-
偏振光探测在遥感成像、环境监测、医疗检测和军事设备等领域都具有很好的应用价值, 目前已经有一系列偏振探测和成像产品. 随着信息器件进一步小型化、集成化, 基于新型低维材料的偏振光探测器可以直接利用材料本征的各向异性对偏振光进行感知, 在未来偏振光探测领域有很好的应用前景. 很多二维/一维半导体材料, 例如: 黑磷, ReS2, GaTe, GeSe, GeAs及ZrS3等, 都具有较强的本征面内各向异性, 可以用于高性能偏振光探测器. 基于此类低维半导体材料设计的不同结构类型的偏振光探测器已经覆盖了紫外、可见以及红外等多个波段. 本文总结了近年来相关领域的研究进展和我们课题组的一些工作.Polarized photodetection technology has good application value in the fields of remote sensing imaging, environmental monitoring, medical detection and military equipment. Polarized photodetectors based on low-dimensional materials can use the natural anisotropy of materials to detect polarized information. Some two-dimensional materials have strong in-plane anisotropy due to their low-symmetrical crystal structure, such as black-phosphorus, black-arsenic, ReS2, GaTe, GeSe, GeAs, and TiS3. These anisotropic two-dimensional materials are appropriate for the working medium of polarized photodetectors. Numerous researchs focused on polarized photodetectors with different materials and device structures and our works are introduced. Polarized photodetectors based on such low-dimensional materials have realized a broadband photodetection, including ultraviolet, visible, and infrared lights.
-
Keywords:
- photodetectors /
- polarization /
- low-dimensional semiconductors /
- two-dimensional
1. 引 言
光波包含了强度、频率、相位及偏振的信息, 一般对光的强度和频率信息利用较多. 偏振也是一种非常重要的光学信息, 对于自然界中的任何物体, 光在经过反射和透射之后, 都会包含物体自身特性所决定的偏振光谱信息. 基于偏振光的探测器在遥感成像[1]、环境监测、医疗检测[2]和军事设备[3]等方面都有很好的应用前景. 从20世纪70年代开始, 偏振光探测器技术已经开始不断地发展和改进, 先后经历了旋转偏振片型、分振幅型、液晶调制/声光可调滤波型、分波前/分孔径型、通道调制型及微纳器件型等多种类型的演变和改进[4]. 目前, 光电探测器都向着小型化、模块化的高度集成器件方向发展. 要实现高度集成化的偏振光探测器, 其中一个方法是利用有偏振效应的光学介质覆盖在光强探测器的表面, 对入射光的偏振状态先进行选择. 利用等离激元微腔的偏振选择和量子阱及量子级联探测器的光跃迁选择, 可以实现具有较高消光比的偏振光探测器[5,6]. 超材料结构也可以用来对入射光进行偏振状态的选择, 一种双开口的金属谐振环阵列结构已经被验证只能允许特定偏振方向的光透过[7], 将这种结构集成在光强探测器上就可以实现对偏振光的探测. 另一个更加直接地实现高度集成偏振光探测器的方法是使用本身就具有偏振光敏感性的半导体材料作为探测器的工作介质. 低维半导体材料在结构上具有明显的各向异性, 特别适合用作偏振光探测器的工作介质, 其中二维材料又是一类很具代表性的低维半导体材料.
自2004年发现石墨烯以来, 以石墨烯为代表的二维材料就成为一个热门的研究方向[8]. 二维材料具有层状的原子结构, 在层内原子通过共价键紧密结合在一起, 而层与层之间是通过较弱的范德瓦尔斯力连接. 这一特殊的原子结构很容易制备获得原子级厚度的材料[9]. 二维材料的结构特征使其在超薄器件、超高集成度器件、柔性和可穿戴设备等领域都有非常好的应用前景. 近十年, 大量的研究工作致力于二维材料在各种场景中的应用开发, 其中一系列性能优异的二维半导体光电探测器被报道[10—15], 也有通过异质结的构建来大幅提升其光电性能的[16—21]. 很多综述文章对基于低维材料的光电器件进行了全面系统地总结介绍[22—26], 本文着重介绍其在偏振光电探测器上的应用.
很多低维材料都具有层内的各向异性[27,28], 例如黑磷, 黑砷, ReS2, ReSe2, GaTe, SnSe, GeAs, ZrTe3, MoO3和TaIrTe4等. 理论上来说, 具有层内结构各向异性的二维材料都拥有对偏振光的敏感性, 可以用于偏振光探测器. 低维半导体材料除了结构带来的各向异性, 其本身的优异光电性能保证了其在偏振光探测器上的应用前景. 目前, 基于低维半导体材料的偏振光探测器受到越来越多学者的关注, 本文对近年来这一领域内最新的研究成果和进展进行归纳总结.
2. 各向异性特征
在介绍低维半导体偏振探测器的应用前, 我们先对低维半导体本征的一些各向异性特征进行简短的介绍, 主要包括: 拉曼光谱学、光致发光谱、光学吸收和电输运. 偏振拉曼测试是低维各向异性材料的重要表征手段, 而且可以保护材料的结构不会在测试中被破坏. 结合实验的偏振拉曼测试和理论计算的拉曼光谱特征可以很容易判断材料的晶格取向, 而不必做一些具有破坏性的测试来获取晶格取向. 同时偏振拉曼光谱反映了材料晶体结构的各向异性, 对偏振光探测器的设计有重要的指导作用. 偏振光致发光谱反映了材料的各向异性的光学特征, 也是低维材料重要的各向异性特征. 利用材料的本征各向异性来设计偏振光探测器的性能往往由材料的各向异性光吸收特征所决定, 材料对不同方向偏振光的吸收能力和基于其设计偏振光探测器的各向异性探测特征有很高的契合度, 如果对某个方向的偏振光有很强的吸收其响应的光电流也会很大. 各向异性的低维半导体材料在不同方向电子的有效质量不同, 导致其电学输运特征也具方向依赖性. 一般利用环绕一周的多个电极对来测试材料的各向异性电学输运. 在设计偏振光探测器时, 选择合适的沿晶体结构的电极方向有利于获得更强的光电响应强度和更大的偏振开关比. 对于晶体结构相似的各向异性低维半导体材料往往拥有类似的各向异性特征, 比如在相同的晶向拥有最高的光吸收系数或者载流子迁移率. 表1对下文中将出现的各种低维半导体材料的各向异性光电性能进行了总结. 接下来我们将拥有相似晶体结构的各向异性低维半导体材料归在一起进行详细的偏振光探测介绍.
表 1 低维半导体材料的各向异性光电性能Table 1. Anisotropic optoelectronic properties of low-dimensional semiconductors.禁带宽度/eV 载流子迁移率/cm2·V–1·s–1 光响应强度 二向色性比值 参考文献 黑磷 0.3 (体材料)1.5 (单层) 1000 (空穴, x)600 (空穴, y) 14.2 mA/W 8.7 (1550 nm) [29] 黑砷 0.3 (体材料)1—1.5 (单层) 376.7 (电子, zigzag)1.5 (电子, armchair)60.7 (空穴, zigzag)10606 (空穴, armchair) [14,30] 锑烯 1.3—1.7 100 (3.2 eV) [31] ReS2 1.4 (体材料) 23.1 (电子, DS-chains方向)14.8 (电子, 垂直DS-chains方向) 103 A·W–1 (532 nm) ~ 4 [32,33] ReSe2 1.17—1.2 10 1.5 mA·W–1 (633 nm) 2 (633 nm) [34] MoTe2 外尔半金属 110 mA·W–1 (1064 nm) [10] WTe2 外尔半金属 4.9 (514.5 nm) [35] GaTe 1.7 0.2 (空穴) 104 A·W–1 (532 nm) [36] TlSe 0.73 1.48 A·W–1 (633 nm) 2.56 (633 nm) [37] SnS 1.3 20 (zisgzag)μzigzag/μarmchair ≈ 1.7 365 A·W–1 (808 nm) 1.49 (808 nm) [38,39] GeSe 1.34 (体材料)1.7 (单层) 4.25 A·W–1 2.16 (808 nm) [40] GeS2 > 3 2.1 (325 nm) [41] GeSe2 2.74 3.4 (450 nm) [42] GeAs 0.83 (体材料)2.07 (单层) 4.4 (808 nm) [43] GeP 0.51 (体材料)1.68 (单层) 电导率比值: 1.52 3.11—0.43 A·W–1 1.83 (532 nm) [44] GeAs2 0.98 (体材料)1.62 (单层) 2.5 (空穴, a)1.3 (空穴, b) 2 [45] ZrS3 1.79 (体材料) 230 m A·W–1 (520 nm) 2.55 (520 nm) [46] TiS3 1.13 2500 A·W–1 (808 nm) 4 [47] α-MoO3 2.7 0.06–0.09 (电子, b)0.03—0.04 (电子, c) 67.9 A·W–1 5 (254 nm) [12] 3. 偏振光探测
3.1 黑 磷
石墨烯作为最典型的二维材料拥有非常高的迁移率[48], 然而石墨烯的零带隙能带结构限制了它作为器件核心输运层的应用前景. 2014年, 张远波课题组[49]发现了另外一种具有超高迁移率而且拥有本征带隙能带结构的二维半导体黑磷. 黑磷在室温下载流子迁移率高达1000 cm2·V–1·s–1, 单层情况下在第一布里渊区Γ点拥有大小约2 eV的直接带隙, 对于体材料其直接带隙转移到Z点为0.3 eV左右[49]. 如图1(a)所示, 黑磷的层内一个原子通过共价键和最近邻的三个磷原子连结在一起, 形成褶皱的蜂窝状结构. 图1(b)是黑磷的偏振拉曼光谱[50]. 由于黑磷的低对称晶体结构, 其对不同偏振方向的光的吸收能力也有差异. 图1(c)给出了理论计算的三层厚度黑磷的能带结构和B3g—B2u及Au—B3g这两个跃迁的各向异性光吸收[50], 其中B3g—B2u的跃迁对应0.82 eV, Au—B3g的跃迁对应4.33 eV. 前一个跃迁对扶手方向的偏振光有最大的吸收, 而后一个是对锯齿方向的偏振光有最大的吸收. 另外, 黑磷对光的各向异性吸收性能也受到其厚度的影响.
