搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维半导体偏振光探测器研究进展

魏钟鸣 夏建白

引用本文:
Citation:

低维半导体偏振光探测器研究进展

魏钟鸣, 夏建白

Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors

Wei Zhong-Ming, Xia Jian-Bai
PDF
HTML
导出引用
  • 偏振光探测在遥感成像、环境监测、医疗检测和军事设备等领域都具有很好的应用价值, 目前已经有一系列偏振探测和成像产品. 随着信息器件进一步小型化、集成化, 基于新型低维材料的偏振光探测器可以直接利用材料本征的各向异性对偏振光进行感知, 在未来偏振光探测领域有很好的应用前景. 很多二维/一维半导体材料, 例如: 黑磷, ReS2, GaTe, GeSe, GeAs及ZrS3等, 都具有较强的本征面内各向异性, 可以用于高性能偏振光探测器. 基于此类低维半导体材料设计的不同结构类型的偏振光探测器已经覆盖了紫外、可见以及红外等多个波段. 本文总结了近年来相关领域的研究进展和我们课题组的一些工作.
    Polarized photodetection technology has good application value in the fields of remote sensing imaging, environmental monitoring, medical detection and military equipment. Polarized photodetectors based on low-dimensional materials can use the natural anisotropy of materials to detect polarized information. Some two-dimensional materials have strong in-plane anisotropy due to their low-symmetrical crystal structure, such as black-phosphorus, black-arsenic, ReS2, GaTe, GeSe, GeAs, and TiS3. These anisotropic two-dimensional materials are appropriate for the working medium of polarized photodetectors. Numerous researchs focused on polarized photodetectors with different materials and device structures and our works are introduced. Polarized photodetectors based on such low-dimensional materials have realized a broadband photodetection, including ultraviolet, visible, and infrared lights.
      通信作者: 魏钟鸣, zmwei@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61622406).
      Corresponding author: Wei Zhong-Ming, zmwei@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61622406).
    [1]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453Google Scholar

    [2]

    Doradla P, Alavi K, Joseph C S, Giles R H 2013 J. Biomed. Opt. 18 090504

    [3]

    Duan J, Fu Q, Mo C, Zhu Y, Liu D 2013 ISPDI 2013—Fifth International Symposium on Photoelectronic Detection and Imaging Beijing, China, August 21, 2013 p890813

    [4]

    李军伟, 陈伟力, 徐文斌, 逯祎 2017 红外偏振成像技术与应用(北京: 科学出版社) 第2页

    Li J, Chen W, Xu W, Lu Y 2017 Infrared Polarization Imaging Technology and Application (Vol. 1) (Beijing: Science Press) p2 (in Chinese)

    [5]

    Li L, Xiong D, Wen J, Li N, Zhu Z 2016 Infrared Phys. Technol. 79 45Google Scholar

    [6]

    Li Q, Li Z, Li N, Chen X, Chen P, Shen X, Lu W 2014 Sci. Rep. 4 6332

    [7]

    Sun R, Min L, Huang L 2014 Asia Communications and Photonics Conference 2014 Shanghai, China, November 11, 2014 pATh3A.34

    [8]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509Google Scholar

    [9]

    Cui Y, Li B, Li J, Wei Z 2018 Sci. China: Phys. Mech. Astron. 61 016801Google Scholar

    [10]

    Zhang K, Fang X, Wang Y, Wan Y, Song Q, Zhai W, Li Y, Ran G, Ye Y, Dai L 2017 ACS Appl. Mater. Interfaces 9 5392Google Scholar

    [11]

    Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X, Wang K 2015 Adv. Opt. Mater. 3 1418Google Scholar

    [12]

    Zhong M, Zhou K, Wei Z, Li Y, Li T, Dong H, Jiang L, Li J, Hu W 2018 2D Mater. 5 035033Google Scholar

    [13]

    Zhong M, Zhang S, Huang L, You J, Wei Z, Liu X, Li J 2017 Nanoscale 9 3736Google Scholar

    [14]

    Zhong M, Xia Q, Pan L, Liu Y, Chen Y, Deng H X, Li J, Wei Z 2018 Adv. Funct. Mater. 28 1802581Google Scholar

    [15]

    Zhong M, Shen C, Huang L, Deng H X, Shen G, Zheng H, Wei Z, Li J 2019 NPJ 2D Mater. Appl. 3 1Google Scholar

    [16]

    Lv Q, Yan F, Wei X, Wang K 2018 Adv. Opt. Mater. 6 1700490Google Scholar

    [17]

    Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 038504Google Scholar

    [18]

    Wei X, Yan F, Lü Q, Shen C, Wang K 2017 Nanoscale 9 8388Google Scholar

    [19]

    Yan F, Zhao L, Patanè A, Hu P, Wei X, Luo W, Zhang D, Lü Q, Feng Q, Shen C, Chang K, Eaves L, Wang K 2017 Nanotechnology 28 27LT01Google Scholar

    [20]

    Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [21]

    Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2015 Nat. Nanotechnol. 11 42

    [22]

    Cui Y, Zhou Z, Li T, Wang K, Li J, Wei Z 2019 Adv. Funct. Mater. 29 1900040Google Scholar

    [23]

    Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274

    [24]

    Cao Y, Cai K, Hu P, Zhao L, Yan T, Luo W, Zhang X, Wu X, Wang K, Zheng H 2015 Sci. Rep. 5 8130Google Scholar

    [25]

    Wang F, Wang Z, Jiang C, Yin L, Cheng R, Zhan X, Xu K, Wang F, Zhang Y, He J 2017 Small 13 1604298Google Scholar

    [26]

    Yan F, Wei Z, Wei X, Lv Q, Zhu W, Wang K 2018 Small Methods 2 1700349Google Scholar

    [27]

    Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y, Zhai T 2019 InfoMat. 1 54

    [28]

    Zhou Z, Cui Y, Tan P H, Liu X, Wei Z 2019 J. Semicond. 40 061001Google Scholar

    [29]

    Venuthurumilli P K, Ye P D, Xu X 2018 ACS Nano 12 4861Google Scholar

    [30]

