搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高次谐波发射的亚原子尺度研究

刘艳 郭福明 杨玉军

引用本文:
Citation:

高次谐波发射的亚原子尺度研究

刘艳, 郭福明, 杨玉军

Subatomic scale study of atom-generated higher-order harmonic

Liu Yan, Guo Fu-Ming, Yang Yu-Jun
PDF
HTML
导出引用
  • 激光与原子、分子相互作用的高次谐波是产生超短阿秒脉冲和相干高频XUV光源的重要手段之一. 为了产生高强度的XUV光源, 需要对谐波产生机制深入研究. 本文通过数值求解含时薛定谔方程, 计算了不同空间位置的含时偶极矩进而得到不同空间位置的高次谐波发射. 对不同空间位置的谐波发射谱的分析发现, 谐波发射的主要空间位置在核区附近, 不同空间位置的谐波中奇次和偶次谐波均能被观察到, 整数阶谐波能量辐射强度较大. 进一步研究不同空间位置的谐波相位发现, 在x = 0左右两侧发射的奇次谐波相位相同, 偶次谐波相位相反. 通过滤波方法分析了不同空间位置的相同次谐波的含时偶极矩信息, 发现该相位特征导致了奇次谐波的增强, 偶次谐波的消失.
    The higher-order harmonics generated from an atom irradiated by ultarashort laser pulses is one of the important ways to obtain ultrashort attosecond pulses and coherent XUV sources. In order to produce a high-inntensity XUV source, one needs to study the mechanism of harmonic generation. The mechanism of the atomic high harmonic generation can be well understood by the semi-classical three-step model. First, the electron tunnels the barrier formed by the atomic potential and laser electric field, and then it propagates freely in the laser field and can be driven back to the mother ion where it recombines with the ground state of ion. Although the cutoff energy of the high harmonic can be predicted by this model, it cannot provide more information about the harmonic efficiency and the spectral structure. Recently, the generation mechanism of high harmonic has been studied by using the Bohmian trajectory scheme based on the time dependent wave packet. It is found that the harmonic structure can be reconstructed qualitatively by using a single Bohmian trajectory. The more accurate structure of harmonic spectrum needs more Bohmian trajectories. The calculation of these trajectories requires a lot of computation resources because the trajectory calculation is from the numerical solution for the time-dependent Schrödinger equation. In this work, we numerically solve the time-dependent Schrödinger equation of a model atom irradiated by ultrashort laser pulses. The time-dependent dipole moments at different spatial locations are calculated from the time-dependent wave function. The harmonic spectra are calculated from the Fourier transform of the time dipole moments. The harmonic spectra of different spatial locations show that the main emission positions of harmonic emission are near the nuclear region. One can observe the odd- and even-order harmonics at the different spatial positions. There has a larger radiation intensity for the integer-order harmonic. For the odd-order harmonics, their harmonic phases are the same on both sides of x = 0. For the even-order harmonics, their harmonic phases each have a pi difference on both side of x = 0. By using the filtering scheme, we analyze the phases of an harmonic at different spatial locations. It is found that the phase difference leads the odd-order harmonics to increase and the even-order harmonics to disappear. These findings contribute to the understanding of the physical mechanism of higher harmonic generated from an atom irradiated by strong laser pulses.
      通信作者: 杨玉军, yangyj@jlu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0403300)、国家自然科学基金(批准号: 11774129, 11627807, 11534004)、吉林省自然科学基金(批准号: 20170101153JC)和吉林省教育厅科学研究项目(批准号: JJKH20190183KJ)资助的课题
      Corresponding author: Yang Yu-Jun, yangyj@jlu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grant Nos. 11774129, 11627807, 11534004), the Natural Science Foundation of Jilin Province, China (Grant No. 20170101153JC), and the Science and Technology Project of the Jilin Provincial Education Department, China (Grant No. JJKH20190183KJ)
    [1]

    Ozaki T, Ganeev R A, Ishizawa A, Kanai T, Kuroda H 2002 Phys. Rev. Lett. 89 253902Google Scholar

    [2]

    Dromey B, Zepf M, Gopal A, Wei M S, Tatarakis M 2006 Nat. Phys. 2 456Google Scholar

    [3]

    Krausz F, Brabec T 1998 Opt. Photonics News 9 46

    [4]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, BozekJ, Brachmann A, Bucksbaum P, Coffee R, Decker F G, Ding Y, Dowell D, Edstrom S 2010 Nat. Photonics 4 641Google Scholar

    [5]

    Gibsone A, Paul A, Wagner N 2003 Science 302 95Google Scholar

    [6]

    Cingoz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hart I, Ye J 2012 Nature 482 68Google Scholar

    [7]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L 2008 Science 320 1614Google Scholar

    [8]

    Qin M, Zhu X, Zhang Q, Lu P 2012 Opt. Lett. 37 5208Google Scholar

    [9]

    Curkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [10]

    Pan Y, Guo F M, Jin C, Yang Y J, Ding D J 2019 Phys. Rev. A 99 033411Google Scholar