图 1 黑磷的特性[50] (a)原子结构; (b)典型的偏振拉曼光谱; (c)三层黑磷的能带结构和理论计算的各向异性吸收Fig. 1. Characteristics of black-phosphorus[50](Reproduced with permission, Copyright 2016, American Chemical Society): (a) Atomic structure; (b) typical polarized Raman spectra; (c) band structure of trilayer black-phosphorus and theoretical polarized absorption2014年, Hong等[51]人在首次对利用黑磷作为工作材料的场效应晶体管进行了光电流测试, 该黑磷晶体管对光的响应主要集中在黑磷和金属电极接触的地方, 表现出了对785 nm激光较好的偏振响应. 随后, Wang等[52]开发了一种具有圆形电极的黑磷偏振光电器件(图2(a)), 利用圆形的电极消除电极形状对光的偏振影响, 从而获取黑磷本征的偏振响应性能. 黑磷对很宽波长范围内的光都有响应, 图2(b)是黑磷对400—1700 nm波长范围内扶手和锯齿方向的偏振光电流曲线, 扶手方向的偏振光电流响应在整个波长范围内都要强于锯齿方向, 这和前面文献中介绍的黑磷对光的各向异性吸收吻合. 黑磷的各向异性光电响应就是源自于黑磷的二向色性, 即对不同偏振方向的光吸收能力不同. 此外, 利用场效应晶体管的栅极进行调控可以有效地增强器件偏振光探测的能力[52]. 由于不存在晶格失配的问题, 二维材料很容易用来搭建异质结器件. 利用黑磷和其他二维材料组成的异质结同样可以用来进行偏振光探测, 其中黑磷起到光栅的作用, 提供整个器件偏振探测的能力, WSe2作为沟道材料将光电流输送至源漏电极[53]. 图2(c)展示了另外一种结构的黑磷/MoS2异质结偏振光探测器, 该探测器的偏振光电流开态和关态差距接近一个数量级[54]. 等离激元对器件光学性能的增强有很好的辅助作用, Prabhu等[29]利用特殊设计的等离激元结构增强了黑磷偏振光探测器的性能, 如图2(d)所示, 使其拥有了在扶手和锯齿方向高达8.7的光电流比值.
图 2 (a)圆形电极的偏振光探测器的显微镜照片[52]; (b) 沿扶手和锯齿方向400−1700 nm波长范围内黑磷的偏振光电流响应[52]; (c) 黑磷/MoS2异质结偏振光探测器[54]; (d)等离激元修饰的黑磷偏振光探测器[29]Fig. 2. (a) Optical image of the polarized-light detector with the circular electrode, (b) polarized photoresponse along armchair and zigzag orientations under 400−1700 nm illumination of black-phosphorus (reproduced with permission[52], Copyright 2015, Springer Nature); (c) polarized-light detector based on the black-phosphorus/MoS2 heterojunction(reproduced with permission[54], Copyright 2018, Springer Nature); (d) polarized-light detectorenhanced by the plasmonic structure(reproduced with permission[29], Copyright 2018, American Chemical Society).3.2 黑砷、黑砷磷及锑稀
黑砷拥有和黑磷相同类型的晶体结构[14], 也具有较好的各向异性. 对比其他各向异性二维材料, 黑砷具有更突出的电学各向异性特征. 其各向异性电导和载流子迁移率在扶手方向具有最高值, 在锯齿方向具有最小值, 其比值分别为6.4和28[30]. 黑砷作为黑磷的孪生材料, 两者可以组成任意比例的合金材料black-AsxP1-x[55,56]. 黑砷磷合金同样是各向异性的材料, 通过对组分的调控可以改变合金的能带结构及带隙, 其带隙能够实现0.269—0.326 eV范围内的调控[55], 选择合适的组分比例就能得到适用于不同波段的偏振光探测器. 对于black-As0.91P0.09其具有最高的比探测率达到6×1010 cm·Hz1/2·W–1, 比商业的中红外探测器还要高一个数量级[55].
黑磷和黑砷在空气中不稳定, 容易受到空气中的氧气和水分影响而变质[14,57], 这种不稳定性限制了黑磷和黑砷在实际应用中的表现. 锑稀是一种稳定的单元素二维材料, 可以在大气环境下甚至浸没在水中保存数月[58,59]. 锑稀晶体的原子分布在两个原子层组成蜂窝状的晶体结构. Chu等[31]研究了锑稀对偏振光的探测能力, 锑稀对3.0—3.4 eV的光子表现出较强的光电响应, 同时也有较强的各向异性. 能带结构中Γ点的电子跃迁在锑稀的光电响应中起重要作用. 基于锑稀的偏振光探测器对应锯齿方向的光电流要比扶手方向高一个数量级[31].
3.3 过渡金属二硫属化合物
过渡金属二硫属化合物(TMDs)典型的晶体结构是由两层硫族原子(X)包裹一层过渡族金属原子(M)组成的X-M-X三明治结构. TMDs中的MoS2由于其天然有带隙的能带结构而受到研究者的关注[60], 带隙的存在极大地方便了光电子器件的设计, 随后大量的研究工作开始聚焦于这一类二维材料[61—65]. TMDs中的ReS2, ReSe2, MoTe2和WTe2具有低对称性的晶体结构, 是优异的各向异性材料[66]. 单层的ReS2[32,67], ReSe2[68,69]和MoTe2[70]都拥有扭曲的1T相(1T′)的X-M-X的原子排列方式, 如图3(a)所示. WTe2呈现为Td相的晶体结构[71], 其晶体结构如图3(b)所示. 在这几个各向异性TMDs中ReS2和ReSe2是半导体[72], 而MoTe2和WTe2是II型的Weyl半金属[73—75].
Liu等[33]利用ReS2实现了对偏振光的探测, 图4(a)是偏振光电测试的示意图. 当偏振光的偏振方向与Re原子链平行时, 有最大的光吸收和光电流, 垂直此反向时有最小值, 如图4(b)所示. ReS2拥有很高的外量子效率, 然而其光响应速度却很慢. ReSe2也拥有出色的各向异性[72], 其体材料原子层平面内对1.17—1.2 eV的光子表现出各向异性的偏振光吸收特性[76]. Zhang等[34]利用化学气相沉积(CVD)生长的ReSe2纳米片制备的场效应晶体管研究了其各向异性光电性能. 通过调控栅极电压, 可以增强ReSe2对光的响应强度. ReSe2也是对沿Re链方向的偏振光有最强的光电响应, 对垂直此方向的响应最弱. 栅极电压的引入可以增强平行时的光响应强度, 同时对垂直方向偏振光的光响应变化不大, 最终提高了ReSe2的偏振光探测性能. ReS2和ReSe2具有相似的晶体结构, 两者可以形成ReS2xSe2(1-x)合金[77], 其能带带隙可以在1.31—1.62 eV之间调控[78]. ReS2是n型半导体, ReSe2是p型半导体, 利用水平的ReS2/ReSe2异质结可以形成具有整流效应的pn结, 同时也可以作为偏振光探测器[79]. 图4(c)是ReS2/ReSe2 pn结的各向异性光电流曲线. 如图4(d)所示, WTe2作为光电探测器也具有一定的偏振光探测能力[35].
Fig. 4. (a) Schematic of polarized photoelectric test(reproduced with permission[34], Copyright 2016, American Chemical Society); (b) photocurrent and absorption of ReS2 in the polar coordinates(Reproduced with permission[33], Copyright 2016, John Wiley and Sons); (c) polarized photoresponse of ReS2/ReSe2 heterojunction(reproduced with permission[79], Copyright 2018, John Wiley and Sons); (d) polarized photoresponse of WTe2(reproduced with permission[35], Copyright 2018, John Wiley and Sons).3.4 III族硫属化合物
GaTe[80], TlS[81]和TlSe[37]是具有各向异性的III族硫属化合物. GaTe拥有大约1.7 eV的直接带隙和超高(104 A·W–1)超快(6 ms)的光响应[36,82]. 如图5(a)所示, GaTe的晶体结构和GeAs相似, GaTe的体材料拥有对称性较低的C2h3(C 2/m)对称. 各向异性的GaTe很有希望用于偏振光探测器[80]. TlSe晶体拥有低对称的四方原子结构, 图5(b)展示了TlSe沿z轴的扫描透射电子显微镜(STEM)图像. 图5(c)是基于TlSe的偏振光探测器在633 nm红光下的光电流随入射光偏振角度的变化, 光电流在锯齿方向具有最大值, 扶手方向具有最小值, 二向色比约为2.65[37].
3.5 Ⅳ族硫属化合物
Ⅳ族硫属化合物普遍具有较强的各向异性. 各向异性的Ⅳ族硫属化合物主要包括两类: MX和GeX2 (M为金属原子Ge或者Sn, X为硫族原子S或者Se). 如图6(a)所示, MX具有类似黑磷的褶皱蜂窝状晶体结构, 金属原子和硫族原子交叠排列在一起[83]. MX晶体对比黑磷稳定性要更好一些, 而且它们都是良好的光电材料. 其中SnSe还具有出色的热电性能[84,85]. GeS2和GeSe2具有相似的各向异性的晶体结构, 图6(b)展示的是GeS2的原子结构示意图. GeS2和GeSe2都是宽带隙的半导体, 他们的带隙分别为3.71 eV[41]和2.7 eV[86].
