搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塑料类高分子聚合物材料水中目标声学参数反演

周彦玲 范军 王斌

引用本文:
Citation:

塑料类高分子聚合物材料水中目标声学参数反演

周彦玲, 范军, 王斌

Inversion for acoustic parameters of plastic polymer target in water

Zhou Yan-Ling, Fan Jun, Wang Bin
PDF
HTML
导出引用
  • 塑料类高分子聚合物材料作为3D打印领域的一类主要材料, 在水下声学模型和结构成型中的应用越来越广泛, 这类新材料的声学参数直接影响着3D打印的水下声学模型和结构的声学性能. 基于水中目标声散射的Rayleigh简正级数解及塑料类高分子聚合物材料实心球中亚音速Rayleigh波低频共振机理分析, 获取了亚音速Rayleigh波在低频情况下共振峰频率和幅度分别对材料的波速和衰减系数敏感的特征. 在此特征基础上建立了一种以亚音速Rayleigh波反向散射共振峰频率和幅度为代价函数的塑料类高分子聚合物材料声学参数反演方法. 最后通过典型塑料类高分子聚合物材料PMMA (甲基丙烯酸甲酯-亚克力)实心球反向声散射特性水池试验, 测量了亚音速Rayleigh波反向散射共振特性, 并反演得到了此类PMMA材料的纵波、剪切波声速及其声衰减系数, 与理论预报结果基本吻合, 为3D打印的塑料类高分子聚合物材料模型声学性能测试和评估提供了一种新方法.
    The high-precision molding capability of complex surfaces and structures makes three-dimensional (3D) printing technology more widely used in underwater acoustic models and structural molding. The plastic polymer material, as the main material in the field of 3D printing, possesses the acoustic parameters that are directly related to the acoustic properties of 3D printed underwater acoustic models and structures. Based on the Rayleigh normal series solution for the acoustic scattering of underwater target and the mechanism analysis of the low-frequency resonance which is associated with subsonic Rayleigh waves on the solid plastic polymer spheres, the sensitivity characteristics of the resonance frequency and amplitude to the wave velocity and attenuation coefficient are obtained at low frequencies. It is shown that the transverse wave velocity and the transverse wave attenuation coefficient both have high inversion accuracy at low values of ka, where a is the radius of elastic sphere, as they are quite sensitive to the backscattering resonance frequency and amplitude, respectively. In the frequency band of interest, the backscattering resonance frequency is almost independent of attenuation coefficient. Considering the inversion accuracy, the longitudinal wave velocity and transverse wave velocity are inverted by the resonance frequency separately. Based on these characteristics, the cyclic search method is used to establish an acoustic parameter inversion method for plastic polymer materials, in which the frequency and amplitude of backscattering resonance peak are used as cost functions. Finally, the backscattering acoustic scattering experiment on a solid typical plastic polymer PMMA (methyl methacrylate-acrylic) sphere is conducted in the tank. The experimental results about the backscattering target strength varying with the frequency are in good agreement with the simulation results in a frequency range of 5–20 kHz. The simulation parameters such as the longitudinal wave velocity, transverse wave velocity and attenuation coefficient are obtained by the previously established inversion method. Therefore, the acoustic parameter inversion method provides reliable acoustic parameters for 3D printed underwater acoustic model and structure performance prediction for plastic polymer materials.
      通信作者: 范军, fanjun@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774229)资助的课题
      Corresponding author: Fan Jun, fanjun@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774229)
    [1]

    凌绳, 王秀芬, 吴友平 2007 聚合物材料 (北京: 中国轻工业出版社)第1−4页

    Ling S, Wang X F, Wu Y P 2007 Polymer Materials (Beijing: China Light Industry Press) pp1−4 (in Chinese)

    [2]

    王荣津 1983 水声材料手册 (北京: 科学出版社) 第49−64页

    Wang R J 1983 The Handbook of Underwater Acoustic Materials (Beijing: Science Press) pp49−64 (in Chinese)

    [3]

    李永清, 朱锡, 孙卫红, 晏欣 2012 舰船科学技术 34 7Google Scholar

    Li Y Q, Zhu X, Sun W H, Yan X 2012 Ship Science And Technology 34 7Google Scholar

    [4]

    代阳, 杨建华, 侯宏, 陈建平, 孙亮, 石静 2017 声学学报 42 476

    Dai Y, Yang J H, Hou H, Chen J P, Sun L, Shi J 2017 Acta Acustica 42 476

    [5]

    陈建平, 何元安, 黄爱根 2015 声学技术 34 109

    Chen J P, He Y A, Huang A G 2015 Technical Acoustics 34 109

    [6]