    Chen Y, Chen C, Kealhofer R, Liu H, Yuan Z, Jiang L, Suh J, Park J, Ko C, Choe H S, Avila J, Zhong M, Wei Z, Li J, Li S, Gao H, Liu Y, Analytis J, Xia Q, Asensio M C, Wu J 2018 Adv. Mater. 30 1800754Google Scholar

    [31]

    Chu F, Chen M, Wang Y, Xie Y, Liu B, Yang Y, An X, Zhang Y 2018 J. Mater. Chem. C 6 2509Google Scholar

    [32]

    Lin Y C, Komsa H P, Yeh C H, Björkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249Google Scholar

    [33]

    Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, Mion T R, Wang X, Zhou J, Fu Q, Fan H J, Tay B K, Song L, He R-H, Kloc C, Ajayan P M, Liu Z 2016 Adv. Funct. Mater. 26 1169Google Scholar

    [34]

    Zhang E, Wang P, Li Z, Wang H, Song C, Huang C, Chen Z G, Yang L, Zhang K, Lu S, Wang W, Liu S, Fang H, Zhou X, Yan H, Zou J, Wan X, Zhou P, Hu W, Xiu F 2016 ACS Nano 10 8067Google Scholar

    [35]

    Zhou W, Chen J, Gao H, Hu T, Ruan S, Stroppa A, Ren W 2019 Adv. Mater. 31 1804629Google Scholar

    [36]

    Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko V I, Tanigaki K 2014 ACS Nano 8 752Google Scholar

    [37]

    Yang S, Hu C, Wu M, Shen W, Tongay S, Wu K, Wei B, Sun Z, Jiang C, Huang L, Wang Z 2018 ACS Nano 12 8798Google Scholar

    [38]

    Zhang Z, Yang J, Zhang K, Chen S, Mei F, Shen G 2017 J. Mater. Chem. C 5 11288Google Scholar

    [39]

    Tian Z, Guo C, Zhao M, Li R, Xue J 2017 ACS Nano 11 2219Google Scholar

    [40]

    Wang X, Li Y, Huang L, Jiang X W, Jiang L, Dong H, Wei Z, Li J, Hu W 2017 J. Am. Chem. Soc. 139 14976Google Scholar

    [41]

    Yang Y, Liu S C, Wang X, Li Z, Zhang Y, Zhang G, Xue D J, Hu J S 2019 Adv. Funct. Mater. 29 1900411Google Scholar

    [42]

    Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S, Wan L J 2018 J. Am. Chem. Soc. 140 4150Google Scholar

    [43]

    Zhou Z, Long M, Pan L, Wang X, Zhong M, Blei M, Wang J, Fang J, Tongay S, Hu W, Li J, Wei Z 2018 ACS Nano 12 12416Google Scholar

    [44]

    Li L, Wang W, Gong P, Zhu X, Deng B, Shi X, Gao G, Li H, Zhai T 2018 Adv. Mater. 30 e1706771Google Scholar

    [45]

    Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S, Liu K, Li H, Zhai T 2018 Adv. Mater. 30 1804541Google Scholar

    [46]

    Wang X, Wu K, Blei M, Wang Y, Pan L, Zhao K, Shan C, Lei M, Cui Y, Chen B, Wright D, Hu W, Tongay S, Wei Z 2019 Adv. Elect. Mater. 5 1900419Google Scholar

    [47]

    Liu S, Xiao W, Zhong M, Pan L, Wang X, Deng H X, Liu J, Li J, Wei Z 2018 Nanotechnology 29 184002Google Scholar

    [48]

    Hwang E, Sarma S D 2008 Phys. Rev. B 77 115449Google Scholar

    [49]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [50]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R T, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 2260Google Scholar

    [51]

    Hong T, Chamlagain B, Lin W, Chuang H J, Pan M, Zhou Z, Xu Y Q 2014 Nanoscale 6 8978Google Scholar

    [52]

    Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G, Hikita Y, Shen Z, Zhang S C, Chen X, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [53]

    Ye L, Wang P, Luo W, Gong F, Liao L, Liu T, Tong L, Zang J, Xu J, Hu W 2017 Nano Energy 37 53Google Scholar

    [54]

    Bullock J, Amani M, Cho J, Chen Y Z, Ahn G H, Adinolfi V, Shrestha V R, Gao Y, Crozier K B, Chueh Y L 2018 Nat. Photonics 12 601Google Scholar

    [55]

    Amani M, Regan E, Bullock J, Ahn G H, Javey A 2017 ACS Nano 11 11724Google Scholar

    [56]

    Liu B, Köpf M, Abbas A N, Wang X, Guo Q, Jia Y, Xia F, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M, Fang X, Nilges T, Zhou C 2015 Adv. Mater. 27 4423Google Scholar

    [57]

    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J 2014 2D Mater. 1 025001Google Scholar

    [58]

    Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A, Abellán G, Zamora F 2016 Angew. Chem., Int. Ed. 128 14557Google Scholar

    [59]

    Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar

    [60]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [61]

    Zhao Y, Xu K, Pan F, Zhou C, Zhou F, Chai Y 2017 Adv. Funct. Mater. 27 1603484Google Scholar

    [62]

    Zhang X, Lai Z, Ma Q, Zhang H 2018 Chem. Soc. Rev. 47 3301Google Scholar

    [63]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [64]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [65]

    Li S L, Tsukagoshi K, Orgiu E, Samori P 2016 Chem. Soc. Rev. 45 118Google Scholar

    [66]

    Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231Google Scholar

    [67]

    Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C 2015 Nano Lett. 15 5667Google Scholar

    [68]

    Wolverson D, Crampin S, Kazemi A S, Ilie A, Bending S J 2014 ACS Nano 8 11154Google Scholar

    [69]

    Hafeez M, Gan L, Li H, Ma Y, Zhai T 2016 Adv. Mater. 28 8296Google Scholar

    [70]

    Song Q, Wang H, Pan X, Xu X, Wang Y, Li Y, Song F, Wan X, Ye Y, Dai L 2017 Sci. Rep. 7 1758Google Scholar

    [71]

    Song Q, Wang H, Xu X, Pan X, Wang Y, Song F, Wan X, Dai L 2016 RSC Adv. 6 103830Google Scholar

    [72]