Fig. 6. (a) Crystal structure of MX (reproduced with permission[83], Copyright 2015, AIP Publishing); (b) crystal structure of GeS2(reproduced with permission[41], Copyright 2019, John Wiley and Sons); (c) response times of SnS along different directions(reproduced with permission[38], Copyright 2017, Royal Society of Chemistry); (d) polarized photocurrent of GeSe2 under the 450 nm illumination(reproduced with permission[42], Copyright 2018, American Chemical Society).GeSe是一种优秀的偏振探测材料[40,87]. 本课题组对GeSe的偏振光吸收和光探测进行了全面的研究[40], 拥有最高为2.16偏振光探测的二向色性比值, 在第4部分有详细介绍. SnS具有各向异性的电输运特征, 其在锯齿方向的载流子迁移率是扶手方向的1.7倍[39]. 在808 nm的光照下对比沿扶手方向的电流, 沿锯齿方向的电流具有更快的响应速度[38], 图6(c)展示了两种情况下的光响应时间. 由于GeS2拥有宽带隙的能带结构, 其可以实现在紫外波段的偏振光探测. 实验表明, GeS2在紫外区域偏振光探测的二向色性比值为2.1[41]. GeSe2偏振光探测器拥有这一类材料中最高的偏振光电流二向色性比值(3.4)[42], 图6(d)是其在450 nm线偏振光照下光电流随入射光偏振角度变化的极坐标图.
3.6 Ⅳ-Ⅴ族化合物
Ⅳ-Ⅴ族化合物是一族具有Ⅳ族元素和Ⅴ族元素的整合优势材料, 例如其化合物具有良好的稳定性, 高的迁移率, 可调的带隙和高的面内各向异性. 其中, GeAs, GeP, SiP和GeAs2是Ⅳ-Ⅴ族化合物中具有代表性的材料. GeAs, GeP和SiP具有相似的晶体结构如图7(a)所示[88], 它们均属于C2/m空间群中的低对称性的单斜晶体. GeAs2的晶体结构如图7(b)所示[45]. 从晶体结构上来看它们都具有很强的各向异性.
Ⅳ-Ⅴ族化合物的单层的厚度为0.7—0.9 nm. 为了研究其结构的面内各向异性, GeAs[43,89], GeP[44], SiP[90]和GeAs2[45]的偏振拉曼光谱已有详细的报道, 它们的偏振拉曼光谱反映了其都具有各向异性的晶体特征. 而且这类面内各向异性强的化合物的拉曼特征峰位很多, 每个特征峰强度都随激发光偏振角度的变化而变化. GaAs具有极强的光敏感性, 其独特的偏振吸收光谱在一个特定波长不同方向的吸收强度会发生反转, 其二向色性比值高达4.4, 本课题组对其进行了详尽的研究, 具体内容在第4部分[43]. 基于GeP薄片的光电探测器已被制备出, 分别测量X轴和Y轴的光响应电流可得知, GeP晶体的光响应各向异性比率为1.83[44]. GeAs2可以实现二向色性比为2左右的偏振光探测器[45].
3.7 准一维材料
在2001年研究者们就已经注意到了一些传统半导体的纳米线结构所表现出来的光学各向异性. 如Fan等[91]制备了基于单根ZnO纳米线的偏振光探测器, Wang等[92]制备了基于InP纳米线的偏振光探测器. 准一维材料一直以来都是纳米科学领域里活跃的热点之一[93]. 近年来, 具有各向异性晶体结构的准一维材料也受到学者的较多关注, 比如: 四方晶系的CH3NH3PbI3[94], 单斜晶系的ZrS3和TiS3[46,47,95], 六方晶系的BaTiS3[96], 正交晶系的Sb2Se3[97,98]以及KP15[99]等.
准一维ZrS3和TiS3纳米带可以用于偏振光的探测[46,47]. 图8(a)和图8(b)分别展示了具有代表性的ZrS3的光学图像和晶体结构示意图. ZrS3纳米带在488 nm波长处具有最强的各向异性, 450 nm激光照射下具有1.73的二向色性比值[46]. TiS3纳米带透射光谱表现出非常强烈的偏振光角度依赖关系[95]. 这些光学上的各向异性都使得材料在偏振光探测中具有一定优势. 在这类准一维材料偏振光探测器中, TiS3纳米带/Si异质结的偏振光探测器件表现出非常高的二向色比值(3.5)[95]. 在未来的偏振光探测领域, 可基于准一维的TiS3纳米带设计不同种类的偏振光探测器来使得探测性能达到最佳. Niu等[96]系统研究了准一维BaTiS3的光学各向异性, BaTiS3晶体对200 nm到16 μm的波长范围内都具有各向异性. KP15是一种稳定的各向异性材料, 其晶体结构是由钾原子连接的反平行五边形管状磷原子组成, 如图8(c)所示. KP15容易剥离成纳米带的形状, 也是一种准一维的二维材料, 其偏振拉曼光谱的各个振动模式都受到激发光偏振方向的影响[99].
3.8 其 他
除了上面介绍的各向异性二维材料外, 还有一些比较独特的各向异性二维材料. α-MoO3纳米片拥有各向异性的晶格结构. α-MoO3的能带带隙约2.7 eV, 其在254 nm的紫外光照射下的光电流沿b轴方向比c轴方向要高5倍[12]. Ⅱ型Weyl半金属三元化合物TaIrTe4也具有各向异性的光电性质[100,101]. 狄拉克半金属ZrTe5在低温下其沿a轴的空穴霍尔迁移率约为3000 cm2·V–1·s–1, 沿c轴的约为1500 cm2·V–1·s–1[102]. 除了本征的各向异性之外, 应力调控也能向晶体结构中引入各向异性. MoS2是面内对称的晶体结构, 通过施加应力可以改变其晶格原子的排列从而使其具有各向异性[103].
4. 本课题组的相关工作
我们课题组围绕“新型低维半导体的物理性质和光电器件”这个主题进行了长期的探索, 以功能化信息器件的应用需求为牵引, 针对低维半导体从理论和实验两个方面进行了长期深入的研究, 相关工作取得了一系列进展[12—15,40,43,46,47,104—122]. 我们的主要工作包括: 通过精准可控的磁性元素掺杂, 制备了具备铁磁性的二维半导体[15,109,111]; 采用转移堆叠[107,113,118,119]或者直接气相沉积生长[110,112]等方法, 高效地获得高质量的低维半导体异质结, 有效地提高光电器件的性能. 最近几年, 我们还针对低维半导体的偏振光探测器, 获得了一系列具有不同带隙的面内各向异性低维半导体, 实现了从紫外到近红外区偏振光的高效探测[12,14,40,43,46,47,122], 并能够获得高分辨率的成像, 为广谱高效的光探测集成设备打下良好基础.
在具有面内各向异性的新型低维半导体材料体系探索方面, 我们研究了一种新型二维元素半导体黑砷(B-As). 黑砷(B-As)具有和黑磷相似的晶体结构和更强的面内各向异性, 理论上已经有预测其是微纳电子器件领域的一种新的候选材料. 然而, 迄今为止, 黑砷晶体的实验报道还非常少. 我们通过利用黑砷的天然矿, 首次成功制备出单层和少层黑砷场效应晶体管, 并系统研究了电场调控下载流子输运特性[14]. 发现二维B-As具备比其他二维材料更明显的各向异性, 其晶体管器件具备较大的电流开关比以及相对较高的载流子迁移率. 发现其性能与材料厚度有直接关系, 当样品厚度约为5.7 nm时所得载流子迁移率最高, 可达59 cm2·V–1·s–1, 当样品厚度约为4.6 nm时所得开关电流比最高, 可达 > 105. 单层黑砷的迁移率可达51 cm2·V–1·s–1, 开关比为105. 载流子迁移率的温度依赖性研究表明载流子迁移率的峰值出现于230 K处, 低于230 K时, 载流子主要受限于杂质散射的影响, 而晶格散射在高温下占主导地位. 此外, B-As晶体也表现出良好的环境稳定性, 少层黑砷晶体管器件在空气中暴露一个月后仍能正常工作. 因此, 黑砷在新型微纳电子器件包括偏振光探测器件等方面都具有良好的应用前景.
在偏振光探测器件研究方面, 我们课题组通过发展不同带隙的面内各向异性低维半导体, 实现了从紫外-可见-近红外区的高效偏振探测.
在紫外光区, 成功获得超过100 µm尺寸大面积宽带隙(> 2.7 eV)的二维氧化物MoO3, 实现对日盲区254 nm紫外光实现有效的各向异性探测, 光响应率高达67.9 A/W[12]. 最近, 我们发现二维单层的GeSe2具有高达2.96 eV的宽带隙, 其器件可以获得对266 nm日盲区紫外光的高效探测, 光响应率达200 mA/W, 并实现了对紫外偏振光的有效探测[122].
在可见光区, 采用带隙1—2 eV的高度各向异性的二维硫族化合物GeSe和ZrS3实现了对红、黄、蓝三原色光谱范围内的有效偏振探测[40,46]. 图9(a)是GeSe的偏振吸收光谱, 可以看到在400—950 nm的波长范围内对不同偏振方向的光有不一样的吸收强度, 其吸收系数比值在532 nm时为1.09, 638 nm时为1.26, 808 nm时有最大值3.02, 三个波长下偏振光探测的二向色性比值分别为1.09, 1.44和2.16. ZrS3属于准一维的各向异性光电材料, 图9(b)中展示了随着偏振光方向与ZrS3纳米带(b)轴夹角由0°到180°变化时的吸收光谱图, 在488 nm波长处的光吸收各向异性特征最明显. 如图9(c), 分别为450 nm激光和532 nm激光照射下的光电流等高线图, 其在450 nm激光照射下具有1.73的二向色比值.
