搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用

娄钦 黄一帆 李凌

引用本文:
Citation:

不可压幂律流体气-液两相流格子Boltzmann 模型及其在多孔介质内驱替问题中的应用

娄钦, 黄一帆, 李凌

Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media

Lou Qin, Huang Yi-Fan, Li Ling
PDF
HTML
导出引用
  • 基于不可压格子玻尔兹曼气-液两相流模型, 建立了一个新的非牛顿幂律流体气-液两相流模型, 并采用该模型研究了多孔介质内牛顿气体驱替非牛顿幂律流体液体的驱替问题, 主要探究了Ca数、动力黏度比M、固体表面润湿性θ、多孔结构几何类型及幂律指数n对驱替过程的影响. 研究发现: 不论被驱替液体为剪切变稀流体、牛顿流体还是剪切变稠流体都有随着Ca数增加, 驱替速度越快, 指进现象越明显, 驱替效率越低. 然而对于不同的幂率指数n, 驱替效率随Ca数的增加而减小的速率不同: n越大驱替效率随着Ca数增加而减小的速率越慢. 另一方面, 随着黏性比M增加, 驱替效率减小, 且幂律指数n越小, M对驱替效率的影响越大. 此外, 固体表面接触角θ对驱替过程的影响也和被驱替流体的幂率指数n相关, 虽然对于n > 1和 n < 1的情况都有随着多孔介质固体表面接触角θ增加, 驱替过程受到的阻力越小, 指进越来越不明显, 驱替完成时间和驱替效率增加, 然而当n > 1时, 随着n的增加, 接触角对驱替过程的影响越来越小. 还研究了孔隙率相同的情况下, 孔隙几何类型不同时的驱替过程, 从数值结果可以发现与多孔结构为圆形和方形障碍物相比, 当多孔结构的几何类型为三角形时, 指进现象最明显, 驱替效率最低.
    A new incompressible gas-liquid two-phase flow model for non-Newtonian power-law fluid is proposed based on an incompressible lattice Boltzmann model. And the fundamental physical mechanism of Newtonian fluid displacing non-Newtonian power-law fluid liquid in porous medium is studied by using the proposed model. The effects of capillary number Ca, dynamic viscosity ratio M, surface wettability θ, porous medium geometry, and power law index n on the displacement process are investigated. The comprehensive results show that with the increase of capillary number, the displacement process turns faster, the fingering phenomenon becomes more obvious and the displacement efficiency decreases. However, for different values of power-law index n, the effects of the Ca on the displacement process have some differences. Specially, the decrease rate of displacement efficiency becomes slow if the displaced fluid is shear thickening fluid as compared with that if the displaced fluid is shear thinning fluid. On the other hand, the displacement efficiency decreases as dynamic viscosity ratio M increases. And the effect of the viscosity ratio on the displacement process becomes more obvious for the low value of the power-law index n. Moreover, the effect of the surface wettability of the porous medium on the displacement process is also related to the size of the power-law index. With the increase of the contact angle of the porous medium, the fingering phenomenon turns less obvious, and the displacement efficiency increases. However, with the increase of power-law index n, the influence of the contact angle on the displacement process decreases. Besides, the displacement processes with different geometric types of the porous media are also studied in the work. The results show that comparing with the case of porous medium denoted by circle shape and square shape, the fingering phenomenon obtained by the case of triangular shape is most obvious, and the displacement efficiency is lowest.
      通信作者: 娄钦, louqin560916@163.com
    • 基金项目: 上海市自然科学基金(批准号: 19ZR1435700)和国家自然科学基金(批准号: 51736007)资助的课题
      Corresponding author: Lou Qin, louqin560916@163.com
    • Funds: Project supported by the Shanghai Natural Science Foundation, China (Grant No. 19ZR1435700) and the National Natural Science Foundation of China (Grant No. 51736007)
    [1]

    Santvoort J V, Golombok M 2018 J. Pet. Sci. Eng. 167 28Google Scholar

    [2]

    Fang T M, Wang M H, Gao Y, Zhang Y N, Yan Y G, Zhang J 2019 Chem. Eng. Sci. 197 204Google Scholar

    [3]

    Xu X F, Zhang J, Liu F X, Wang X J, Wei W, Liu Z J 2017 Int. J. Multiphase Flow. 95 84Google Scholar

    [4]