    Zhong H X, Gao S, Shi J J, Yang L 2015 Phys. Rev. B 92 115438Google Scholar

    [73]

    Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H, Chen Y L 2017 Nat. Commun. 8 13973Google Scholar

    [74]

    Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud'ko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113Google Scholar

    [75]

    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 7 11038Google Scholar

    [76]

    Ho C H, Huang Y S, Tiong K K, Liao P C 1998 Phys. Rev. B 58 16130Google Scholar

    [77]

    Cui F, Feng Q, Hong J, Wang R, Bai Y, Li X, Liu D, Zhou Y, Liang X, He X, Zhang Z, Liu S, Lei Z, Liu Z, Zhai T, Xu H 2017 Adv. Mater. 29 1705015Google Scholar

    [78]

    Wen W, Zhu Y, Liu X, Hsu H P, Fei Z, Chen Y, Wang X, Zhang M, Lin K H, Huang F S, Wang Y P, Huang Y S, Ho C H, Tan P H, Jin C, Xie L 2017 Small 13 1603788Google Scholar

    [79]

    Liu D, Hong J, Wang X, Li X, Feng Q, Tan C, Zhai T, Ding F, Peng H, Xu H 2018 Adv. Funct. Mater. 28 1804696Google Scholar

    [80]

    Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R, Dresselhaus M S 2016 ACS Nano 10 8964Google Scholar

    [81]

    Niu C, Buhl P M, Bihlmayer G, Wortmann D, Blügel S, Mokrousov Y 2015 Nano Lett. 15 6071Google Scholar

    [82]

    Hu P, Zhang J, Yoon M, Qiao X F, Zhang X, Feng W, Tan P, Zheng W, Liu J, Wang X, Idrobo J C, Geohegan D B, Xiao K 2014 Nano Res. 7 694Google Scholar

    [83]

    Fei R, Li W, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104Google Scholar

    [84]

    Chang C, Wu M, He D, Pei Y, Wu C F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J F, He J, Zhao L D 2018 Science 360 778Google Scholar

    [85]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [86]

    Zhou X, Hu X, Zhou S, Zhang Q, Li H, Zhai T 2017 Adv. Funct. Mater. 27 1703858Google Scholar

    [87]

    Zhou X, Hu X, Jin B, Yu J, Liu K, Li H, Zhai T 2018 Adv. Sci. 5 1800478Google Scholar

    [88]

    Mortazavi B, Rabczuk T 2018 Phys. E: Low-Dimensional Syst. Nanostructures 103 273Google Scholar

    [89]

    Yang S, Yang Y, Wu M, Hu C, Shen W, Gong Y, Huang L, Jiang C, Zhang Y, Ajayan P M 2018 Adv. Funct. Mater. 28 1707379Google Scholar

    [90]

    Li C, Wang S, Li C, Yu T, Jia N, Qiao J, Zhu M, Liu D, Tao X 2018 J. Mater. Chem. C 6 7219Google Scholar

    [91]

    Fan Z, Chang P C, Lu J G, Walter E C, Penner R M, Lin C H, Lee H P 2004 Appl. Phys. Lett. 85 6128Google Scholar

    [92]

    Wang J, Gudiksen M S, Duan X, Cui Y, Lieber C M 2001 Science 293 1455Google Scholar

    [93]

    Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G 2009 Prog. Mater. Sci. 54 1Google Scholar

    [94]

    Gao L, Zeng K, Guo J, Ge C, Du J, Zhao Y, Chen C, Deng H, He Y, Song H, Niu G, Tang J 2016 Nano Lett. 16 7446Google Scholar

    [95]

    Niu Y, Frisenda R, Flores E, Ares J R, Jiao W, Perez de Lara D, Sánchez C, Wang R, Ferrer I J, Castellanos-Gomez A 2018 Adv. Opt. Mater. 6 1800351Google Scholar

    [96]

    Niu S, Joe G, Zhao H, Zhou Y, Orvis T, Huyan H, Salman J, Mahalingam K, Urwin B, Wu J 2018 Nat. Photonics 12 392Google Scholar

    [97]

    Song H, Li T, Zhang J, Zhou Y, Luo J, Chen C, Yang B, Ge C, Wu Y, Tang J 2017 Adv. Mater. 29 1700441Google Scholar

    [98]

    Ma Z, Chai S, Feng Q, Li L, Li X, Huang L, Liu D, Sun J, Jiang R, Zhai T, Xu H 2019 Small 15 1805307Google Scholar

    [99]

    Tian N, Yang Y, Liu D, Liu X, Tan P H, Zhang D, Chang K, Li H, Zhao M, Li J R, Tang X, Zhang D, Zhang Z, Xiao W, Yan H, Zhang Y 2018 ACS Nano 12 1712Google Scholar

    [100]

    Lai J, Liu Y, Ma J, Zhuo X, Peng Y, Lu W, Liu Z, Chen J, Sun D 2018 ACS Nano 12 4055Google Scholar

    [101]

    Liu Y, Gu Q, Peng Y, Qi S, Zhang N, Zhang Y, Ma X, Zhu R, Tong L, Feng J, Liu Z, Chen J H 2018 Adv. Mater. 30 1706402Google Scholar

    [102]

    Qiu G, Du Y, Charnas A, Zhou H, Jin S, Luo Z, Zemlyanov D Y, Xu X, Cheng G J, Ye P D 2016 Nano Lett. 16 7364Google Scholar

    [103]

    Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J B, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203Google Scholar

    [104]

    Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li S S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

    [105]

    Huang L, Li Y, Wei Z, Li J 2015 Sci. Rep. 5 16448Google Scholar

    [106]

    Huang L, Tao L, Gong K, Li Y, Dong H, Wei Z, Li J 2017 Phys. Rev. B 96 205303Google Scholar

    [107]

    Huo N, Kang J, Wei Z, Li S S, Li J, Wei S H 2014 Adv. Funct. Mater. 24 7025Google Scholar

    [108]

    Li B, Huang L, Zhao G, Wei Z, Dong H, Hu W, Wang L W, Li J 2016 Adv. Mater. 28 8271Google Scholar

    [109]

    Li B, Huang L, Zhong M, Huo N, Li Y, Yang S, Fan C, Yang J, Hu W, Wei Z, Li J 2015 ACS Nano 9 1257Google Scholar