图 9 (a) GeSe的偏振光吸收谱[40]; (b) 不同方向的偏振光下准一维ZrS3纳米带的吸收光谱[46]; (c)准一维ZrS3纳米带在450 nm和532 nm的激光下的偏振光电流[46]Fig. 9. (a) Polarization-resolved absorption spectra of GeSe(reproduced with permission[40], Copyright 2017, American Chemical Society); (b) absorption spectra of ZrS3 nanoribbon under polarized light in different directions and (c) polarized photocurrent of ZrS3 nanoribbon under 450 nm and 532 nm laser illumination(reproduced with permission[46], Copyright 2019, John Wiley and Sons).在红外光区, 我们发现二维GeSe和GeAs都具备很好的面内各向异性. 制备成偏振光探测器后, GeSe最佳的各向异性的光响应在短波近红外808 nm处[40], 图10(a)展示了基于GeSe偏振光探测器在808 nm光照下的偏振光电流特性, GeSe可以适用于近红外的偏振光探测器. 围绕另一种新型的二维半导体GeAs, 实现了在可见光区和近红外区优异的偏振吸收与探测性能, 并且发现了在可见光区和红外光区的特殊光学翻转特性, 具有较高的二向色性比[43]. 图10(b)为GeAs材料的偏振光吸收光谱图, 其吸收波长为400—1370 nm. 在偏振吸收光谱中, 830 nm的线偏振光的最大各向异性吸收比率为1.42, 最强光吸收方向在623 nm波长时发生了反转, 反转角度为80°. 图10(c)为GeAs在520 nm和830 nm线偏振光不同偏振角度照射下的光响应电流的极坐标图. 在830 nm波长的偏振光激发下, 其二向色性高达4.4. 光响应极坐标图仍可以明确地观察出材料的最强响应极轴反转现象. 角度依赖的空间分辨光响应分布图如图10(d)所示, 该GeAs偏振光探测器的光响应主要基于材料于金属电极之间形成的肖特基势垒, 这是典型的肖特基光电二极管, GeAs的贡献带来了其偏振光探测的能力.
图 10 (a) GeSe对808 nm光照的偏振光电流[40]; (b) GeAs偏振光吸收光谱图[43]; (c) GeAs在520 nm和830 nm偏振光照射下的光响应极坐标图[43]; (d) GeAs 30 mV栅压下角度依赖的空间分辨光响应分布图[43]Fig. 10. (a) Polarized photocurrent of GeSe under the 808 nm laser illumination(reproduced with permission[40], Copyright 2017, American Chemical Society); (b) polarization-resolved absorption spectra of GeAs, (c) polarization-sensitive photocurrents plotted with the linear-polarization laser of 520 and 830 nm of GeAs in the polar coordinates, and (d) polarization-dependent photocurrent mapping of GeAs device under 30 mV gate voltage and the linear-polarization laser (reproduced with permission[43], Copyright 2018, American Chemical Society).在相关领域的研究基础上, 最近我们也对具有面内各向异性二维材料的光学特性和电学输运特性进行了一些总结, 希望能够对低维半导体材料和光探测器的未来发展提供参考[23,28].
5. 总结及展望
利用材料本征各向异性进行偏振光探测器的设计有利于实现高度集成化的器件、简化设计和降低生产成本, 一系列具有晶体结构各向异性的二维材料有希望用于未来的偏振光探测器. 本文介绍了以黑磷、黑砷、黑砷磷、锑稀、过渡金属二硫属化合物、Ⅲ族硫属化合物、Ⅳ族硫属化合物、Ⅳ—Ⅴ族化合物及准一维材料为代表的总共七大类各向异性低维材料. 基于这些材料设计的偏振光探测器覆盖了从红外、可见到紫外光的各个波段. 同时通过将偏振光探测器设计成场效应晶体管、异质结或者pn结等特定结构可以有效抑制噪声、提高光响应强度和偏振探测能力. 然而基于这类低维半导体材料的偏振光探测器还有很多缺陷有待完善. 目前为止这类偏振光探测器的二向色比值最高在10左右, 这样的性能不能满足实际应用的需求. 其次, 二维材料的制备工艺还不能满足大规模工业生产, 其晶体的结晶度、缺陷的抑制及配套的加工工艺还不够理想. 接下来的研究应该把解决这两个问题放在首要位置. 可以通过表面修饰、应力工程或设计合适的器件结构等手段来提高低维半导体偏振光探测器的性能. 同时要进一步完善二维材料的生长工艺和开发新的更适合二维材料的微纳加工工艺, 以及拓展器件的成像功能. 同时, 开发与现用半导体材料兼容的器件和工艺也尤为重要. 预期通过一段时间的发展, 基于新型低维半导体材料的偏振光探测器及其阵列可以为现有偏振探测和成像技术的进行一定的补充, 并实现未来的实用化.
[1] Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453
Google Scholar
[2] Doradla P, Alavi K, Joseph C S, Giles R H 2013 J. Biomed. Opt. 18 090504
[3] Duan J, Fu Q, Mo C, Zhu Y, Liu D 2013 ISPDI 2013—Fifth International Symposium on Photoelectronic Detection and Imaging Beijing, China, August 21, 2013 p890813
[4] 李军伟, 陈伟力, 徐文斌, 逯祎 2017 红外偏振成像技术与应用(北京: 科学出版社) 第2页
Li J, Chen W, Xu W, Lu Y 2017 Infrared Polarization Imaging Technology and Application (Vol. 1) (Beijing: Science Press) p2 (in Chinese)
[5] Li L, Xiong D, Wen J, Li N, Zhu Z 2016 Infrared Phys. Technol. 79 45
Google Scholar
[6] Li Q, Li Z, Li N, Chen X, Chen P, Shen X, Lu W 2014 Sci. Rep. 4 6332
[7] Sun R, Min L, Huang L 2014 Asia Communications and Photonics Conference 2014 Shanghai, China, November 11, 2014 pATh3A.34
[8] Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509
Google Scholar
[9] Cui Y, Li B, Li J, Wei Z 2018 Sci. China: Phys. Mech. Astron. 61 016801
Google Scholar
[10] Zhang K, Fang X, Wang Y, Wan Y, Song Q, Zhai W, Li Y, Ran G, Ye Y, Dai L 2017 ACS Appl. Mater. Interfaces 9 5392
Google Scholar
[11] Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X, Wang K 2015 Adv. Opt. Mater. 3 1418
Google Scholar
[12] Zhong M, Zhou K, Wei Z, Li Y, Li T, Dong H, Jiang L, Li J, Hu W 2018 2D Mater. 5 035033
Google Scholar
[13] Zhong M, Zhang S, Huang L, You J, Wei Z, Liu X, Li J 2017 Nanoscale 9 3736
Google Scholar
[14] Zhong M, Xia Q, Pan L, Liu Y, Chen Y, Deng H X, Li J, Wei Z 2018 Adv. Funct. Mater. 28 1802581
Google Scholar
[15] Zhong M, Shen C, Huang L, Deng H X, Shen G, Zheng H, Wei Z, Li J 2019 NPJ 2D Mater. Appl. 3 1
Google Scholar
[16] Lv Q, Yan F, Wei X, Wang K 2018 Adv. Opt. Mater. 6 1700490
Google Scholar
[17] Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 038504
Google Scholar
[18] Wei X, Yan F, Lü Q, Shen C, Wang K 2017 Nanoscale 9 8388
Google Scholar
[19] Yan F, Zhao L, Patanè A, Hu P, Wei X, Luo W, Zhang D, Lü Q, Feng Q, Shen C, Chang K, Eaves L, Wang K 2017 Nanotechnology 28 27LT01
Google Scholar
[20] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676
Google Scholar
[21] Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2015 Nat. Nanotechnol. 11 42
[22] Cui Y, Zhou Z, Li T, Wang K, Li J, Wei Z 2019 Adv. Funct. Mater. 29 1900040
Google Scholar
[23] Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274
[24] Cao Y, Cai K, Hu P, Zhao L, Yan T, Luo W, Zhang X, Wu X, Wang K, Zheng H 2015 Sci. Rep. 5 8130
Google Scholar
[25] Wang F, Wang Z, Jiang C, Yin L, Cheng R, Zhan X, Xu K, Wang F, Zhang Y, He J 2017 Small 13 1604298
Google Scholar
[26] Yan F, Wei Z, Wei X, Lv Q, Zhu W, Wang K 2018 Small Methods 2 1700349
Google Scholar
[27] Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y, Zhai T 2019 InfoMat. 1 54
[28] Zhou Z, Cui Y, Tan P H, Liu X, Wei Z 2019 J. Semicond. 40 061001
Google Scholar
[29] Venuthurumilli P K, Ye P D, Xu X 2018 ACS Nano 12 4861
Google Scholar
[30] Chen Y, Chen C, Kealhofer R, Liu H, Yuan Z, Jiang L, Suh J, Park J, Ko C, Choe H S, Avila J, Zhong M, Wei Z, Li J, Li S, Gao H, Liu Y, Analytis J, Xia Q, Asensio M C, Wu J 2018 Adv. Mater. 30 1800754
Google Scholar
[31] Chu F, Chen M, Wang Y, Xie Y, Liu B, Yang Y, An X, Zhang Y 2018 J. Mater. Chem. C 6 2509
Google Scholar
[32] Lin Y C, Komsa H P, Yeh C H, Björkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249
Google Scholar
[33] Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, Mion T R, Wang X, Zhou J, Fu Q, Fan H J, Tay B K, Song L, He R-H, Kloc C, Ajayan P M, Liu Z 2016 Adv. Funct. Mater. 26 1169
Google Scholar
[34] Zhang E, Wang P, Li Z, Wang H, Song C, Huang C, Chen Z G, Yang L, Zhang K, Lu S, Wang W, Liu S, Fang H, Zhou X, Yan H, Zou J, Wan X, Zhou P, Hu W, Xiu F 2016 ACS Nano 10 8067
Google Scholar
[35] Zhou W, Chen J, Gao H, Hu T, Ruan S, Stroppa A, Ren W 2019 Adv. Mater. 31 1804629
Google Scholar
[36] Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko V I, Tanigaki K 2014 ACS Nano 8 752
Google Scholar
[37] Yang S, Hu C, Wu M, Shen W, Tongay S, Wu K, Wei B, Sun Z, Jiang C, Huang L, Wang Z 2018 ACS Nano 12 8798
Google Scholar
[38] Zhang Z, Yang J, Zhang K, Chen S, Mei F, Shen G 2017 J. Mater. Chem. C 5 11288
Google Scholar
[39] Tian Z, Guo C, Zhao M, Li R, Xue J 2017 ACS Nano 11 2219
Google Scholar