    [11]

    Botheron P, Pons B 2010 Phys. Rev. A 82 021404Google Scholar

    [12]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418Google Scholar

    [13]

    Song Y, Li S Y, Liu X S, Chen J G, Zeng S L, Yang Y J 2012 Phys. Rev. A 86 033424Google Scholar

    [14]

    Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 053419Google Scholar

    [15]

    田原野, 郭福明, 曾思良, 杨玉军 2013 物理学报 62 113201Google Scholar

    Tian Y Y, Guo F M, Zeng S L, Yang Y J 2013 Acta Phys. Sin. 62 113201Google Scholar

    [16]

    Han J X, Wang J, Qiao Y, Liu A H, Guo F M, Yang Y J 2019 Opt. Express 27 8768Google Scholar

    [17]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004 Chin. Phys. Lett. 21 652Google Scholar

    [18]

    刘艳, 贾成, 郭福明, 杨玉军 2016 物理学报 65 033201

    Liu Y, Jia C, Guo F M, Yang Y Y 2016 Acta Phys. Sin. 65 033201

    [19]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202Google Scholar

    [20]

    宋文娟, 郭福明, 陈基根, 杨玉军 2018 物理学报 67 033201

    Song W J, Guo F M, Chen J G, Yang Y J 2018 Acta Phys. Sin. 67 033201

    [21]

    He X, Miranda M, Schwenke J, Giulbaud O, Ruchon T, Heyl C, Georgadiou E 2009 Phys. Rev. A 79 063829Google Scholar

    [22]

    Chen Y J, Zhang B 2011 Phys. Rev. A 84 053402Google Scholar

  • 图 1  (a) 激光脉冲辐照下原子的高次谐波发射; (b) ${a_{x < 0}}(t)$计算得到的谐波谱; (c) ${a_{x > 0}}(t)$计算得到的谐波谱; (d) 三个谐波谱的对比

    Fig. 1.  (a) High-order harmonic emission of atoms irradiated by laser pulses; (b) harmonic spectra calculated from ${a_{x < 0}}(t)$; (c) harmonic spectra calculated from ${a_{x > 0}}(t)$; (d) the comparison of three harmonic spectra.

    图 2  利用${a_x}(t)$计算的高次谐波发射谱随着x的改变

    Fig. 2.  Spatial distribution in HHG spectra as a function of the electronic coordinate calculated from ${a_x}(t)$.

    图 3  利用${a_x}(t)$计算的高次谐波发射相位随x的改变

    Fig. 3.  Spatial distribution of the phase of harmonic emission calculated from ${a_x}(t)$.

    图 4  11次谐波(a)和12次谐波(b)分别在空间x = –2 a.u.和x = 2 a.u.位置的偶极矩随着时间的改变

    Fig. 4.  Time evolution of the dipole moment at x = –2 a.u. (black solid curve) and x = 2 a.u. (red dotted curve) : (a) The eleven-order harmonic; (b) the twelve-order harmonic.

    图 5  不同空间区域发射谐波的相关过程产生了原子的谐波发射

    Fig. 5.  The harmonic emission of atoms is produced by the process of harmonic emission in different space regions.

  • [1]

    Ozaki T, Ganeev R A, Ishizawa A, Kanai T, Kuroda H 2002 Phys. Rev. Lett. 89 253902Google Scholar

    [2]

    Dromey B, Zepf M, Gopal A, Wei M S, Tatarakis M 2006 Nat. Phys. 2 456Google Scholar

    [3]

    Krausz F, Brabec T 1998 Opt. Photonics News 9 46

    [4]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, BozekJ, Brachmann A, Bucksbaum P, Coffee R, Decker F G, Ding Y, Dowell D, Edstrom S 2010 Nat. Photonics 4 641Google Scholar

    [5]

    Gibsone A, Paul A, Wagner N 2003 Science 302 95Google Scholar

    [6]

    Cingoz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hart I, Ye J 2012 Nature 482 68Google Scholar

    [7]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L 2008 Science 320 1614Google Scholar

    [8]

    Qin M, Zhu X, Zhang Q, Lu P 2012 Opt. Lett. 37 5208Google Scholar

    [9]

    Curkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [10]

    Pan Y, Guo F M, Jin C, Yang Y J, Ding D J 2019 Phys. Rev. A 99 033411Google Scholar

    [11]

    Botheron P, Pons B 2010 Phys. Rev. A 82 021404Google Scholar

    [12]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418Google Scholar

    [13]

    Song Y, Li S Y, Liu X S, Chen J G, Zeng S L, Yang Y J 2012 Phys. Rev. A 86 033424Google Scholar

    [14]

    Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 053419Google Scholar

    [15]

    田原野, 郭福明, 曾思良, 杨玉军 2013 物理学报 62 113201Google Scholar

    Tian Y Y, Guo F M, Zeng S L, Yang Y J 2013 Acta Phys. Sin. 62 113201Google Scholar

    [16]

    Han J X, Wang J, Qiao Y, Liu A H, Guo F M, Yang Y J 2019 Opt. Express 27 8768Google Scholar