    任群言, 朴胜春, 马力, 郭圣明, 廖天俊 2018 哈尔滨工程大学学报 39 236

    Ren Q Y, Piao S C, Ma L, Guo S M, Liao T J 2018 J. Harbin Eng. Univ. 39 236

    [7]

    杨坤德, 马远良 2009 物理学报 58 1798

    Yang K D, Ma Y L 2009 Acta Phys. Sin. 58 1798

    [8]

    郭晓乐, 杨坤德, 马远良 2015 物理学报 17 174302Google Scholar

    Guo X L, Yang K D, Ma Y L 2015 Acta Phys. Sin. 17 174302Google Scholar

    [9]

    郑广赢, 黄益旺 2017 哈尔滨工程大学学报 38 371

    Zheng G Y, Huang Y W 2017 J. Harbin Eng. Univ. 38 371

    [10]

    金国梁, 尹剑飞, 温激鸿, 温熙森 2016 物理学报 65 014305Google Scholar

    Jin G L, Yin J F, Wen J H, Wen X S 2016 Acta Phys. Sin. 65 014305Google Scholar

    [11]

    陶猛, 赵阳 2014 振动与冲击 33 85

    Tao M, Zhao Y 2014 Journal of Vibration and Shock 33 85

    [12]

    宋扬, 杨士莪, 黄益旺 2007 材料科学与工艺 15 44Google Scholar

    Song Y, Yang S E, Huang Y W 2007 Material Science and Technology 15 44Google Scholar

    [13]

    Gaunaurd G C, Überall H 1983 J. Acoust. Soc. Am. 73 1Google Scholar

    [14]

    Hartmann B, Jarzynski J 1972 J. Appl. Phys. 43 4304

    [15]

    龙云亮, 文希理, 谢处方 1994 数值计算与计算机应用 2 88

    You Y L, Wen X L, Xie C F 1994 J. Num. Meth. Computer Appl. 2 88

    [16]

    Dickey J W, Frisk G V, Überall H 1976 J. Acoust. Soc. Am. 59 1339Google Scholar

    [17]

    Marston P L 1992 Geometrical and Catastrophe Optics Methods in Scattering (New York: Academic Press) pp47–50

    [18]

    Tesei A, Guerrini P, Zampolli M 2008 J. Acoust. Soc. Am. 124 827Google Scholar

    [19]

    Hefner B T, Marston P L 2000 J. Acoust. Soc. Am. 107 1930Google Scholar

    [20]

    汤渭霖, 范军, 马忠诚 2018 水中目标声散射 (北京: 科学出版社) 第112−116页

    Tang W L, Fan J, Ma Z C 2018 Acoustic Scattering of Underwater Targets (Beijing: Science Press) pp112−116 (in Chinese)

    [21]

    Mitri F G, Fellah Z E A, Chapelon J Y 2004 J. Acoust. Soc. Am. 115 1411Google Scholar

  • 图 1  两种材料实心球形态函数幅频特性曲线

    Fig. 1.  Form function of the solid spheres for two materials.

    图 2  实心PMMA球频散曲线 (a)特征值实部-虚部; (b)归一化相速度

    Fig. 2.  Dispersion curves of the solid PMMA sphere: (a) Real-imaginary of eigenvalue; (b) normalized phase velocity.

    图 3  亚音速Rayleigh波传播路径

    Fig. 3.  Ray diagram for subsonic Rayleigh waves propagating around the sphere.

    图 4  (a)亚音速Rayleigh波归一化相速度(黑色点划线)和曲线2ka/(2p + 1)(蓝色线); (b)纯弹性共振

    Fig. 4.  (a) Normalized dispersion curve of subsonic Rayleigh waves (black dotted line) and curves of 2ka/(2p + 1) (blue line); (b) pure elastic resonance.

    图 5  PMMA球两个典型共振峰频率敏感度 (a) fref = 4.15 kHz; (b) fref = 16.05 kHz

    Fig. 5.  Sensitivity of resonance-frequency: (a) fref = 4.15 kHz; (b) fref = 16.05 kHz.

    图 6  PMMA球两个典型共振峰幅度敏感度 (a) fref = 4.15 kHz; (b) fref = 16.05 kHz

    Fig. 6.  Sensitivity of resonance-amplitude: (a) fref = 4.15 kHz; (b) fref = 16.05 kHz

    图 7  共振频率对衰减系数敏感度 (a) fref = 4.15 kHz; (b) fref = 16.05 kHz

    Fig. 7.  Sensitivity of resonance frequency to attenuation: (a) fref = 4.15 kHz; (b) fref = 16.05 kHz.