[40] Wang X, Li Y, Huang L, Jiang X W, Jiang L, Dong H, Wei Z, Li J, Hu W 2017 J. Am. Chem. Soc. 139 14976
Google Scholar
[41] Yang Y, Liu S C, Wang X, Li Z, Zhang Y, Zhang G, Xue D J, Hu J S 2019 Adv. Funct. Mater. 29 1900411
Google Scholar
[42] Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S, Wan L J 2018 J. Am. Chem. Soc. 140 4150
Google Scholar
[43] Zhou Z, Long M, Pan L, Wang X, Zhong M, Blei M, Wang J, Fang J, Tongay S, Hu W, Li J, Wei Z 2018 ACS Nano 12 12416
Google Scholar
[44] Li L, Wang W, Gong P, Zhu X, Deng B, Shi X, Gao G, Li H, Zhai T 2018 Adv. Mater. 30 e1706771
Google Scholar
[45] Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S, Liu K, Li H, Zhai T 2018 Adv. Mater. 30 1804541
Google Scholar
[46] Wang X, Wu K, Blei M, Wang Y, Pan L, Zhao K, Shan C, Lei M, Cui Y, Chen B, Wright D, Hu W, Tongay S, Wei Z 2019 Adv. Elect. Mater. 5 1900419
Google Scholar
[47] Liu S, Xiao W, Zhong M, Pan L, Wang X, Deng H X, Liu J, Li J, Wei Z 2018 Nanotechnology 29 184002
Google Scholar
[48] Hwang E, Sarma S D 2008 Phys. Rev. B 77 115449
Google Scholar
[49] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372
Google Scholar
[50] Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R T, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 2260
Google Scholar
[51] Hong T, Chamlagain B, Lin W, Chuang H J, Pan M, Zhou Z, Xu Y Q 2014 Nanoscale 6 8978
Google Scholar
[52] Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G, Hikita Y, Shen Z, Zhang S C, Chen X, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707
Google Scholar
[53] Ye L, Wang P, Luo W, Gong F, Liao L, Liu T, Tong L, Zang J, Xu J, Hu W 2017 Nano Energy 37 53
Google Scholar
[54] Bullock J, Amani M, Cho J, Chen Y Z, Ahn G H, Adinolfi V, Shrestha V R, Gao Y, Crozier K B, Chueh Y L 2018 Nat. Photonics 12 601
Google Scholar
[55] Amani M, Regan E, Bullock J, Ahn G H, Javey A 2017 ACS Nano 11 11724
Google Scholar
[56] Liu B, Köpf M, Abbas A N, Wang X, Guo Q, Jia Y, Xia F, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M, Fang X, Nilges T, Zhou C 2015 Adv. Mater. 27 4423
Google Scholar
[57] Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J 2014 2D Mater. 1 025001
Google Scholar
[58] Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A, Abellán G, Zamora F 2016 Angew. Chem., Int. Ed. 128 14557
Google Scholar
[59] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407
Google Scholar
[60] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[61] Zhao Y, Xu K, Pan F, Zhou C, Zhou F, Chai Y 2017 Adv. Funct. Mater. 27 1603484
Google Scholar
[62] Zhang X, Lai Z, Ma Q, Zhang H 2018 Chem. Soc. Rev. 47 3301
Google Scholar
[63] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[64] Mak K F, Shan J 2016 Nat. Photonics 10 216
Google Scholar
[65] Li S L, Tsukagoshi K, Orgiu E, Samori P 2016 Chem. Soc. Rev. 45 118
Google Scholar
[66] Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231
Google Scholar
[67] Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C 2015 Nano Lett. 15 5667
Google Scholar
[68] Wolverson D, Crampin S, Kazemi A S, Ilie A, Bending S J 2014 ACS Nano 8 11154
Google Scholar
[69] Hafeez M, Gan L, Li H, Ma Y, Zhai T 2016 Adv. Mater. 28 8296
Google Scholar
[70] Song Q, Wang H, Pan X, Xu X, Wang Y, Li Y, Song F, Wan X, Ye Y, Dai L 2017 Sci. Rep. 7 1758
Google Scholar
[71] Song Q, Wang H, Xu X, Pan X, Wang Y, Song F, Wan X, Dai L 2016 RSC Adv. 6 103830
Google Scholar
[72] Zhong H X, Gao S, Shi J J, Yang L 2015 Phys. Rev. B 92 115438
Google Scholar
[73] Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H, Chen Y L 2017 Nat. Commun. 8 13973
Google Scholar
[74] Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud'ko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113
Google Scholar
[75] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 7 11038
Google Scholar
[76] Ho C H, Huang Y S, Tiong K K, Liao P C 1998 Phys. Rev. B 58 16130
Google Scholar
[77] Cui F, Feng Q, Hong J, Wang R, Bai Y, Li X, Liu D, Zhou Y, Liang X, He X, Zhang Z, Liu S, Lei Z, Liu Z, Zhai T, Xu H 2017 Adv. Mater. 29 1705015
Google Scholar
[78] Wen W, Zhu Y, Liu X, Hsu H P, Fei Z, Chen Y, Wang X, Zhang M, Lin K H, Huang F S, Wang Y P, Huang Y S, Ho C H, Tan P H, Jin C, Xie L 2017 Small 13 1603788
Google Scholar
[79] Liu D, Hong J, Wang X, Li X, Feng Q, Tan C, Zhai T, Ding F, Peng H, Xu H 2018 Adv. Funct. Mater. 28 1804696
Google Scholar
[80] Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R, Dresselhaus M S 2016 ACS Nano 10 8964
Google Scholar
[81] Niu C, Buhl P M, Bihlmayer G, Wortmann D, Blügel S, Mokrousov Y 2015 Nano Lett. 15 6071
Google Scholar
[82] Hu P, Zhang J, Yoon M, Qiao X F, Zhang X, Feng W, Tan P, Zheng W, Liu J, Wang X, Idrobo J C, Geohegan D B, Xiao K 2014 Nano Res. 7 694
Google Scholar
[83] Fei R, Li W, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104
Google Scholar
[84] Chang C, Wu M, He D, Pei Y, Wu C F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J F, He J, Zhao L D 2018 Science 360 778
Google Scholar
[85] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373
Google Scholar
[86] Zhou X, Hu X, Zhou S, Zhang Q, Li H, Zhai T 2017 Adv. Funct. Mater. 27 1703858
Google Scholar
[87] Zhou X, Hu X, Jin B, Yu J, Liu K, Li H, Zhai T 2018 Adv. Sci. 5 1800478
Google Scholar
[88] Mortazavi B, Rabczuk T 2018 Phys. E: Low-Dimensional Syst. Nanostructures 103 273
Google Scholar
[89] Yang S, Yang Y, Wu M, Hu C, Shen W, Gong Y, Huang L, Jiang C, Zhang Y, Ajayan P M 2018 Adv. Funct. Mater. 28 1707379
Google Scholar
[90] Li C, Wang S, Li C, Yu T, Jia N, Qiao J, Zhu M, Liu D, Tao X 2018 J. Mater. Chem. C 6 7219
Google Scholar
[91] Fan Z, Chang P C, Lu J G, Walter E C, Penner R M, Lin C H, Lee H P 2004 Appl. Phys. Lett. 85 6128
Google Scholar
[92] Wang J, Gudiksen M S, Duan X, Cui Y, Lieber C M 2001 Science 293 1455
Google Scholar
[93] Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G 2009 Prog. Mater. Sci. 54 1
Google Scholar
[94] Gao L, Zeng K, Guo J, Ge C, Du J, Zhao Y, Chen C, Deng H, He Y, Song H, Niu G, Tang J 2016 Nano Lett. 16 7446
Google Scholar
[95] Niu Y, Frisenda R, Flores E, Ares J R, Jiao W, Perez de Lara D, Sánchez C, Wang R, Ferrer I J, Castellanos-Gomez A 2018 Adv. Opt. Mater. 6 1800351
Google Scholar
[96] Niu S, Joe G, Zhao H, Zhou Y, Orvis T, Huyan H, Salman J, Mahalingam K, Urwin B, Wu J 2018 Nat. Photonics 12 392
Google Scholar
[97] Song H, Li T, Zhang J, Zhou Y, Luo J, Chen C, Yang B, Ge C, Wu Y, Tang J 2017 Adv. Mater. 29 1700441
Google Scholar
[98] Ma Z, Chai S, Feng Q, Li L, Li X, Huang L, Liu D, Sun J, Jiang R, Zhai T, Xu H 2019 Small 15 1805307
Google Scholar
[99] Tian N, Yang Y, Liu D, Liu X, Tan P H, Zhang D, Chang K, Li H, Zhao M, Li J R, Tang X, Zhang D, Zhang Z, Xiao W, Yan H, Zhang Y 2018 ACS Nano 12 1712
