instruments 83 101301Google Scholar

    [14]

    Wang W W, Cai H B, Teng J, Chen J, He S K, Shan L Q, Lu F, Wu Y C, Zhang B, Hong W, Bi B, Zhang F, Liu D X, Xue F B, Li B Y, Liu H J, He W, Jiao J L, Dong K G, Zhang F Q, He Y L, Cui B, Xie N, Yuan Z Q, Tian C, Wang X D, Zhou K N, Deng Z G, Zhang Z M, Zhou W M, Cao L F, Zhang B H, Zhu S P, He X T, Gu Y Q 2018 Phys. Plasmas 25 083111Google Scholar

    [15]

    Bret A, Gremillet L, Dieckmann M E 2010 Phys. Plasmas 17 120501Google Scholar

    [16]

    Gao L, Nilson M P, Igumenshchev I V, Haines M G, Froula D H, Betti R, Meyerhofer D D 2015 Phys. Rev. Lett. 114 215003Google Scholar

    [17]

    Du B, Wang X F 2018 AIP Adv. 8 125328Google Scholar

    [18]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001Google Scholar

    [19]

    Cagas P, Hakim A, Scales W, Srinivasan B 2017 Phys. Plasmas 24 112116Google Scholar

    [20]

    Alves E P, Zrake J, Fiuza F 2018 Phys. Rev. Lett. 121 245101Google Scholar

    [21]

    Sentoku Y, Mima K, Sheng Z M, Kaw P, Nishihara K, Nishikawa K 2002 Phys. Rev. E 65 046408Google Scholar

    [22]

    Shukla C, Kumar A, Das A, Patel B G 2018 Phys. Plasmas 25 022123Google Scholar

    [23]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [24]

    Cecchetti C A, Borghesi M, Fuchs J, Schurtz G, Kar S, Macchi A, Romagnani, Wilson P A, Antici P, Jung R, Osterholtz J, Pipahl C, Willi O, Schiavi A, Notley M, Neely D 2009 Phys. Plasmas 16 043102Google Scholar

  • [1] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [2] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [3] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [4] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [5] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究. 物理学报, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [6] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [7] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [8] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [9] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [10] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应. 物理学报, 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [11] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] 邹德滨, 卓红斌, 邵福球, 银燕, 马燕云, 田成林, 徐涵, 欧阳建明, 谢翔云, 陈德鹏. 单束激光脉冲俘获及放大机理的理论分析与数值模拟研究. 物理学报, 2012, 61(4): 045202. doi: 10.7498/aps.61.045202
    [13] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [14] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [15] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟. 物理学报, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [16] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [17] 郑春阳, 刘占军, 李纪伟, 张爱清, 裴文兵. 无碰撞等离子体中电子束流不稳定性的时空演化研究. 物理学报, 2005, 54(5): 2138-2146. doi: 10.7498/aps.54.2138
    [18] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [19] 盛政明, 张 杰, 余 玮. 强激光与等离子体相互作用中低频电磁场孤子波的产生及其捕获. 物理学报, 2003, 52(1): 125-134. doi: 10.7498/aps.52.125
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  7993
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-21
  • 修回日期:  2019-07-03
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回