    图 8  材料声学参数反演技术流程图

    Fig. 8.  Flow chart of material parameters inversion.

    图 9  频率代价函数 (a) ${f_{{\rm{m}}j}}$; (b) ${f_{{\rm{m}}j}} - \Delta f$

    Fig. 9.  Cost function of resonance frequency: (a) ${f_{{\rm{m}}j}}$; (b) ${f_{{\rm{m}}j}} - \Delta f$

    图 10  剪切波和纵波声速相对误差

    Fig. 10.  Relative errors of the transverse wave velocity and the longitudinal wave velocity.

    图 11  幅度代价函数 (a) ${A_{{\rm{m}}j}}$; (b) ${A_{{\rm{m}}j}} - \Delta A$

    Fig. 11.  Cost function of resonance amplitude: (a) ${A_{{\rm{m}}j}}$; (b) ${A_{{\rm{m}}j}} - \Delta A$.

    图 12  纵波和剪切波衰减系数相对误差

    Fig. 12.  Relative errors of the longitudinal wave attenuation coefficient and the transverse wave attenuation coefficient.

    图 13  实验布放及测量仪器

    Fig. 13.  Arrangement of experimental system.

    图 14  时域信号 (a)回波; (b)入射波

    Fig. 14.  Time-domain signal: (a) Echoes; (b) incident pressure.

    图 15  获取形态函数流程图

    Fig. 15.  Flow chart of obtaining form function.

    图 16  代价函数 (a)共振峰频率; (b)共振峰幅度

    Fig. 16.  Cost function: (a) Resonance frequency; (b) resonance amplitude.

    图 17  实验结果和理论计算对比

    Fig. 17.  Comparison between experimental and theoretical calculation.

    表 1  计算所用材料参数

    Table 1.  Material parameters used in the calculations.

    材料密度/kg·m–3纵波波速/m·s–1剪切波波速/m·s–1纵波衰减系数${\alpha _{\rm{d}}}$剪切波衰减系数${\alpha _{\rm{s}}}$
    PMMA1190269013400.00340.0053
    770059503240
    10001500
    下载: 导出CSV

    表 2  实验获取共振峰频率和幅度

    Table 2.  Resonance frequency and amplitude obtained in experiment.

    共振峰频率${f_{{\rm{m}}j}}$/kHz共振峰幅度${A_{{\rm{m}}j}}$
    ${f_{{\rm{m}}1}}$7.654${A_{{\rm{m}}1}}$3.1556
    ${f_{{\rm{m}}2}}$9.605${A_{{\rm{m}}2}}$3.1378
    ${f_{{\rm{m}}3}}$11.48${A_{{\rm{m}}3}}$2.6025
    ${f_{{\rm{m}}4}}$14.894${A_{{\rm{m}}4}}$2.5969
    下载: 导出CSV
  • [1]

    凌绳, 王秀芬, 吴友平 2007 聚合物材料 (北京: 中国轻工业出版社)第1−4页

    Ling S, Wang X F, Wu Y P 2007 Polymer Materials (Beijing: China Light Industry Press) pp1−4 (in Chinese)

    [2]

    王荣津 1983 水声材料手册 (北京: 科学出版社) 第49−64页

    Wang R J 1983 The Handbook of Underwater Acoustic Materials (Beijing: Science Press) pp49−64 (in Chinese)

    [3]

    李永清, 朱锡, 孙卫红, 晏欣 2012 舰船科学技术 34 7Google Scholar

    Li Y Q, Zhu X, Sun W H, Yan X 2012 Ship Science And Technology 34 7Google Scholar

    [4]

    代阳, 杨建华, 侯宏, 陈建平, 孙亮, 石静 2017 声学学报 42 476

    Dai Y, Yang J H, Hou H, Chen J P, Sun L, Shi J 2017 Acta Acustica 42 476

    [5]

    陈建平, 何元安, 黄爱根 2015 声学技术 34 109

    Chen J P, He Y A, Huang A G 2015 Technical Acoustics 34 109

    [6]

    任群言, 朴胜春, 马力, 郭圣明, 廖天俊 2018 哈尔滨工程大学学报 39 236

    Ren Q Y, Piao S C, Ma L, Guo S M, Liao T J 2018 J. Harbin Eng. Univ. 39 236

    [7]

    杨坤德, 马远良 2009 物理学报 58 1798

    Yang K D, Ma Y L 2009 Acta Phys. Sin. 58 1798

    [8]

    郭晓乐, 杨坤德, 马远良 2015 物理学报 17 174302Google Scholar

    Guo X L, Yang K D, Ma Y L 2015 Acta Phys. Sin. 17 174302Google Scholar

    [9]