Google Scholar
[100] Lai J, Liu Y, Ma J, Zhuo X, Peng Y, Lu W, Liu Z, Chen J, Sun D 2018 ACS Nano 12 4055
Google Scholar
[101] Liu Y, Gu Q, Peng Y, Qi S, Zhang N, Zhang Y, Ma X, Zhu R, Tong L, Feng J, Liu Z, Chen J H 2018 Adv. Mater. 30 1706402
Google Scholar
[102] Qiu G, Du Y, Charnas A, Zhou H, Jin S, Luo Z, Zemlyanov D Y, Xu X, Cheng G J, Ye P D 2016 Nano Lett. 16 7364
Google Scholar
[103] Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J B, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203
Google Scholar
[104] Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li S S 2015 J. Phys. Chem. Lett. 6 2483
Google Scholar
[105] Huang L, Li Y, Wei Z, Li J 2015 Sci. Rep. 5 16448
Google Scholar
[106] Huang L, Tao L, Gong K, Li Y, Dong H, Wei Z, Li J 2017 Phys. Rev. B 96 205303
Google Scholar
[107] Huo N, Kang J, Wei Z, Li S S, Li J, Wei S H 2014 Adv. Funct. Mater. 24 7025
Google Scholar
[108] Li B, Huang L, Zhao G, Wei Z, Dong H, Hu W, Wang L W, Li J 2016 Adv. Mater. 28 8271
Google Scholar
[109] Li B, Huang L, Zhong M, Huo N, Li Y, Yang S, Fan C, Yang J, Hu W, Wei Z, Li J 2015 ACS Nano 9 1257
Google Scholar
[110] Li B, Huang L, Zhong M, Li Y, Wang Y, Li J, Wei Z 2016 Adv. Elect. Mater. 2 1600298
Google Scholar
[111] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958
Google Scholar
[112] Li Y, Huang L, Li B, Wang X, Zhou Z, Li J, Wei Z 2016 ACS Nano 10 8938
Google Scholar
[113] Li Y, Wang Y, Huang L, Wang X, Li X, Deng H X, Wei Z, Li J 2016 ACS Appl. Mater. Interfaces 8 15574
Google Scholar
[114] Li Y, Wei Z, Li J 2015 Appl. Phys. Lett. 107 112103
Google Scholar
[115] Liu J, Liu X, Chen Z, Miao L, Liu X, Li B, Tang L, Chen K, Liu Y, Li J, Wei Z, Duan X 2019 Nano Res. 12 463
Google Scholar
[116] Liu S, Huang L, Wu K, Wei Z, Huang B, Meng X, Tongay S, Liu J, Li J, Chen H 2016 Appl. Phys. Lett. 109 112102
Google Scholar
[117] Pan L, Huang L, Zhong M, Jiang X W, Deng H X, Li J, Xia J B, Wei Z 2018 Nanoscale 10 22196
Google Scholar
[118] Wang X, Huang L, Peng Y, Huo N, Wu K, Xia C, Wei Z, Tongay S, Li J 2016 Nano Res. 9 507
Google Scholar
[119] Wang Y, Zhou W X, Huang L, Xia C, Tang L M, Deng H X, Li Y, Chen K Q, Li J, Wei Z 2017 2D Mater. 4 025097
Google Scholar
[120] Xiong W, Xia C, Du J, Wang T, Zhao X, Peng Y, Wei Z, Li J 2017 Phys. Rev. B 95 245408
Google Scholar
[121] Zhong M, Wang X, Liu S, Li B, Huang L, Cui Y, Li J, Wei Z 2017 Nanoscale 9 12364
Google Scholar
[122] Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J, Wei Z 2019 Adv. Opt. Mater
Google Scholar
-
图 1 黑磷的特性[50] (a)原子结构; (b)典型的偏振拉曼光谱; (c)三层黑磷的能带结构和理论计算的各向异性吸收
Fig. 1. Characteristics of black-phosphorus[50](Reproduced with permission, Copyright 2016, American Chemical Society): (a) Atomic structure; (b) typical polarized Raman spectra; (c) band structure of trilayer black-phosphorus and theoretical polarized absorption
图 2 (a)圆形电极的偏振光探测器的显微镜照片[52]; (b) 沿扶手和锯齿方向400−1700 nm波长范围内黑磷的偏振光电流响应[52]; (c) 黑磷/MoS2异质结偏振光探测器[54]; (d)等离激元修饰的黑磷偏振光探测器[29]
Fig. 2. (a) Optical image of the polarized-light detector with the circular electrode, (b) polarized photoresponse along armchair and zigzag orientations under 400−1700 nm illumination of black-phosphorus (reproduced with permission[52], Copyright 2015, Springer Nature); (c) polarized-light detector based on the black-phosphorus/MoS2 heterojunction(reproduced with permission[54], Copyright 2018, Springer Nature); (d) polarized-light detectorenhanced by the plasmonic structure(reproduced with permission[29], Copyright 2018, American Chemical Society).
图 4 (a)偏振光电测试示意图[34]; (b) 极坐标下ReS2的偏振光吸收和光电流[33]; (c) ReS2/ReSe2异质结偏振光响应[79]; (d) WTe2偏振光探测性能[35]
Fig. 4. (a) Schematic of polarized photoelectric test(reproduced with permission[34], Copyright 2016, American Chemical Society); (b) photocurrent and absorption of ReS2 in the polar coordinates(Reproduced with permission[33], Copyright 2016, John Wiley and Sons); (c) polarized photoresponse of ReS2/ReSe2 heterojunction(reproduced with permission[79], Copyright 2018, John Wiley and Sons); (d) polarized photoresponse of WTe2(reproduced with permission[35], Copyright 2018, John Wiley and Sons).
图 5 (a) GaTe的晶体结构[80]; (b) TlSe的STEM图像[37]; (c) 基于TlSe的偏振光探测器的角分辨光电流[37]
Fig. 5. (a) Crystal structure of GaTe(reproduced with permission[80], Copyright 2016, American Chemical Society); (b) STEM image of TlSe and (c) photocurrent of the polarized photodetector based on TlSe (reproduced with permission[37], Copyright 2018, American Chemical Society).
图 6 (a) MX晶体的原子结构[83]; (b) GeS2晶体的原子结构[41]; (c) SnS沿不同方向的光电流响应速度[38]; (d) GeSe2对450 nm偏振光响应[42]
Fig. 6. (a) Crystal structure of MX (reproduced with permission[83], Copyright 2015, AIP Publishing); (b) crystal structure of GeS2(reproduced with permission[41], Copyright 2019, John Wiley and Sons); (c) response times of SnS along different directions(reproduced with permission[38], Copyright 2017, Royal Society of Chemistry); (d) polarized photocurrent of GeSe2 under the 450 nm illumination(reproduced with permission[42], Copyright 2018, American Chemical Society).
图 8 (a) ZrS3的光学图像[46]; (b) ZrS3的晶体结构[46]; (c) KP15原子结构示意图[99]
Fig. 8. (a) Optical image of ZrS3 and (b) crystal structure of ZrS3(reproduced with permission[46], Copyright 2019, John Wiley and Sons); (c) crystal structure of KP15(reproduced with permission[99], Copyright 2018, American Chemical Society).
图 9 (a) GeSe的偏振光吸收谱[40]; (b) 不同方向的偏振光下准一维ZrS3纳米带的吸收光谱[46]; (c)准一维ZrS3纳米带在450 nm和532 nm的激光下的偏振光电流[46]
Fig. 9. (a) Polarization-resolved absorption spectra of GeSe(reproduced with permission[40], Copyright 2017, American Chemical Society); (b) absorption spectra of ZrS3 nanoribbon under polarized light in different directions and (c) polarized photocurrent of ZrS3 nanoribbon under 450 nm and 532 nm laser illumination(reproduced with permission[46], Copyright 2019, John Wiley and Sons).
图 10 (a) GeSe对808 nm光照的偏振光电流[40]; (b) GeAs偏振光吸收光谱图[43]; (c) GeAs在520 nm和830 nm偏振光照射下的光响应极坐标图[43]; (d) GeAs 30 mV栅压下角度依赖的空间分辨光响应分布图[43]
Fig. 10. (a) Polarized photocurrent of GeSe under the 808 nm laser illumination(reproduced with permission[40], Copyright 2017, American Chemical Society); (b) polarization-resolved absorption spectra of GeAs, (c) polarization-sensitive photocurrents plotted with the linear-polarization laser of 520 and 830 nm of GeAs in the polar coordinates, and (d) polarization-dependent photocurrent mapping of GeAs device under 30 mV gate voltage and the linear-polarization laser (reproduced with permission[43], Copyright 2018, American Chemical Society).
表 1 低维半导体材料的各向异性光电性能
Table 1. Anisotropic optoelectronic properties of low-dimensional semiconductors.
