搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子驱动量子点制冷机

李唯 符婧 杨贇贇 何济洲

引用本文:
Citation:

光子驱动量子点制冷机

李唯, 符婧, 杨贇贇, 何济洲

Quantum dot refrigerator driven by photon

Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou
PDF
HTML
导出引用
  • 提出了由两个二能级量子点、一个光子库与两个导体端构成的光子驱动量子点制冷机模型. 基于主方程, 导出了制冷机的制冷率和制冷系数的表达式, 获得了制冷机处于紧耦合时所满足的条件. 接着, 数值模拟出该制冷机处于紧耦合和一般情况下制冷率与制冷系数之间的性能特征图, 确定了制冷机性能的优化范围. 最后, 以最大制冷率、最大制冷率下的制冷系数、最大制冷系数和最大制冷系数下的制冷率作为优化目标, 分析了光子库温度、跃迁系数和温比对制冷机性能的影响.
    A model of quantum dot refrigerator driven by photon, which consists of two two-level quantum dots, a photon reservoir and two leads, is proposed in this paper. Comparing with previous studies, we consider the transitions of electrons between different energy levels in a single quantum dot, which is more practical.Based on the theory of master equation and the assumption of weak coupling, we derive the expression of the cooling rate and the coefficient of performance of the refrigerator and obtain the condition of the tight coupling of the refrigerator operation. Next, we plot numerically the performance characteristic curves between the cooling rate and the coefficient of performance in the case of the tight coupling and in the general case. We find that the curves between the cooling rate and the coefficient of performance are opened loops for tight coupling, but they are closed loops in the general case. And we gain the conclusions that the refrigerator can be reversible under the condition of the tight coupling, while it can be irreversible in the general case. Then the optimally operating range of the refrigerator is determined. Finally, the effect of the temperature of the photon reservoir, transition coefficient, and temperature ratio on the performance of refrigerator under the conditions of the maximum cooling rate are studied, and also the coefficient of performance under the maximum cooling rate, the maximum coefficient of performanceand the cooling rate under the maximum coefficient of performanceare analyzed in detail.
      通信作者: 何济洲, hjzhou@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11365015)资助的课题
      Corresponding author: He Ji-Zhou, hjzhou@ncu.edu.cn
    • Funds: Supported by the National Natural Science Foundations of China (Grant No. 11365015)
    [1]

    Giazotto F, Heikkila T T, Luukanen A, Savin A M, Pekola J P 2006 Rev. Mod. Phys. 78 217Google Scholar

    [2]

    Koumoto K, Mori T 2013 Thermoelectric Nanomaterials: Materials Design and Applications (Vol. 182) (Berlin: Springer Press) pp255-285

    [3]

    Maciá E 2015 Thermoelectric Materials: Advances and Applications (Jenny: Stanford Publishing)

    [4]

    Pichanusakorn P, Bandaru P 2010 Mater. Sci. Eng. R 67 19Google Scholar

    [5]

    Benenti G, Casati G, Saito K, Whitney R S 2017 Phys. Reports 694 1Google Scholar

    [6]

    Sothmann B, Sánchez R, Jordan A N 2014 Nanotechnology 26 032001Google Scholar

    [7]

    Sánchez R, Büttiker M 2011 Phys. Rev. B 83 085428Google Scholar

    [8]

    Dare A M, Lombardo P 2017 Phys. Rev. B 96 115414Google Scholar

    [9]

    Zhang Y C, Gin G X, Chen J C 2015 Phys. Rev. E 91 052118Google Scholar

    [10]

    Sothmann B, Sánchez R, Jordan A N, Büttiker M 2012 Phys. Rev. B 85 205301Google Scholar

    [11]

    Zhang Y C, Zhang X, Ye Z L, Gin G X, Chen J C 2017 Appl. Phys. Lett. 110 153501Google Scholar

    [12]

    Jordan A N, Sothmann B, Sánchez R, Buttiker M 2013 Phys. Rev. B 87 075312Google Scholar

    [13]

    Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, Ritchie D A 2009 Phys. Rev. Lett. 102 146602Google Scholar