    郑广赢, 黄益旺 2017 哈尔滨工程大学学报 38 371

    Zheng G Y, Huang Y W 2017 J. Harbin Eng. Univ. 38 371

    [10]

    金国梁, 尹剑飞, 温激鸿, 温熙森 2016 物理学报 65 014305Google Scholar

    Jin G L, Yin J F, Wen J H, Wen X S 2016 Acta Phys. Sin. 65 014305Google Scholar

    [11]

    陶猛, 赵阳 2014 振动与冲击 33 85

    Tao M, Zhao Y 2014 Journal of Vibration and Shock 33 85

    [12]

    宋扬, 杨士莪, 黄益旺 2007 材料科学与工艺 15 44Google Scholar

    Song Y, Yang S E, Huang Y W 2007 Material Science and Technology 15 44Google Scholar

    [13]

    Gaunaurd G C, Überall H 1983 J. Acoust. Soc. Am. 73 1Google Scholar

    [14]

    Hartmann B, Jarzynski J 1972 J. Appl. Phys. 43 4304

    [15]

    龙云亮, 文希理, 谢处方 1994 数值计算与计算机应用 2 88

    You Y L, Wen X L, Xie C F 1994 J. Num. Meth. Computer Appl. 2 88

    [16]

    Dickey J W, Frisk G V, Überall H 1976 J. Acoust. Soc. Am. 59 1339Google Scholar

    [17]

    Marston P L 1992 Geometrical and Catastrophe Optics Methods in Scattering (New York: Academic Press) pp47–50

    [18]

    Tesei A, Guerrini P, Zampolli M 2008 J. Acoust. Soc. Am. 124 827Google Scholar

    [19]

    Hefner B T, Marston P L 2000 J. Acoust. Soc. Am. 107 1930Google Scholar

    [20]

    汤渭霖, 范军, 马忠诚 2018 水中目标声散射 (北京: 科学出版社) 第112−116页

    Tang W L, Fan J, Ma Z C 2018 Acoustic Scattering of Underwater Targets (Beijing: Science Press) pp112−116 (in Chinese)

    [21]

    Mitri F G, Fellah Z E A, Chapelon J Y 2004 J. Acoust. Soc. Am. 115 1411Google Scholar

  • [1] 邓娈, 杜报, 蔡洪波, 康洞国, 朱少平. 在质子照相中利用Abel逆变换反演等离子体自生磁场结构. 物理学报, 2022, 71(24): 245203. doi: 10.7498/aps.71.20221848
    [2] 马瑞轩, 王益民, 张树海, 武从海, 王勋年. 旋涡声散射特性的尺度效应数值研究. 物理学报, 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [3] 王益民, 马瑞轩, 武从海, 罗勇, 张树海. 旋涡声散射的空间尺度特性数值研究. 物理学报, 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [4] 徐敏, 申晋, 黄钰, 徐亚南, 朱新军, 王雅静, 刘伟, 高明亮. 基于颗粒粒度信息分布特征的动态光散射加权反演. 物理学报, 2018, 67(13): 134201. doi: 10.7498/aps.67.20172377
    [5] 范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东. 基于声散射的水下气泡群空间关联性研究. 物理学报, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [6] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [7] 段晓亮, 王一博, 杨慧珠. 基于逆散射理论的地震波速度正则化反演. 物理学报, 2015, 64(7): 078901. doi: 10.7498/aps.64.078901
    [8] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究. 物理学报, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [9] 李伦, 吴雄斌, 徐兴安. 基于优化理论的高频地波雷达海浪参数反演. 物理学报, 2014, 63(3): 038403. doi: 10.7498/aps.63.038403
    [10] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [11] 吴海军, 蒋伟康, 鲁文波. 三维声学多层快速多极子边界元及其应用. 物理学报, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [12] 丁世敬, 葛德彪, 申宁. 复合介质等效电磁参数的数值研究. 物理学报, 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [13] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法. 物理学报, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [14] 孙贤明, 哈恒旭. 基于反射太阳光反演气溶胶光学厚度和有效半径. 物理学报, 2008, 57(9): 5565-5570. doi: 10.7498/aps.57.5565
    [15] 张新明, 刘家琦, 刘克安. 一维双相介质孔隙率的小波多尺度反演. 物理学报, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [16] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演. 物理学报, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [17] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [18] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆. 物理学报, 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
    [19] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [20] 尤云祥, 缪国平, 刘应中. 用近场声学测量信息可视化多个三维障碍物的一种快速算法. 物理学报, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
计量
  • 文章访问数:  8813
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-27
  • 修回日期:  2019-08-26
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回