    Du W, Fu T T, Duan Y F, Zhu C Y, Ma Y G, Li H Z 2018 Chem. Eng. Sci. 176 66Google Scholar

    [5]

    Fu T T, Ma Y G, Li H Z 2015 Chem. Eng. Process. 97 38Google Scholar

    [6]

    Salehi M S, Esfidani M T, Afshin H, Firoozabadi B 2018 Exp. Therm. Fluid Sci. 94 148Google Scholar

    [7]

    Sontti S G, Atta A 2017 Chem. Eng. J. 330 245Google Scholar

    [8]

    娄钦, 李涛, 杨茉 2018 物理学报 67 234701Google Scholar

    Lou Q, Li T, Yang M 2018 Acta Phys. Sin. 67 234701Google Scholar

    [9]

    臧晨强, 娄钦 2017 物理学报 66 134701Google Scholar

    Zang C Q, Lou Q 2017 Acta Phys. Sin. 66 134701Google Scholar

    [10]

    Lou Q, Guo Z L, Shi B C 2012 Europhys. Lett. 99 64005Google Scholar

    [11]

    Lou Q, Guo Z L 2015 Phys. Rev. E 91 013302Google Scholar

    [12]

    娄钦, 李涛, 李凌 2018 上海理工大学学报 40 13

    Lou Q, Li T, Li L 2018 J. Univ. Shanghai Sci. Technol. 40 13

    [13]

    谢驰宇, 张建影, 王沫然 2016 计算物理 33 147Google Scholar

    Xie C Y, Zhang J Y, Wang M R 2016 Chin. J. Computat. Phys. 33 147Google Scholar

    [14]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830Google Scholar

    [15]

    Shi Y, Tang G H 2014 Comput. Math. Appl. 68 1279Google Scholar

    [16]

    Fakhari A, Rahimian M H 2010 Phys. Rev. E 81 036707Google Scholar

    [17]

    Shi Y, Tang G H 2016 J. Non-Newtonian Fluid Mech. 229 86Google Scholar

    [18]

    Ba Y, Wang N N, Liu H H, Li Q, He G Q 2018 Phys. Rev. E 97 033307Google Scholar

    [19]

    Halliday I, Law R, Care C M, Hollis A 2006 Phys. Rev. E 73 056708Google Scholar

    [20]

    Halliday I, Hollis A P, Care C M 2007 Phys. Rev. E 76 026708Google Scholar

    [21]

    闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335

    Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335

    [22]

    Shan X W, Chen H D 1994 Phys. Rev. E 49 2941Google Scholar

    [23]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [24]

    Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D 2003 Int. J. Multiphase Flow. 29 117Google Scholar

    [25]

    Huang H B, Sukop M, Lu X Y 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (USA: WILEY Blackwell) pp7−10

    [26]

    Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456Google Scholar

    [27]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [28]

    Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar

    [29]

    Fakhari A, Rahimian M H 2011 Comput. Fluids 40 156Google Scholar

    [30]

    Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar

    [31]

    Sadeghi R, Shadloo M S 2017 Numer. Heat Transfer Part A 71 560Google Scholar

    [32]

    Kano Y, Sato T 2017 Energy Procedia 114 3385Google Scholar

    [33]

    Ye F, Di Q F, Wang W C, Chen F, Chen H J, Hua S 2018 J. Appl. Math. Mech. 39 513Google Scholar

    [34]

    Huang H B, Huang J J, Lu X Y 2014 J. Comput. Phys. 269 386Google Scholar

    [35]

    Chao J H, Mei R W, Singh R, Shyy W 2011 Int. J. Numer. Methods Fluids 66 622Google Scholar

    [36]

    Chen Y P, Deng Z L 2017 J. Fluid Mech. 819 401Google Scholar

    [37]

    Fu Y H, Bai L, Jin Y, Cheng Y 2017 Phys. Fluids 29 032003Google Scholar

    [38]

    郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第244页

    Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p244 (in Chinese)

    [39]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [40]

    Davies A R, Summers J L, Wilson M C T 2006 Int. J. Comput. Fluid. D 20 415Google Scholar

    [41]

    Shi Y, Tang G H 2015 Commun. Comput. Phys. 17 1056Google Scholar

    [42]

    Ansarinasab J, Jamialahmadi M 2017 J. Pet. Sci. Eng. 156 748Google Scholar

    [43]