禁带宽度/eV 载流子迁移率/cm2·V–1·s–1 光响应强度 二向色性比值 参考文献 黑磷 0.3 (体材料)1.5 (单层) 1000 (空穴, x)600 (空穴, y) 14.2 mA/W 8.7 (1550 nm) [29] 黑砷 0.3 (体材料)1—1.5 (单层) 376.7 (电子, zigzag)1.5 (电子, armchair)60.7 (空穴, zigzag)10606 (空穴, armchair) [14,30] 锑烯 1.3—1.7 100 (3.2 eV) [31] ReS2 1.4 (体材料) 23.1 (电子, DS-chains方向)14.8 (电子, 垂直DS-chains方向) 103 A·W–1 (532 nm) ~ 4 [32,33] ReSe2 1.17—1.2 10 1.5 mA·W–1 (633 nm) 2 (633 nm) [34] MoTe2 外尔半金属 110 mA·W–1 (1064 nm) [10] WTe2 外尔半金属 4.9 (514.5 nm) [35] GaTe 1.7 0.2 (空穴) 104 A·W–1 (532 nm) [36] TlSe 0.73 1.48 A·W–1 (633 nm) 2.56 (633 nm) [37] SnS 1.3 20 (zisgzag)μzigzag/μarmchair ≈ 1.7 365 A·W–1 (808 nm) 1.49 (808 nm) [38,39] GeSe 1.34 (体材料)1.7 (单层) 4.25 A·W–1 2.16 (808 nm) [40] GeS2 > 3 2.1 (325 nm) [41] GeSe2 2.74 3.4 (450 nm) [42] GeAs 0.83 (体材料)2.07 (单层) 4.4 (808 nm) [43] GeP 0.51 (体材料)1.68 (单层) 电导率比值: 1.52 3.11—0.43 A·W–1 1.83 (532 nm) [44] GeAs2 0.98 (体材料)1.62 (单层) 2.5 (空穴, a)1.3 (空穴, b) 2 [45] ZrS3 1.79 (体材料) 230 m A·W–1 (520 nm) 2.55 (520 nm) [46] TiS3 1.13 2500 A·W–1 (808 nm) 4 [47] α-MoO3 2.7 0.06–0.09 (电子, b)0.03—0.04 (电子, c) 67.9 A·W–1 5 (254 nm) [12] -
[1] Tyo J S, Goldstein D L, Chenault D B, Shaw J A 2006 Appl. Opt. 45 5453
Google Scholar
[2] Doradla P, Alavi K, Joseph C S, Giles R H 2013 J. Biomed. Opt. 18 090504
[3] Duan J, Fu Q, Mo C, Zhu Y, Liu D 2013 ISPDI 2013—Fifth International Symposium on Photoelectronic Detection and Imaging Beijing, China, August 21, 2013 p890813
[4] 李军伟, 陈伟力, 徐文斌, 逯祎 2017 红外偏振成像技术与应用(北京: 科学出版社) 第2页
Li J, Chen W, Xu W, Lu Y 2017 Infrared Polarization Imaging Technology and Application (Vol. 1) (Beijing: Science Press) p2 (in Chinese)
[5] Li L, Xiong D, Wen J, Li N, Zhu Z 2016 Infrared Phys. Technol. 79 45
Google Scholar
[6] Li Q, Li Z, Li N, Chen X, Chen P, Shen X, Lu W 2014 Sci. Rep. 4 6332
[7] Sun R, Min L, Huang L 2014 Asia Communications and Photonics Conference 2014 Shanghai, China, November 11, 2014 pATh3A.34
[8] Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509
Google Scholar
[9] Cui Y, Li B, Li J, Wei Z 2018 Sci. China: Phys. Mech. Astron. 61 016801
Google Scholar
[10] Zhang K, Fang X, Wang Y, Wan Y, Song Q, Zhai W, Li Y, Ran G, Ye Y, Dai L 2017 ACS Appl. Mater. Interfaces 9 5392
Google Scholar
[11] Luo W, Cao Y, Hu P, Cai K, Feng Q, Yan F, Yan T, Zhang X, Wang K 2015 Adv. Opt. Mater. 3 1418
Google Scholar
[12] Zhong M, Zhou K, Wei Z, Li Y, Li T, Dong H, Jiang L, Li J, Hu W 2018 2D Mater. 5 035033
Google Scholar
[13] Zhong M, Zhang S, Huang L, You J, Wei Z, Liu X, Li J 2017 Nanoscale 9 3736
Google Scholar
[14] Zhong M, Xia Q, Pan L, Liu Y, Chen Y, Deng H X, Li J, Wei Z 2018 Adv. Funct. Mater. 28 1802581
Google Scholar
[15] Zhong M, Shen C, Huang L, Deng H X, Shen G, Zheng H, Wei Z, Li J 2019 NPJ 2D Mater. Appl. 3 1
Google Scholar
[16] Lv Q, Yan F, Wei X, Wang K 2018 Adv. Opt. Mater. 6 1700490
Google Scholar
[17] Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 038504
Google Scholar
[18] Wei X, Yan F, Lü Q, Shen C, Wang K 2017 Nanoscale 9 8388
Google Scholar
[19] Yan F, Zhao L, Patanè A, Hu P, Wei X, Luo W, Zhang D, Lü Q, Feng Q, Shen C, Chang K, Eaves L, Wang K 2017 Nanotechnology 28 27LT01
Google Scholar
[20] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676
Google Scholar
[21] Massicotte M, Schmidt P, Vialla F, Schädler K G, Reserbat-Plantey A, Watanabe K, Taniguchi T, Tielrooij K J, Koppens F H L 2015 Nat. Nanotechnol. 11 42
[22] Cui Y, Zhou Z, Li T, Wang K, Li J, Wei Z 2019 Adv. Funct. Mater. 29 1900040
Google Scholar
[23] Wang X, Cui Y, Li T, Lei M, Li J, Wei Z 2019 Adv. Opt. Mater. 7 1801274
[24] Cao Y, Cai K, Hu P, Zhao L, Yan T, Luo W, Zhang X, Wu X, Wang K, Zheng H 2015 Sci. Rep. 5 8130
Google Scholar
[25] Wang F, Wang Z, Jiang C, Yin L, Cheng R, Zhan X, Xu K, Wang F, Zhang Y, He J 2017 Small 13 1604298
Google Scholar
[26] Yan F, Wei Z, Wei X, Lv Q, Zhu W, Wang K 2018 Small Methods 2 1700349
Google Scholar
[27] Li L, Han W, Pi L, Niu P, Han J, Wang C, Su B, Li H, Xiong J, Bando Y, Zhai T 2019 InfoMat. 1 54
[28] Zhou Z, Cui Y, Tan P H, Liu X, Wei Z 2019 J. Semicond. 40 061001
Google Scholar
[29] Venuthurumilli P K, Ye P D, Xu X 2018 ACS Nano 12 4861
Google Scholar
[30] Chen Y, Chen C, Kealhofer R, Liu H, Yuan Z, Jiang L, Suh J, Park J, Ko C, Choe H S, Avila J, Zhong M, Wei Z, Li J, Li S, Gao H, Liu Y, Analytis J, Xia Q, Asensio M C, Wu J 2018 Adv. Mater. 30 1800754
Google Scholar
[31] Chu F, Chen M, Wang Y, Xie Y, Liu B, Yang Y, An X, Zhang Y 2018 J. Mater. Chem. C 6 2509
Google Scholar
[32] Lin Y C, Komsa H P, Yeh C H, Björkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249
Google Scholar
[33] Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, Mion T R, Wang X, Zhou J, Fu Q, Fan H J, Tay B K, Song L, He R-H, Kloc C, Ajayan P M, Liu Z 2016 Adv. Funct. Mater. 26 1169
Google Scholar
[34] Zhang E, Wang P, Li Z, Wang H, Song C, Huang C, Chen Z G, Yang L, Zhang K, Lu S, Wang W, Liu S, Fang H, Zhou X, Yan H, Zou J, Wan X, Zhou P, Hu W, Xiu F 2016 ACS Nano 10 8067
Google Scholar
[35] Zhou W, Chen J, Gao H, Hu T, Ruan S, Stroppa A, Ren W 2019 Adv. Mater. 31 1804629
Google Scholar
[36] Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko V I, Tanigaki K 2014 ACS Nano 8 752
Google Scholar
[37] Yang S, Hu C, Wu M, Shen W, Tongay S, Wu K, Wei B, Sun Z, Jiang C, Huang L, Wang Z 2018 ACS Nano 12 8798
Google Scholar
[38] Zhang Z, Yang J, Zhang K, Chen S, Mei F, Shen G 2017 J. Mater. Chem. C 5 11288
Google Scholar
[39] Tian Z, Guo C, Zhao M, Li R, Xue J 2017 ACS Nano 11 2219
Google Scholar
[40] Wang X, Li Y, Huang L, Jiang X W, Jiang L, Dong H, Wei Z, Li J, Hu W 2017 J. Am. Chem. Soc. 139 14976
Google Scholar
[41] Yang Y, Liu S C, Wang X, Li Z, Zhang Y, Zhang G, Xue D J, Hu J S 2019 Adv. Funct. Mater. 29 1900411
Google Scholar
[42] Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S, Wan L J 2018 J. Am. Chem. Soc. 140 4150
Google Scholar
[43] Zhou Z, Long M, Pan L, Wang X, Zhong M, Blei M, Wang J, Fang J, Tongay S, Hu W, Li J, Wei Z 2018 ACS Nano 12 12416
Google Scholar
[44] Li L, Wang W, Gong P, Zhu X, Deng B, Shi X, Gao G, Li H, Zhai T 2018 Adv. Mater. 30 e1706771
Google Scholar
[45] Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S, Liu K, Li H, Zhai T 2018 Adv. Mater. 30 1804541
Google Scholar
[46] Wang X, Wu K, Blei M, Wang Y, Pan L, Zhao K, Shan C, Lei M, Cui Y, Chen B, Wright D, Hu W, Tongay S, Wei Z 2019 Adv. Elect. Mater. 5 1900419
Google Scholar
[47] Liu S, Xiao W, Zhong M, Pan L, Wang X, Deng H X, Liu J, Li J, Wei Z 2018 Nanotechnology 29 184002
Google Scholar
[48] Hwang E, Sarma S D 2008 Phys. Rev. B 77 115449
Google Scholar
[49] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372
Google Scholar
[50] Ling X, Huang S, Hasdeo E H, Liang L, Parkin W M, Tatsumi Y, Nugraha A R T, Puretzky A A, Das P M, Sumpter B G, Geohegan D B, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus M S 2016 Nano Lett. 16 2260
Google Scholar
[51] Hong T, Chamlagain B, Lin W, Chuang H J, Pan M, Zhou Z, Xu Y Q 2014 Nanoscale 6 8978
Google Scholar
[52] Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G, Hikita Y, Shen Z, Zhang S C, Chen X, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707
Google Scholar
[53] Ye L, Wang P, Luo W, Gong F, Liao L, Liu T, Tong L, Zang J, Xu J, Hu W 2017 Nano Energy 37 53
Google Scholar
[54] Bullock J, Amani M, Cho J, Chen Y Z, Ahn G H, Adinolfi V, Shrestha V R, Gao Y, Crozier K B, Chueh Y L 2018 Nat. Photonics 12 601
Google Scholar
[55] Amani M, Regan E, Bullock J, Ahn G H, Javey A 2017 ACS Nano 11 11724
Google Scholar