    [110]

    Li B, Huang L, Zhong M, Li Y, Wang Y, Li J, Wei Z 2016 Adv. Elect. Mater. 2 1600298Google Scholar

    [111]

    Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958Google Scholar

    [112]

    Li Y, Huang L, Li B, Wang X, Zhou Z, Li J, Wei Z 2016 ACS Nano 10 8938Google Scholar

    [113]

    Li Y, Wang Y, Huang L, Wang X, Li X, Deng H X, Wei Z, Li J 2016 ACS Appl. Mater. Interfaces 8 15574Google Scholar

    [114]

    Li Y, Wei Z, Li J 2015 Appl. Phys. Lett. 107 112103Google Scholar

    [115]

    Liu J, Liu X, Chen Z, Miao L, Liu X, Li B, Tang L, Chen K, Liu Y, Li J, Wei Z, Duan X 2019 Nano Res. 12 463Google Scholar

    [116]

    Liu S, Huang L, Wu K, Wei Z, Huang B, Meng X, Tongay S, Liu J, Li J, Chen H 2016 Appl. Phys. Lett. 109 112102Google Scholar

    [117]

    Pan L, Huang L, Zhong M, Jiang X W, Deng H X, Li J, Xia J B, Wei Z 2018 Nanoscale 10 22196Google Scholar

    [118]

    Wang X, Huang L, Peng Y, Huo N, Wu K, Xia C, Wei Z, Tongay S, Li J 2016 Nano Res. 9 507Google Scholar

    [119]

    Wang Y, Zhou W X, Huang L, Xia C, Tang L M, Deng H X, Li Y, Chen K Q, Li J, Wei Z 2017 2D Mater. 4 025097Google Scholar

    [120]

    Xiong W, Xia C, Du J, Wang T, Zhao X, Peng Y, Wei Z, Li J 2017 Phys. Rev. B 95 245408Google Scholar

    [121]

    Zhong M, Wang X, Liu S, Li B, Huang L, Cui Y, Li J, Wei Z 2017 Nanoscale 9 12364Google Scholar

    [122]

    Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J, Wei Z 2019 Adv. Opt. MaterGoogle Scholar

  • 图 1  黑磷的特性[50] (a)原子结构; (b)典型的偏振拉曼光谱; (c)三层黑磷的能带结构和理论计算的各向异性吸收

    Fig. 1.  Characteristics of black-phosphorus[50](Reproduced with permission, Copyright 2016, American Chemical Society): (a) Atomic structure; (b) typical polarized Raman spectra; (c) band structure of trilayer black-phosphorus and theoretical polarized absorption

    图 2  (a)圆形电极的偏振光探测器的显微镜照片[52]; (b) 沿扶手和锯齿方向400−1700 nm波长范围内黑磷的偏振光电流响应[52]; (c) 黑磷/MoS2异质结偏振光探测器[54]; (d)等离激元修饰的黑磷偏振光探测器[29]

    Fig. 2.  (a) Optical image of the polarized-light detector with the circular electrode, (b) polarized photoresponse along armchair and zigzag orientations under 400−1700 nm illumination of black-phosphorus (reproduced with permission[52], Copyright 2015, Springer Nature); (c) polarized-light detector based on the black-phosphorus/MoS2 heterojunction(reproduced with permission[54], Copyright 2018, Springer Nature); (d) polarized-light detectorenhanced by the plasmonic structure(reproduced with permission[29], Copyright 2018, American Chemical Society).

    图 3  原子结构 (a) ReS2[32]; (b) WTe2[71]

    Fig. 3.  Crystal structures: (a) ReS2(reproduced with permission[32], Copyright 2015, American Chemical Society); (b) WTe2(reproduced with permission[71], Copyright 2016, RSC Publishing).

    图 4  (a)偏振光电测试示意图[34]; (b) 极坐标下ReS2的偏振光吸收和光电流[33]; (c) ReS2/ReSe2异质结偏振光响应[79]; (d) WTe2偏振光探测性能[35]

    Fig. 4.  (a) Schematic of polarized photoelectric test(reproduced with permission[34], Copyright 2016, American Chemical Society); (b) photocurrent and absorption of ReS2 in the polar coordinates(Reproduced with permission[33], Copyright 2016, John Wiley and Sons); (c) polarized photoresponse of ReS2/ReSe2 heterojunction(reproduced with permission[79], Copyright 2018, John Wiley and Sons); (d) polarized photoresponse of WTe2(reproduced with permission[35], Copyright 2018, John Wiley and Sons).

    图 5  (a) GaTe的晶体结构[80]; (b) TlSe的STEM图像[37]; (c) 基于TlSe的偏振光探测器的角分辨光电流[37]

    Fig. 5.  (a) Crystal structure of GaTe(reproduced with permission[80], Copyright 2016, American Chemical Society); (b) STEM image of TlSe and (c) photocurrent of the polarized photodetector based on TlSe (reproduced with permission[37], Copyright 2018, American Chemical Society).

    图 6  (a) MX晶体的原子结构[83]; (b) GeS2晶体的原子结构[41]; (c) SnS沿不同方向的光电流响应速度[38]; (d) GeSe2对450 nm偏振光响应[42]

    Fig. 6.  (a) Crystal structure of MX (reproduced with permission[83], Copyright 2015, AIP Publishing); (b) crystal structure of GeS2(reproduced with permission[41], Copyright 2019, John Wiley and Sons); (c) response times of SnS along different directions(reproduced with permission[38], Copyright 2017, Royal Society of Chemistry); (d) polarized photocurrent of GeSe2 under the 450 nm illumination(reproduced with permission[42], Copyright 2018, American Chemical Society).

    图 7  (a) GeAs, SiAs, GeP和SiP的晶体结构; (b) GeAs2的晶体结构[45]

    Fig. 7.  (a) Crystal structures of GeAs, SiAs, GeP, and Si; (b) crystal structures of GeAs2 (reproduced with permission[45], Copyright 2018, John Wiley and Sons).