    Basirat F, Yang Z B, Niemi A 2017 Adv. Water Resour. 109 181

    [44]

    Zheng X L, Mahabadi N, Yun T S, Jang J 2017 J. Geophys. Res.: Solid Earth 122 1634Google Scholar

    [45]

    Xu Z Y, Liu H H, Valocchi A J 2017 Water Resources Res. 53 3770Google Scholar

    [46]

    Soulaine C, Roman S, Kovscek A, Tchelepi H A 2018 J. Fluid Mech. 855 616Google Scholar

    [47]

    黄海波 2009 第六届全国流体力学青年研讨会 中国杭州 2009年10月10日 第27页

    Huang H B 2009 The 6th National Youth Workshop on Fluid Mechanics Hangzhou, China October 10, 2009 p27 (in Chinese)

    [48]

    Shiri Y, HassaniH,Nazari M, Sharifi M 2018 Mol. Simul. 44 708Google Scholar

    [49]

    Liu H H, ValocchiAJ, Kang Q J, Werth C 2013 Transp. Porous Media 99 555Google Scholar

    [50]

    Dong B, YanY Y, Li W Z, Song Y C 2010 Comput. Fluids 39 768Google Scholar

    [51]

    Ferer M, Anna S L,Tortora P, Kadambi J R, Oliver M, Bromhal G S, Smith D H 2011 Transp. Porous Media 86 243Google Scholar

    [52]

    Dong B, YanY Y, Li W Z, Song Y C 2011 J. Bionic. Eng. 7 267Google Scholar

  • 图 1  液滴内外压力差${P_{\rm{i}}} - {P_{\rm{o}}}$和半径倒数1/r之间的关系

    Fig. 1.  Relationship between pressure jump across the droplet interface${P_{\rm{i}}} - {P_{\rm{o}}}$ and inverse of droplet radius 1/r.

    图 2  不同初始静态接触角${\theta _{{\rm{eq}}}}$时得到的稳态接触角$\theta $ (a) ${\theta _{{\rm{eq}}}}{\rm{ = }}{60^{\rm{o}}}$; (b) ${\theta _{{\rm{eq}}}}{\rm{ = }}{90^{\rm{o}}};$ (c) ${\theta _{{\rm{eq}}}}={120^{\rm{o}}}$

    Fig. 2.  Steady state contact angles $\theta $ obtained with the different values of static contact angles ${\theta _{{\rm{eq}}}}$: (a) ${\theta _{{\rm{eq}}}}{\rm{ = }}{60^{\rm{o}}}$; (b) ${\theta _{{\rm{eq}}}}{\rm{ = }}{90^{\rm{o}}};$ (c) ${\theta _{{\rm{eq}}}}{\rm{ = }}{120^{\rm{o}}}$.

    图 3  稳态接触角$\theta $与指标参数${\phi _{{\rm{wall}}}}$的线性关系

    Fig. 3.  Linear relationship between steady state contact angle $\theta $ and the order parameter of a solid wall ${\phi _{{\rm{wall}}}}$.

    图 4  T型通道问题物理模型

    Fig. 4.  Physical model for the case of T shape channel.

    图 5  不同Ca数对应的液滴形态 (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910

    Fig. 5.  Droplet morphology obtained under various values of Ca: (a) Ca = 0.06370; (b) Ca = 0.06835; (c) Ca = 0.07300; (d) Ca = 0.07750; (e) Ca = 0.0820; (f) Ca = 0.08650; (g) Ca = 0.0910.

    图 6  在剪切变稀幂律流体中, 不同的$Ca$数下形成液滴的无量纲直径(其中D是形成的液滴的直径, H是管径的直径)

    Fig. 6.  Droplet dimensionless diameters at different values of $Ca$ in shear thinning power-law fluid. D is diameters of the droplet and H is width of the main channel.

    图 7  多孔介质驱替模型

    Fig. 7.  The model for porous media displacement problem.

    图 8  不同的$Ca$数下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c) n = 0.7; (d)−(f) n =1.0; (g)−(i) n = 1.3

    Fig. 8.  Final finger patterns obtained under different values of Ca for shear thinning, Newtonian and shear thickening fluids: (a)− (c) n = 0.7; (d)−(f) n =1.0; (g)−(i) n = 1.3.