    [17]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004 Chin. Phys. Lett. 21 652Google Scholar

    [18]

    刘艳, 贾成, 郭福明, 杨玉军 2016 物理学报 65 033201

    Liu Y, Jia C, Guo F M, Yang Y Y 2016 Acta Phys. Sin. 65 033201

    [19]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202Google Scholar

    [20]

    宋文娟, 郭福明, 陈基根, 杨玉军 2018 物理学报 67 033201

    Song W J, Guo F M, Chen J G, Yang Y J 2018 Acta Phys. Sin. 67 033201

    [21]

    He X, Miranda M, Schwenke J, Giulbaud O, Ruchon T, Heyl C, Georgadiou E 2009 Phys. Rev. A 79 063829Google Scholar

    [22]

    Chen Y J, Zhang B 2011 Phys. Rev. A 84 053402Google Scholar

  • [1] 张頔玉, 蓝文迪, 李雪峰, 张稣稣, 郭福明, 杨玉军. 驱动激光波长对超短脉冲与原子相互作用产生高次谐波发射的影响. 物理学报, 2022, 71(23): 233205. doi: 10.7498/aps.71.20220743
    [2] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究. 物理学报, 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [3] 牛英煜, 王荣, 邱明辉, 修俊玲. 利用基频与倍频脉冲控制扩展“ladder”式跃迁. 物理学报, 2016, 65(23): 233301. doi: 10.7498/aps.65.233301
    [4] 张頔玉, 李庆仪, 郭福明, 杨玉军. 原子多光子激发对电离阈值附近谐波发射的影响. 物理学报, 2016, 65(22): 223202. doi: 10.7498/aps.65.223202
    [5] 罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深. 空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生. 物理学报, 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [6] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究. 物理学报, 2014, 63(2): 023302. doi: 10.7498/aps.63.023302
    [7] 王晓娟, 乔少博, 沈柏竹, 封国林. 东亚北部地区气温的冬季-冬季再现特征研究. 物理学报, 2014, 63(23): 239202. doi: 10.7498/aps.63.239202
    [8] 王荣, 修俊玲, 牛英煜. 利用多光子跃迁控制基态HF分子布居转移. 物理学报, 2013, 62(9): 093301. doi: 10.7498/aps.62.093301
    [9] 牛英煜, 王荣, 修俊玲. 两束重合脉冲控制下的振转态布居转移. 物理学报, 2012, 61(9): 093302. doi: 10.7498/aps.61.093302
    [10] 夏昌龙, 刘学深. 任意夹角的双色偏振激光作用下孤立阿秒脉冲的产生. 物理学报, 2012, 61(4): 043303. doi: 10.7498/aps.61.043303
    [11] 牛英煜, 王荣, 修俊玲. 两束啁啾脉冲控制下的H+D+光缔合反应研究. 物理学报, 2011, 60(12): 123402. doi: 10.7498/aps.60.123402
    [12] 王姗姗, 王德华, 黄凯云, 唐田田. H-在金属面附近光剥离的波包动力学研究. 物理学报, 2011, 60(10): 103401. doi: 10.7498/aps.60.103401
    [13] 葛愉成. 高次谐波辐射发射特性研究. 物理学报, 2008, 57(7): 4091-4098. doi: 10.7498/aps.57.4091
    [14] 李冬梅, 李海宏, 李 元, 刘德胜, 解士杰. 载流子在金属/聚对苯乙炔/金属结构中注入及输运的动力学研究. 物理学报, 2008, 57(8): 5217-5225. doi: 10.7498/aps.57.5217
    [15] 李海宏, 李冬梅, 刘 文, 李 元, 刘晓静, 刘德胜, 解士杰. 金属/掺杂聚合物/金属结构中载流子的注入与输运. 物理学报, 2008, 57(2): 1117-1122. doi: 10.7498/aps.57.1117
    [16] 陈 飞, 张晓丹, 赵 颖, 魏长春, 孙 建. 硅薄膜沉积过程中等离子发光基团的一维空间分布研究. 物理学报, 2008, 57(5): 3276-3280. doi: 10.7498/aps.57.3276
    [17] 兰鹏飞, 陆培祥, 曹 伟. 超短激光脉冲驱动的Thomson散射空间分布特性. 物理学报, 2007, 56(5): 2482-2487. doi: 10.7498/aps.56.2482
    [18] 邓文基, 许基桓, 刘 平. 最小光学波包. 物理学报, 2004, 53(3): 693-697. doi: 10.7498/aps.53.693
    [19] 邓朝勇, 赵辉, 王永生. 薄膜电致发光器件电子能量的空间分布. 物理学报, 2001, 50(7): 1385-1389. doi: 10.7498/aps.50.1385
    [20] 余玮, 徐至展. CO2激光打靶中的高次谐波发射. 物理学报, 1987, 36(2): 224-229. doi: 10.7498/aps.36.224
计量
  • 文章访问数:  7975
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 修回日期:  2019-06-14
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回