    图 8  (a) ZrS3的光学图像[46]; (b) ZrS3的晶体结构[46]; (c) KP15原子结构示意图[99]

    Fig. 8.  (a) Optical image of ZrS3 and (b) crystal structure of ZrS3(reproduced with permission[46], Copyright 2019, John Wiley and Sons); (c) crystal structure of KP15(reproduced with permission[99], Copyright 2018, American Chemical Society).

    图 9  (a) GeSe的偏振光吸收谱[40]; (b) 不同方向的偏振光下准一维ZrS3纳米带的吸收光谱[46]; (c)准一维ZrS3纳米带在450 nm和532 nm的激光下的偏振光电流[46]

    Fig. 9.  (a) Polarization-resolved absorption spectra of GeSe(reproduced with permission[40], Copyright 2017, American Chemical Society); (b) absorption spectra of ZrS3 nanoribbon under polarized light in different directions and (c) polarized photocurrent of ZrS3 nanoribbon under 450 nm and 532 nm laser illumination(reproduced with permission[46], Copyright 2019, John Wiley and Sons).

    图 10  (a) GeSe对808 nm光照的偏振光电流[40]; (b) GeAs偏振光吸收光谱图[43]; (c) GeAs在520 nm和830 nm偏振光照射下的光响应极坐标图[43]; (d) GeAs 30 mV栅压下角度依赖的空间分辨光响应分布图[43]

    Fig. 10.  (a) Polarized photocurrent of GeSe under the 808 nm laser illumination(reproduced with permission[40], Copyright 2017, American Chemical Society); (b) polarization-resolved absorption spectra of GeAs, (c) polarization-sensitive photocurrents plotted with the linear-polarization laser of 520 and 830 nm of GeAs in the polar coordinates, and (d) polarization-dependent photocurrent mapping of GeAs device under 30 mV gate voltage and the linear-polarization laser (reproduced with permission[43], Copyright 2018, American Chemical Society).

    表 1  低维半导体材料的各向异性光电性能

    Table 1.  Anisotropic optoelectronic properties of low-dimensional semiconductors.

    禁带宽度/eV载流子迁移率/cm2·V–1·s–1光响应强度二向色性比值参考文献
    黑磷0.3 (体材料)
    1.5 (单层)
    1000 (空穴, x)600 (空穴, y)14.2 mA/W8.7 (1550 nm)[29]
    黑砷0.3 (体材料)1—
    1.5 (单层)
    376.7 (电子, zigzag)1.5 (电子, armchair)
    60.7 (空穴, zigzag)10606 (空穴, armchair)
    [14,30]
    锑烯1.3—1.7100 (3.2 eV)[31]
    ReS21.4 (体材料)23.1 (电子, DS-chains方向)14.8 (电子, 垂直DS-chains方向)103 A·W–1 (532 nm)~ 4[32,33]
    ReSe21.17—1.2101.5 mA·W–1 (633 nm)2 (633 nm)[34]
    MoTe2外尔半金属110 mA·W–1 (1064 nm)[10]
    WTe2外尔半金属4.9 (514.5 nm)[35]
    GaTe1.70.2 (空穴)104 A·W–1 (532 nm)[36]
    TlSe0.731.48 A·W–1 (633 nm)2.56 (633 nm)[37]
    SnS1.320 (zisgzag)μzigzagarmchair ≈ 1.7365 A·W–1 (808 nm)1.49 (808 nm)[38,39]
    GeSe1.34 (体材料)
    1.7 (单层)
    4.25 A·W–12.16 (808 nm)[40]
    GeS2> 32.1 (325 nm)[41]
    GeSe22.743.4 (450 nm)[42]
    GeAs0.83 (体材料)
    2.07 (单层)
    4.4 (808 nm)[43]
    GeP0.51 (体材料)
    1.68 (单层)
    电导率比值: 1.523.11—0.43 A·W–11.83 (532 nm)[44]
    GeAs20.98 (体材料)
    1.62 (单层)
    2.5 (空穴, a)1.3 (空穴, b)2[45]
    ZrS31.79 (体材料)230 m A·W–1 (520 nm)2.55 (520 nm)[46]
    TiS31.132500 A·W–1 (808 nm)4[47]
    α-MoO32.70.06–0.09 (电子, b)0.03—0.04 (电子, c)67.9 A·W–15 (254 nm)[12]
    下载: 导出CSV
  • [1]

    Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453Google Scholar

    [2]

    Doradla P, Alavi K, Joseph C S, Giles R H 2013 J. Biomed. Opt. 18 090504

    [3]

    Duan J, Fu Q, Mo C, Zhu Y, Liu D 2013 ISPDI 2013—Fifth International Symposium on Photoelectronic Detection and Imaging Beijing, China, August 21, 2013 p890813

    [4]

    李军伟, 陈伟力, 徐文斌, 逯祎 2017 红外偏振成像技术与应用(北京: 科学出版社) 第2页

    Li J, Chen W, Xu W, Lu Y 2017 Infrared Polarization Imaging Technology and Application (Vol. 1) (Beijing: Science Press) p2 (in Chinese)

    [5]

    Li L, Xiong D, Wen J, Li N, Zhu Z 2016 Infrared Phys. Technol. 79 45Google Scholar

    [6]

    Li Q, Li Z, Li N, Chen X, Chen P, Shen X, Lu W 2014 Sci. Rep. 4 6332

    [7]

    Sun R, Min L, Huang L 2014 Asia Communications and Photonics Conference 2014 Shanghai, China, November 11, 2014 pATh3A.34

    [8]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509Google Scholar

    [9]

    Cui Y, Li B, Li J, Wei Z 2018 Sci. China: Phys. Mech. Astron. 61 016801Google Scholar

    [10]

    Zhang K, Fang X, Wang Y, Wan Y, Song Q, Zhai W, Li Y, Ran G, Ye Y, Dai L 2017 ACS Appl. Mater. Interfaces 9 5392Google Scholar

    [11]

    Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X, Wang K 2015 Adv. Opt. Mater. 3 1418Google Scholar

    [12]

    Zhong M, Zhou K, Wei Z, Li Y, Li T, Dong H, Jiang L, Li J, Hu W 2018 2D Mater. 5 035033Google Scholar

    [13]

    Zhong M, Zhang S, Huang L, You J, Wei Z, Liu X, Li J 2017 Nanoscale 9 3736Google Scholar

    [14]