    图 9  驱替完成时, 不同幂律指数情况下得到的气液两相动力黏度示意图 $({\rm{a}})\;n = 0.7$; $({\rm{b}})\;n = 1.0$; $({\rm{c}})\;n = 1.3$

    Fig. 9.  Schematic diagram of gas-liquid two phase dynamics viscosity obtained under different values of power-law exponent: $({\rm{a}})\;n = 0.7$; $({\rm{b}})\;n = 1.0$; $({\rm{c}})\;n = 1.3$.

    图 10  $Ca$ 数和幂律指数n对幂律流体驱替效率的影响

    Fig. 10.  Effects of $Ca$and power-law exponent n on power-law fluid displacement efficiency.

    图 11  不同的动力黏性比M下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c) n = 0.7; (d)−(f) n = 1.0; (g)−(i) n = 1.3

    Fig. 11.  Final finger patterns obtained under different values of viscosity ratios M for shear thinning, Newtonian and shear thickening fluids: (a)−(c) n = 0.7; (d)−(f) n = 1.0; (g)−(i) n = 1.3.

    图 12  动力黏度比M和幂律指数n对幂律流体驱替效率的影响

    Fig. 12.  Effects of viscosity ratio M and power-law exponent n on power-law fluid displacement efficiency.

    图 13  不同的润湿性角度$\theta $下, 被驱替液为剪切变稀、牛顿与剪切变稠流体时得到的指进形态图 (a)−(c) $\theta = {45^{\circ}}$; (d)− (f) $\theta = {60^{\circ}}$; (g)−(i) $\theta = {120^{\circ}}$; (j)−(l) $\theta = {135^{\circ}}$

    Fig. 13.  Final finger patterns obtained under different values of contact angles $\theta $ for shear thinning, Newtonian and shear thickening fluids: (a)−(c) $\theta = {45^{\circ}}$; (d)-(f) $\theta = {60^{\circ}}$; (g)−(i) $\theta = {120^{\circ}}$; (j)−(l) $\theta = {135^{\circ}}$.

    图 14  润湿性$\theta $和幂律指数n对幂律流体驱替效率的影响

    Fig. 14.  Effects of contact angles $\theta $ and power-law exponent n on power-law fluid displacement efficiency.

    图 15  不同的障碍物几何类型, 被驱替液为剪切变稀、牛顿与剪切变稠流体时驱得到的指进形态图 (a)−(c) n = 0.4; (d)− (f) n = 0.7; (g)−(i) n = 1.0; (j)−(l) n = 1.3, (m)−(o) n = 1.6

    Fig. 15.  Final finger patterns obtained under different geometric type for shear thinning, Newtonian and shear thickening fluids: (a)− (c) n = 0.4; (d)−(f) n = 0.7; (g)−(i) n = 1.0; (j)−(l) n = 1.3; (m)−(o) n = 1.6.

    图 16  障碍物几何类型和幂律指数n对幂律流体驱替效率的影响

    Fig. 16.  Effects of geometric type and power-law exponent n on power-law fluid displacement efficiency.

  • [1]

    Santvoort J V, Golombok M 2018 J. Pet. Sci. Eng. 167 28Google Scholar

    [2]

    Fang T M, Wang M H, Gao Y, Zhang Y N, Yan Y G, Zhang J 2019 Chem. Eng. Sci. 197 204Google Scholar

    [3]

    Xu X F, Zhang J, Liu F X, Wang X J, Wei W, Liu Z J 2017 Int. J. Multiphase Flow. 95 84Google Scholar

    [4]

    Du W, Fu T T, Duan Y F, Zhu C Y, Ma Y G, Li H Z 2018 Chem. Eng. Sci. 176 66Google Scholar

    [5]

    Fu T T, Ma Y G, Li H Z 2015 Chem. Eng. Process. 97 38Google Scholar

    [6]

    Salehi M S, Esfidani M T, Afshin H, Firoozabadi B 2018 Exp. Therm. Fluid Sci. 94 148Google Scholar

    [7]

    Sontti S G, Atta A 2017 Chem. Eng. J. 330 245Google Scholar

    [8]

    娄钦, 李涛, 杨茉 2018 物理学报 67 234701Google Scholar

    Lou Q, Li T, Yang M 2018 Acta Phys. Sin. 67 234701Google Scholar

    [9]