[56] Liu B, Köpf M, Abbas A N, Wang X, Guo Q, Jia Y, Xia F, Weihrich R, Bachhuber F, Pielnhofer F, Wang H, Dhall R, Cronin S B, Ge M, Fang X, Nilges T, Zhou C 2015 Adv. Mater. 27 4423
Google Scholar
[57] Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J 2014 2D Mater. 1 025001
Google Scholar
[58] Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A, Abellán G, Zamora F 2016 Angew. Chem., Int. Ed. 128 14557
Google Scholar
[59] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407
Google Scholar
[60] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[61] Zhao Y, Xu K, Pan F, Zhou C, Zhou F, Chai Y 2017 Adv. Funct. Mater. 27 1603484
Google Scholar
[62] Zhang X, Lai Z, Ma Q, Zhang H 2018 Chem. Soc. Rev. 47 3301
Google Scholar
[63] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
Google Scholar
[64] Mak K F, Shan J 2016 Nat. Photonics 10 216
Google Scholar
[65] Li S L, Tsukagoshi K, Orgiu E, Samori P 2016 Chem. Soc. Rev. 45 118
Google Scholar
[66] Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231
Google Scholar
[67] Chenet D A, Aslan O B, Huang P Y, Fan C, van der Zande A M, Heinz T F, Hone J C 2015 Nano Lett. 15 5667
Google Scholar
[68] Wolverson D, Crampin S, Kazemi A S, Ilie A, Bending S J 2014 ACS Nano 8 11154
Google Scholar
[69] Hafeez M, Gan L, Li H, Ma Y, Zhai T 2016 Adv. Mater. 28 8296
Google Scholar
[70] Song Q, Wang H, Pan X, Xu X, Wang Y, Li Y, Song F, Wan X, Ye Y, Dai L 2017 Sci. Rep. 7 1758
Google Scholar
[71] Song Q, Wang H, Xu X, Pan X, Wang Y, Song F, Wan X, Dai L 2016 RSC Adv. 6 103830
Google Scholar
[72] Zhong H X, Gao S, Shi J J, Yang L 2015 Phys. Rev. B 92 115438
Google Scholar
[73] Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H, Chen Y L 2017 Nat. Commun. 8 13973
Google Scholar
[74] Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud'ko S L, Canfield P C, Kaminski A 2016 Phys. Rev. B 94 121113
Google Scholar
[75] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 7 11038
Google Scholar
[76] Ho C H, Huang Y S, Tiong K K, Liao P C 1998 Phys. Rev. B 58 16130
Google Scholar
[77] Cui F, Feng Q, Hong J, Wang R, Bai Y, Li X, Liu D, Zhou Y, Liang X, He X, Zhang Z, Liu S, Lei Z, Liu Z, Zhai T, Xu H 2017 Adv. Mater. 29 1705015
Google Scholar
[78] Wen W, Zhu Y, Liu X, Hsu H P, Fei Z, Chen Y, Wang X, Zhang M, Lin K H, Huang F S, Wang Y P, Huang Y S, Ho C H, Tan P H, Jin C, Xie L 2017 Small 13 1603788
Google Scholar
[79] Liu D, Hong J, Wang X, Li X, Feng Q, Tan C, Zhai T, Ding F, Peng H, Xu H 2018 Adv. Funct. Mater. 28 1804696
Google Scholar
[80] Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, Puretzky A A, Geohegan D B, Kong J, Li J, Yang T, Saito R, Dresselhaus M S 2016 ACS Nano 10 8964
Google Scholar
[81] Niu C, Buhl P M, Bihlmayer G, Wortmann D, Blügel S, Mokrousov Y 2015 Nano Lett. 15 6071
Google Scholar
[82] Hu P, Zhang J, Yoon M, Qiao X F, Zhang X, Feng W, Tan P, Zheng W, Liu J, Wang X, Idrobo J C, Geohegan D B, Xiao K 2014 Nano Res. 7 694
Google Scholar
[83] Fei R, Li W, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104
Google Scholar
[84] Chang C, Wu M, He D, Pei Y, Wu C F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J F, He J, Zhao L D 2018 Science 360 778
Google Scholar
[85] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373
Google Scholar
[86] Zhou X, Hu X, Zhou S, Zhang Q, Li H, Zhai T 2017 Adv. Funct. Mater. 27 1703858
Google Scholar
[87] Zhou X, Hu X, Jin B, Yu J, Liu K, Li H, Zhai T 2018 Adv. Sci. 5 1800478
Google Scholar
[88] Mortazavi B, Rabczuk T 2018 Phys. E: Low-Dimensional Syst. Nanostructures 103 273
Google Scholar
[89] Yang S, Yang Y, Wu M, Hu C, Shen W, Gong Y, Huang L, Jiang C, Zhang Y, Ajayan P M 2018 Adv. Funct. Mater. 28 1707379
Google Scholar
[90] Li C, Wang S, Li C, Yu T, Jia N, Qiao J, Zhu M, Liu D, Tao X 2018 J. Mater. Chem. C 6 7219
Google Scholar
[91] Fan Z, Chang P C, Lu J G, Walter E C, Penner R M, Lin C H, Lee H P 2004 Appl. Phys. Lett. 85 6128
Google Scholar
[92] Wang J, Gudiksen M S, Duan X, Cui Y, Lieber C M 2001 Science 293 1455
Google Scholar
[93] Comini E, Baratto C, Faglia G, Ferroni M, Vomiero A, Sberveglieri G 2009 Prog. Mater. Sci. 54 1
Google Scholar
[94] Gao L, Zeng K, Guo J, Ge C, Du J, Zhao Y, Chen C, Deng H, He Y, Song H, Niu G, Tang J 2016 Nano Lett. 16 7446
Google Scholar
[95] Niu Y, Frisenda R, Flores E, Ares J R, Jiao W, Perez de Lara D, Sánchez C, Wang R, Ferrer I J, Castellanos-Gomez A 2018 Adv. Opt. Mater. 6 1800351
Google Scholar
[96] Niu S, Joe G, Zhao H, Zhou Y, Orvis T, Huyan H, Salman J, Mahalingam K, Urwin B, Wu J 2018 Nat. Photonics 12 392
Google Scholar
[97] Song H, Li T, Zhang J, Zhou Y, Luo J, Chen C, Yang B, Ge C, Wu Y, Tang J 2017 Adv. Mater. 29 1700441
Google Scholar
[98] Ma Z, Chai S, Feng Q, Li L, Li X, Huang L, Liu D, Sun J, Jiang R, Zhai T, Xu H 2019 Small 15 1805307
Google Scholar
[99] Tian N, Yang Y, Liu D, Liu X, Tan P H, Zhang D, Chang K, Li H, Zhao M, Li J R, Tang X, Zhang D, Zhang Z, Xiao W, Yan H, Zhang Y 2018 ACS Nano 12 1712
Google Scholar
[100] Lai J, Liu Y, Ma J, Zhuo X, Peng Y, Lu W, Liu Z, Chen J, Sun D 2018 ACS Nano 12 4055
Google Scholar
[101] Liu Y, Gu Q, Peng Y, Qi S, Zhang N, Zhang Y, Ma X, Zhu R, Tong L, Feng J, Liu Z, Chen J H 2018 Adv. Mater. 30 1706402
Google Scholar
[102] Qiu G, Du Y, Charnas A, Zhou H, Jin S, Luo Z, Zemlyanov D Y, Xu X, Cheng G J, Ye P D 2016 Nano Lett. 16 7364
Google Scholar
[103] Tong L, Duan X, Song L, Liu T, Ye L, Huang X, Wang P, Sun Y, He X, Zhang L, Xu K, Hu W, Xu J B, Zang J, Cheng G J 2019 Appl. Mater. Today 15 203
Google Scholar
[104] Huang L, Huo N, Li Y, Chen H, Yang J, Wei Z, Li J, Li S S 2015 J. Phys. Chem. Lett. 6 2483
Google Scholar
[105] Huang L, Li Y, Wei Z, Li J 2015 Sci. Rep. 5 16448
Google Scholar
[106] Huang L, Tao L, Gong K, Li Y, Dong H, Wei Z, Li J 2017 Phys. Rev. B 96 205303
Google Scholar
[107] Huo N, Kang J, Wei Z, Li S S, Li J, Wei S H 2014 Adv. Funct. Mater. 24 7025
Google Scholar
[108] Li B, Huang L, Zhao G, Wei Z, Dong H, Hu W, Wang L W, Li J 2016 Adv. Mater. 28 8271
Google Scholar
[109] Li B, Huang L, Zhong M, Huo N, Li Y, Yang S, Fan C, Yang J, Hu W, Wei Z, Li J 2015 ACS Nano 9 1257
Google Scholar
[110] Li B, Huang L, Zhong M, Li Y, Wang Y, Li J, Wei Z 2016 Adv. Elect. Mater. 2 1600298
Google Scholar
[111] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958
Google Scholar
[112] Li Y, Huang L, Li B, Wang X, Zhou Z, Li J, Wei Z 2016 ACS Nano 10 8938
Google Scholar
[113] Li Y, Wang Y, Huang L, Wang X, Li X, Deng H X, Wei Z, Li J 2016 ACS Appl. Mater. Interfaces 8 15574
Google Scholar
[114] Li Y, Wei Z, Li J 2015 Appl. Phys. Lett. 107 112103
Google Scholar
[115] Liu J, Liu X, Chen Z, Miao L, Liu X, Li B, Tang L, Chen K, Liu Y, Li J, Wei Z, Duan X 2019 Nano Res. 12 463
Google Scholar
[116] Liu S, Huang L, Wu K, Wei Z, Huang B, Meng X, Tongay S, Liu J, Li J, Chen H 2016 Appl. Phys. Lett. 109 112102
Google Scholar
[117] Pan L, Huang L, Zhong M, Jiang X W, Deng H X, Li J, Xia J B, Wei Z 2018 Nanoscale 10 22196
Google Scholar
[118] Wang X, Huang L, Peng Y, Huo N, Wu K, Xia C, Wei Z, Tongay S, Li J 2016 Nano Res. 9 507
Google Scholar
[119] Wang Y, Zhou W X, Huang L, Xia C, Tang L M, Deng H X, Li Y, Chen K Q, Li J, Wei Z 2017 2D Mater. 4 025097
Google Scholar
[120] Xiong W, Xia C, Du J, Wang T, Zhao X, Peng Y, Wei Z, Li J 2017 Phys. Rev. B 95 245408
Google Scholar
[121] Zhong M, Wang X, Liu S, Li B, Huang L, Cui Y, Li J, Wei Z 2017 Nanoscale 9 12364
Google Scholar
[122] Yan Y, Xiong W, Li S, Zhao K, Wang X, Su J, Song X, Li X, Zhang S, Yang H, Liu X, Jiang L, Zhai T, Xia C, Li J, Wei Z 2019 Adv. Opt. Mater
Google Scholar
计量
- 文章访问数: 24149
- PDF下载量: 1183