    Zhong M, Xia Q, Pan L, Liu Y, Chen Y, Deng H X, Li J, Wei Z 2018 Adv. Funct. Mater. 28 1802581Google Scholar

    [15]

    Zhong M, Shen C, Huang L, Deng H X, Shen G, Zheng H, Wei Z, Li J 2019 NPJ 2D Mater. Appl. 3 1Google Scholar

    [16]

    Lv Q, Yan F, Wei X, Wang K 2018 Adv. Opt. Mater. 6 1700490Google Scholar

    [17]

    Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 038504Google Scholar

    [18]

    Wei X, Yan F, Lü Q, Shen C, Wang K 2017 Nanoscale 9 8388Google Scholar

    [19]

    Yan F, Zhao L, Patanè A, Hu P, Wei X, Luo W, Zhang D, Lü Q, Feng Q, Shen C, Chang K, Eaves L, Wang K 2017 Nanotechnology 28 27LT01Google Scholar

    [20]

    Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [21]

    Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2015 Nat. Nanotechnol. 11 42

    [22]

    Cui Y, Zhou Z, Li T, Wang K, Li J, Wei Z 2019 Adv. Funct. Mater. 29 1900040Google Scholar

    [23]

    Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274

    [24]

    Cao Y, Cai K, Hu P, Zhao L, Yan T, Luo W, Zhang X, Wu X, Wang K, Zheng H 2015 Sci. Rep. 5 8130Google Scholar

    [25]

    Wang F, Wang Z, Jiang C, Yin L, Cheng R, Zhan X, Xu K, Wang F, Zhang Y, He J 2017 Small 13 1604298Google Scholar

    [26]

    Yan F, Wei Z, Wei X, Lv Q, Zhu W, Wang K 2018 Small Methods 2 1700349Google Scholar

    [27]

    Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y, Zhai T 2019 InfoMat. 1 54

    [28]

    Zhou Z, Cui Y, Tan P H, Liu X, Wei Z 2019 J. Semicond. 40 061001Google Scholar

    [29]

    Venuthurumilli P K, Ye P D, Xu X 2018 ACS Nano 12 4861Google Scholar

    [30]

    Chen Y, Chen C, Kealhofer R, Liu H, Yuan Z, Jiang L, Suh J, Park J, Ko C, Choe H S, Avila J, Zhong M, Wei Z, Li J, Li S, Gao H, Liu Y, Analytis J, Xia Q, Asensio M C, Wu J 2018 Adv. Mater. 30 1800754Google Scholar

    [31]

    Chu F, Chen M, Wang Y, Xie Y, Liu B, Yang Y, An X, Zhang Y 2018 J. Mater. Chem. C 6 2509Google Scholar

    [32]

    Lin Y C, Komsa H P, Yeh C H, Björkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249Google Scholar

    [33]

    Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, Mion T R, Wang X, Zhou J, Fu Q, Fan H J, Tay B K, Song L, He R-H, Kloc C, Ajayan P M, Liu Z 2016 Adv. Funct. Mater. 26 1169Google Scholar

    [34]

    Zhang E, Wang P, Li Z, Wang H, Song C, Huang C, Chen Z G, Yang L, Zhang K, Lu S, Wang W, Liu S, Fang H, Zhou X, Yan H, Zou J, Wan X, Zhou P, Hu W, Xiu F 2016 ACS Nano 10 8067Google Scholar

    [35]

    Zhou W, Chen J, Gao H, Hu T, Ruan S, Stroppa A, Ren W 2019 Adv. Mater. 31 1804629Google Scholar

    [36]

    Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko V I, Tanigaki K 2014 ACS Nano 8 752Google Scholar

    [37]

    Yang S, Hu C, Wu M, Shen W, Tongay S, Wu K, Wei B, Sun Z, Jiang C, Huang L, Wang Z 2018 ACS Nano 12 8798Google Scholar

    [38]

    Zhang Z, Yang J, Zhang K, Chen S, Mei F, Shen G 2017 J. Mater. Chem. C 5 11288Google Scholar

    [39]

    Tian Z, Guo C, Zhao M, Li R, Xue J 2017 ACS Nano 11 2219Google Scholar

    [40]

    Wang X, Li Y, Huang L, Jiang X W, Jiang L, Dong H, Wei Z, Li J, Hu W 2017 J. Am. Chem. Soc. 139 14976Google Scholar

    [41]

    Yang Y, Liu S C, Wang X, Li Z, Zhang Y, Zhang G, Xue D J, Hu J S 2019 Adv. Funct. Mater. 29 1900411Google Scholar

    [42]

    Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S, Wan L J 2018 J. Am. Chem. Soc. 140 4150Google Scholar

    [43]

    Zhou Z, Long M, Pan L, Wang X, Zhong M, Blei M, Wang J, Fang J, Tongay S, Hu W, Li J, Wei Z 2018 ACS Nano 12 12416Google Scholar

    [44]

    Li L, Wang W, Gong P, Zhu X, Deng B, Shi X, Gao G, Li H, Zhai T 2018 Adv. Mater. 30 e1706771Google Scholar

    [45]

    Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S, Liu K, Li H, Zhai T 2018 Adv. Mater. 30 1804541Google Scholar

    [46]

    Wang X, Wu K, Blei M, Wang Y, Pan L, Zhao K, Shan C, Lei M, Cui Y, Chen B, Wright D, Hu W, Tongay S, Wei Z 2019 Adv. Elect. Mater. 5 1900419Google Scholar

    [47]

    Liu S, Xiao W, Zhong M, Pan L, Wang X, Deng H X, Liu J, Li J, Wei Z 2018 Nanotechnology 29 184002Google Scholar

    [48]

    Hwang E, Sarma S D 2008 Phys. Rev. B 77 115449Google Scholar

    [49]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [50]

    Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R T, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 2260Google Scholar

    [51]

    Hong T, Chamlagain B, Lin W, Chuang H J, Pan M, Zhou Z, Xu Y Q 2014 Nanoscale 6 8978Google Scholar

    [52]

    Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G, Hikita Y, Shen Z, Zhang S C, Chen X, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [53]

    Ye L, Wang P, Luo W, Gong F, Liao L, Liu T, Tong L, Zang J, Xu J, Hu W 2017 Nano Energy 37 53Google Scholar