    臧晨强, 娄钦 2017 物理学报 66 134701Google Scholar

    Zang C Q, Lou Q 2017 Acta Phys. Sin. 66 134701Google Scholar

    [10]

    Lou Q, Guo Z L, Shi B C 2012 Europhys. Lett. 99 64005Google Scholar

    [11]

    Lou Q, Guo Z L 2015 Phys. Rev. E 91 013302Google Scholar

    [12]

    娄钦, 李涛, 李凌 2018 上海理工大学学报 40 13

    Lou Q, Li T, Li L 2018 J. Univ. Shanghai Sci. Technol. 40 13

    [13]

    谢驰宇, 张建影, 王沫然 2016 计算物理 33 147Google Scholar

    Xie C Y, Zhang J Y, Wang M R 2016 Chin. J. Computat. Phys. 33 147Google Scholar

    [14]

    Swift M R, Osborn W R, Yeomans J M 1995 Phys. Rev. Lett. 75 830Google Scholar

    [15]

    Shi Y, Tang G H 2014 Comput. Math. Appl. 68 1279Google Scholar

    [16]

    Fakhari A, Rahimian M H 2010 Phys. Rev. E 81 036707Google Scholar

    [17]

    Shi Y, Tang G H 2016 J. Non-Newtonian Fluid Mech. 229 86Google Scholar

    [18]

    Ba Y, Wang N N, Liu H H, Li Q, He G Q 2018 Phys. Rev. E 97 033307Google Scholar

    [19]

    Halliday I, Law R, Care C M, Hollis A 2006 Phys. Rev. E 73 056708Google Scholar

    [20]

    Halliday I, Hollis A P, Care C M 2007 Phys. Rev. E 76 026708Google Scholar

    [21]

    闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335

    Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335

    [22]

    Shan X W, Chen H D 1994 Phys. Rev. E 49 2941Google Scholar

    [23]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [24]

    Nourgaliev R R, Dinh T N, Theofanous T G, Joseph D 2003 Int. J. Multiphase Flow. 29 117Google Scholar

    [25]

    Huang H B, Sukop M, Lu X Y 2015 Multiphase Lattice Boltzmann Methods: Theory and Application (USA: WILEY Blackwell) pp7−10

    [26]

    Yu Z, Fan L S 2009 J. Comput. Phys. 228 6456Google Scholar

    [27]

    He X Y, Chen S Y, Zhang R Y 1999 J. Comput. Phys. 152 642Google Scholar

    [28]

    Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar

    [29]

    Fakhari A, Rahimian M H 2011 Comput. Fluids 40 156Google Scholar

    [30]

    Lou Q, Guo Z L, Shi B C 2013 Phys. Rev. E 87 063301Google Scholar

    [31]

    Sadeghi R, Shadloo M S 2017 Numer. Heat Transfer Part A 71 560Google Scholar

    [32]

    Kano Y, Sato T 2017 Energy Procedia 114 3385Google Scholar

    [33]

    Ye F, Di Q F, Wang W C, Chen F, Chen H J, Hua S 2018 J. Appl. Math. Mech. 39 513Google Scholar

    [34]

    Huang H B, Huang J J, Lu X Y 2014 J. Comput. Phys. 269 386Google Scholar

    [35]

    Chao J H, Mei R W, Singh R, Shyy W 2011 Int. J. Numer. Methods Fluids 66 622Google Scholar

    [36]

    Chen Y P, Deng Z L 2017 J. Fluid Mech. 819 401Google Scholar

    [37]

    Fu Y H, Bai L, Jin Y, Cheng Y 2017 Phys. Fluids 29 032003Google Scholar

    [38]

    郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第244页

    Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p244 (in Chinese)

    [39]

    Guo Z L, Zheng C G, Shi B C 2011 Phys. Rev. E 83 036707Google Scholar

    [40]

    Davies A R, Summers J L, Wilson M C T 2006 Int. J. Comput. Fluid. D 20 415Google Scholar

    [41]

    Shi Y, Tang G H 2015 Commun. Comput. Phys. 17 1056Google Scholar

    [42]

    Ansarinasab J, Jamialahmadi M 2017 J. Pet. Sci. Eng. 156 748Google Scholar

    [43]

    Basirat F, Yang Z B, Niemi A 2017 Adv. Water Resour. 109 181

    [44]