    [54]

    Bullock J, Amani M, Cho J, Chen Y Z, Ahn G H, Adinolfi V, Shrestha V R, Gao Y, Crozier K B, Chueh Y L 2018 Nat. Photonics 12 601Google Scholar

    [55]

    Amani M, Regan E, Bullock J, Ahn G H, Javey A 2017 ACS Nano 11 11724Google Scholar

    [56]

    Liu B, Köpf M, Abbas A N, Wang X, Guo Q, Jia Y, Xia F, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M, Fang X, Nilges T, Zhou C 2015 Adv. Mater. 27 4423Google Scholar

    [57]

    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J 2014 2D Mater. 1 025001Google Scholar

    [58]

    Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A, Abellán G, Zamora F 2016 Angew. Chem., Int. Ed. 128 14557Google Scholar

    [59]

    Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar

    [60]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [61]

    Zhao Y, Xu K, Pan F, Zhou C, Zhou F, Chai Y 2017 Adv. Funct. Mater. 27 1603484Google Scholar

    [62]

    Zhang X, Lai Z, Ma Q, Zhang H 2018 Chem. Soc. Rev. 47 3301Google Scholar

    [63]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [64]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [65]

    Li S L, Tsukagoshi K, Orgiu E, Samori P 2016 Chem. Soc. Rev. 45 118Google Scholar

    [66]

    Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231Google Scholar

    [67]

    Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C 2015 Nano Lett. 15 5667Google Scholar

    [68]

    Wolverson D, Crampin S, Kazemi A S, Ilie A, Bending S J 2014 ACS Nano 8 11154Google Scholar

    [69]

    Hafeez M, Gan L, Li H, Ma Y, Zhai T 2016 Adv. Mater. 28 8296Google Scholar

    [70]

    Song Q, Wang H, Pan X, Xu X, Wang Y, Li Y, Song F, Wan X, Ye Y, Dai L 2017 Sci. Rep. 7 1758Google Scholar

    [71]

    Song Q, Wang H, Xu X, Pan X, Wang Y, Song F, Wan X, Dai L 2016 RSC Adv. 6 103830Google Scholar

    [72]

    Zhong H X, Gao S, Shi J J, Yang L 2015 Phys. Rev. B 92 115438Google Scholar

    [73]

    Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H, Chen Y L 2017 Nat. Commun. 8 13973Google Scholar

    [74]

    Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud'ko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113Google Scholar

    [75]

    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 7 11038Google Scholar

    [76]

    Ho C H, Huang Y S, Tiong K K, Liao P C 1998 Phys. Rev. B 58 16130Google Scholar

    [77]

    Cui F, Feng Q, Hong J, Wang R, Bai Y, Li X, Liu D, Zhou Y, Liang X, He X, Zhang Z, Liu S, Lei Z, Liu Z, Zhai T, Xu H 2017 Adv. Mater. 29 1705015Google Scholar

    [78]

    Wen W, Zhu Y, Liu X, Hsu H P, Fei Z, Chen Y, Wang X, Zhang M, Lin K H, Huang F S, Wang Y P, Huang Y S, Ho C H, Tan P H, Jin C, Xie L 2017 Small 13 1603788Google Scholar

    [79]

    Liu D, Hong J, Wang X, Li X, Feng Q, Tan C, Zhai T, Ding F, Peng H, Xu H 2018 Adv. Funct. Mater. 28 1804696Google Scholar

    [80]

    Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R, Dresselhaus M S 2016 ACS Nano 10 8964Google Scholar

    [81]

    Niu C, Buhl P M, Bihlmayer G, Wortmann D, Blügel S, Mokrousov Y 2015 Nano Lett. 15 6071Google Scholar

    [82]

    Hu P, Zhang J, Yoon M, Qiao X F, Zhang X, Feng W, Tan P, Zheng W, Liu J, Wang X, Idrobo J C, Geohegan D B, Xiao K 2014 Nano Res. 7 694Google Scholar

    [83]

    Fei R, Li W, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104Google Scholar

    [84]

    Chang C, Wu M, He D, Pei Y, Wu C F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J F, He J, Zhao L D 2018 Science 360 778Google Scholar

    [85]

    Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [86]

    Zhou X, Hu X, Zhou S, Zhang Q, Li H, Zhai T 2017 Adv. Funct. Mater. 27 1703858Google Scholar

    [87]

    Zhou X, Hu X, Jin B, Yu J, Liu K, Li H, Zhai T 2018 Adv. Sci. 5 1800478Google Scholar

    [88]

    Mortazavi B, Rabczuk T 2018 Phys. E: Low-Dimensional Syst. Nanostructures 103 273Google Scholar

    [89]

    Yang S, Yang Y, Wu M, Hu C, Shen W, Gong Y, Huang L, Jiang C, Zhang Y, Ajayan P M 2018 Adv. Funct. Mater. 28 1707379Google Scholar

    [90]

    Li C, Wang S, Li C, Yu T, Jia N, Qiao J, Zhu M, Liu D, Tao X 2018 J. Mater. Chem. C 6 7219Google Scholar

    [91]

    Fan Z, Chang P C, Lu J G, Walter E C, Penner R M, Lin C H, Lee H P 2004 Appl. Phys. Lett. 85 6128Google Scholar

    [92]

    Wang J, Gudiksen M S, Duan X, Cui Y, Lieber C M 2001 Science 293 1455Google Scholar

    [93]

    Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G 2009 Prog. Mater. Sci. 54 1Google Scholar

    [94]

    Gao L, Zeng K, Guo J, Ge C, Du J, Zhao Y, Chen C, Deng H, He Y, Song H, Niu G, Tang J 2016 Nano Lett. 16 7446Google Scholar

    [95]

    Niu Y, Frisenda R, Flores E, Ares J R, Jiao W, Perez de Lara D, Sánchez C, Wang R, Ferrer I J, Castellanos-Gomez A 2018 Adv. Opt. Mater. 6 1800351Google Scholar

    [96]

    Niu S, Joe G, Zhao H, Zhou Y, Orvis T, Huyan H, Salman J, Mahalingam K, Urwin B, Wu J 2018 Nat. Photonics 12 392Google Scholar