    Zheng X L, Mahabadi N, Yun T S, Jang J 2017 J. Geophys. Res.: Solid Earth 122 1634Google Scholar

    [45]

    Xu Z Y, Liu H H, Valocchi A J 2017 Water Resources Res. 53 3770Google Scholar

    [46]

    Soulaine C, Roman S, Kovscek A, Tchelepi H A 2018 J. Fluid Mech. 855 616Google Scholar

    [47]

    黄海波 2009 第六届全国流体力学青年研讨会 中国杭州 2009年10月10日 第27页

    Huang H B 2009 The 6th National Youth Workshop on Fluid Mechanics Hangzhou, China October 10, 2009 p27 (in Chinese)

    [48]

    Shiri Y, HassaniH,Nazari M, Sharifi M 2018 Mol. Simul. 44 708Google Scholar

    [49]

    Liu H H, ValocchiAJ, Kang Q J, Werth C 2013 Transp. Porous Media 99 555Google Scholar

    [50]

    Dong B, YanY Y, Li W Z, Song Y C 2010 Comput. Fluids 39 768Google Scholar

    [51]

    Ferer M, Anna S L,Tortora P, Kadambi J R, Oliver M, Bromhal G S, Smith D H 2011 Transp. Porous Media 86 243Google Scholar

    [52]

    Dong B, YanY Y, Li W Z, Song Y C 2011 J. Bionic. Eng. 7 267Google Scholar

  • [1] 金燕, 石子璇, 金奕扬, 田文得, 张天辉, 陈康. 有限多孔介质诱导活性哑铃的聚集行为. 物理学报, 2024, 73(16): 160502. doi: 10.7498/aps.73.20240784
    [2] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [3] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [4] 唐国智, 汪垒, 李顶根. 使用条件生成对抗网络生成预定导热率多孔介质. 物理学报, 2021, 70(5): 054401. doi: 10.7498/aps.70.20201061
    [5] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [6] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [7] 仇浩淼, 夏唐代, 何绍衡, 陈炜昀. 流体/准饱和多孔介质中伪Scholte波的传播特性. 物理学报, 2018, 67(20): 204302. doi: 10.7498/aps.67.20180853
    [8] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟. 物理学报, 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [9] 贾宇鹏, 王景甫, 郑坤灿, 张兵, 潘刚, 龚志军, 武文斐. 应用粒子图像测试技术测量球床多孔介质单相流动的流场. 物理学报, 2016, 65(10): 106701. doi: 10.7498/aps.65.106701
    [10] 刘高洁, 郭照立, 施保昌. 多孔介质中流体流动及扩散的耦合格子Boltzmann模型. 物理学报, 2016, 65(1): 014702. doi: 10.7498/aps.65.014702
    [11] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [12] 齐聪, 何光艳, 李意民, 何玉荣. 方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟. 物理学报, 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [13] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [14] 何郁波, 林晓艳, 董晓亮. 应用格子Boltzmann模型模拟一类二维偏微分方程. 物理学报, 2013, 62(19): 194701. doi: 10.7498/aps.62.194701
    [15] 韩庆邦, 徐杉, 谢祖峰, 葛蕤, 王茜, 赵胜永, 朱昌平. Scholte波与含泥沙两相流介质属性关系的分析及仿真验证. 物理学报, 2013, 62(19): 194301. doi: 10.7498/aps.62.194301
    [16] 郑坤灿, 温治, 王占胜, 楼国锋, 刘训良, 武文斐. 前沿领域综述多孔介质强制对流换热研究进展. 物理学报, 2012, 61(1): 014401. doi: 10.7498/aps.61.014401
    [17] 员美娟, 郁伯铭, 郑伟, 袁洁. 多孔介质中卡森流体的分形分析. 物理学报, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [18] 赵明, 郁伯铭. 基于分形多孔介质三维网络模型的非混溶两相流驱替数值模拟. 物理学报, 2011, 60(9): 098103. doi: 10.7498/aps.60.098103
    [19] 罗莹莹, 詹杰民, 李毓湘. 多孔介质中盐指现象的数值模拟. 物理学报, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [20] 崔志文, 王克协, 曹正良, 胡恒山. 多孔介质BISQ模型中的慢纵波. 物理学报, 2004, 53(9): 3083-3089. doi: 10.7498/aps.53.3083
计量
  • 文章访问数:  10189
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 修回日期:  2019-07-15
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回