    [97]

    Song H, Li T, Zhang J, Zhou Y, Luo J, Chen C, Yang B, Ge C, Wu Y, Tang J 2017 Adv. Mater. 29 1700441Google Scholar

    [98]

    Ma Z, Chai S, Feng Q, Li L, Li X, Huang L, Liu D, Sun J, Jiang R, Zhai T, Xu H 2019 Small 15 1805307Google Scholar

    [99]

    Tian N, Yang Y, Liu D, Liu X, Tan P H, Zhang D, Chang K, Li H, Zhao M, Li J R, Tang X, Zhang D, Zhang Z, Xiao W, Yan H, Zhang Y 2018 ACS Nano 12 1712Google Scholar

    [100]

    Lai J, Liu Y, Ma J, Zhuo X, Peng Y, Lu W, Liu Z, Chen J, Sun D 2018 ACS Nano 12 4055Google Scholar

    [101]

    Liu Y, Gu Q, Peng Y, Qi S, Zhang N, Zhang Y, Ma X, Zhu R, Tong L, Feng J, Liu Z, Chen J H 2018 Adv. Mater. 30 1706402Google Scholar

    [102]

    Qiu G, Du Y, Charnas A, Zhou H, Jin S, Luo Z, Zemlyanov D Y, Xu X, Cheng G J, Ye P D 2016 Nano Lett. 16 7364Google Scholar

    [103]

    Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J B, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203Google Scholar

    [104]

    Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li S S 2015 J. Phys. Chem. Lett. 6 2483Google Scholar

    [105]

    Huang L, Li Y, Wei Z, Li J 2015 Sci. Rep. 5 16448Google Scholar

    [106]

    Huang L, Tao L, Gong K, Li Y, Dong H, Wei Z, Li J 2017 Phys. Rev. B 96 205303Google Scholar

    [107]

    Huo N, Kang J, Wei Z, Li S S, Li J, Wei S H 2014 Adv. Funct. Mater. 24 7025Google Scholar

    [108]

    Li B, Huang L, Zhao G, Wei Z, Dong H, Hu W, Wang L W, Li J 2016 Adv. Mater. 28 8271Google Scholar

    [109]

    Li B, Huang L, Zhong M, Huo N, Li Y, Yang S, Fan C, Yang J, Hu W, Wei Z, Li J 2015 ACS Nano 9 1257Google Scholar

    [110]

    Li B, Huang L, Zhong M, Li Y, Wang Y, Li J, Wei Z 2016 Adv. Elect. Mater. 2 1600298Google Scholar

    [111]

    Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958Google Scholar

    [112]

    Li Y, Huang L, Li B, Wang X, Zhou Z, Li J, Wei Z 2016 ACS Nano 10 8938Google Scholar

    [113]

    Li Y, Wang Y, Huang L, Wang X, Li X, Deng H X, Wei Z, Li J 2016 ACS Appl. Mater. Interfaces 8 15574Google Scholar

    [114]

    Li Y, Wei Z, Li J 2015 Appl. Phys. Lett. 107 112103Google Scholar

    [115]

    Liu J, Liu X, Chen Z, Miao L, Liu X, Li B, Tang L, Chen K, Liu Y, Li J, Wei Z, Duan X 2019 Nano Res. 12 463Google Scholar

    [116]

    Liu S, Huang L, Wu K, Wei Z, Huang B, Meng X, Tongay S, Liu J, Li J, Chen H 2016 Appl. Phys. Lett. 109 112102Google Scholar

    [117]

    Pan L, Huang L, Zhong M, Jiang X W, Deng H X, Li J, Xia J B, Wei Z 2018 Nanoscale 10 22196Google Scholar

    [118]

    Wang X, Huang L, Peng Y, Huo N, Wu K, Xia C, Wei Z, Tongay S, Li J 2016 Nano Res. 9 507Google Scholar

    [119]

    Wang Y, Zhou W X, Huang L, Xia C, Tang L M, Deng H X, Li Y, Chen K Q, Li J, Wei Z 2017 2D Mater. 4 025097Google Scholar

    [120]

    Xiong W, Xia C, Du J, Wang T, Zhao X, Peng Y, Wei Z, Li J 2017 Phys. Rev. B 95 245408Google Scholar

    [121]

    Zhong M, Wang X, Liu S, Li B, Huang L, Cui Y, Li J, Wei Z 2017 Nanoscale 9 12364Google Scholar

    [122]

    Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J, Wei Z 2019 Adv. Opt. MaterGoogle Scholar

  • [1] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [2] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [3] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [4] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [5] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [6] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [7] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [8] 罗实, 魏大鹏, 魏大程. 二维材料在生物传感器中的应用. 物理学报, 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [9] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [10] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [11] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [12] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [13] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [14] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [15] 王聪, 刘杰, 张晗. 基于二维纳米材料的超快脉冲激光器. 物理学报, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [16] 马明磊, 吴坚, 杨沐, 宁永强, 商广义. 基于两端自发荧光辐射的808nm半导体激光器增益偏振特性实验表征和能带分析. 物理学报, 2013, 62(17): 174209. doi: 10.7498/aps.62.174209
    [17] 厉以宇, 王媛媛, 陈浩, 朱德喜, 胡川, 瞿佳. 基于二维结构薄膜的偏振选择相位光栅的研究. 物理学报, 2010, 59(7): 5110-5115. doi: 10.7498/aps.59.5110
    [18] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究. 物理学报, 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [19] 沈晓鹏, 韩 奎, 沈义峰, 李海鹏, 肖正伟, 郑 健. 二维光子晶体中与电磁波偏振态无关的自准直. 物理学报, 2006, 55(6): 2760-2764. doi: 10.7498/aps.55.2760
    [20] 李蓉, 任坤, 任晓斌, 周静, 刘大禾. 一维光子晶体带隙结构对不同偏振态的角度和波长响应. 物理学报, 2004, 53(8): 2520-2525. doi: 10.7498/aps.53.2520
计量
  • 文章访问数:  22764
  • PDF下载量:  1126
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-29
  • 修回日期:  2019-08-12
  • 上网日期:  2019-08-19
  • 刊出日期:  2019-08-20

/

返回文章
返回