    [14]

    Sothmann B, Sánchez R, Jordan A N, Büttiker M 2013 N. J. Phys. 15 095021Google Scholar

    [15]

    Choi Y J, Jordan A N 2015 Physica E 74 465Google Scholar

    [16]

    Su S H, Zhang Y C, Chen J C, Shih T M 2016 Sci. Rep. 6 21425Google Scholar

    [17]

    Wohlman O E, Imry Y, Aharony A 2015 Phys. Rev. B 91 054302Google Scholar

    [18]

    Szukiewicz B, Eckern U, Wysokinski K I 2016 New J. Phys. 18 023050Google Scholar

    [19]

    Whitney R S, Sánchez R, Haupt F, Splettstoesser J 2016 Physica E 75 257Google Scholar

    [20]

    Lim J S, Sanchez D, Lopez R 2018 New J. Phys. 20 023038Google Scholar

    [21]

    Walldorf N, Jauho A P, Kaasbjerg K 2017 Phys. Rev. B 96 115415

    [22]

    Jiang J H, Entin-Wohlman O, Imry Y 2013 New J. Phys. 15 075021Google Scholar

    [23]

    Su H, Shi Z C, He J Z 2015 Chin. Phys. Lett. 32 100501Google Scholar

    [24]

    Lin Z B, Li W, Fu J, Yang Y Y, He J Z 2019 Chin. Phys. Lett. 36 060501Google Scholar

    [25]

    Josefsson M, Svilans A, Burke A M, Hoffmann E A, Fahlvik S, Thelander C, Leijnse M, Linke H 2018 Nature Nanotechnol. 13 920Google Scholar

    [26]

    Thierschmann H, Sanchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, Molenkamp L W 2015 Nature Nanotechnol. 10 854Google Scholar

    [27]

    Roche B, Roulleau P, Ulien T J, Jompol Y, Farrer I, Ritchie D A, Glattli D C 2015 Nature Commun. 6 6738Google Scholar

    [28]

    Hartmann F, Pfeffer P, Hofling S, Kamp M, Worschech L 2015 Phys. Rev. Lett. 114 146805Google Scholar

    [29]

    Cleuren B, Rutten B, van den Broeck C 2012 Phys. Rev. Lett. 108 120603Google Scholar

    [30]

    Levy A, Alicki R, Kosloff R 2012 Phys. Rev. Lett. 109 248901Google Scholar

    [31]

    Wang J H, Lai Y M, Ye Z L, He J Z, Ma Y L, Liao Q H 2015 Phys. Rev. E 91 050102Google Scholar

    [32]

    van den Broeck C 2005 Phys. Rev. Lett. 95 190602Google Scholar

    [33]

    Yuan Y, Wang R, He J Z, Ma Y L, Wang J H 2014 Phys. Rev. E 90 052151Google Scholar

    [34]

    Sheng S Q, Tu Z C 2014 Phys. Rev. E 89 012129Google Scholar

  • 图 1  光子驱动量子点制冷机模型图

    Fig. 1.  A model of a quantum dot refrigerator driven by photon.

    图 2  紧耦合条件下制冷率与制冷系数在不同温度${T_{\rm{S}}}$下的关系

    Fig. 2.  The relation curves of the cooling rate and the coefficient of performance at different temperature ${T_{\rm{S}}}$ under the condition of tight coupling.

    图 3  紧耦合条件下制冷率与制冷系数在不同跃迁系数${\varGamma _{n{\rm{r}}}}$下的关系

    Fig. 3.  The relation curves of the cooling rate and the coefficient of performance at different transition coefficient ${\varGamma _{n{\rm{r}}}}$ under the condition of tight coupling.

    图 4  一般情况下制冷率与制冷系数在不同温度${T_{\rm{S}}}$下的关系

    Fig. 4.  The relation curves of the cooling rate and the coefficient of performance at different temperature ${T_{\rm{S}}}$ in the general case.

    图 5  一般情况下制冷率与制冷系数在不同跃迁系数${\varGamma _{n{\rm{r}}}}$下的关系

    Fig. 5.  The relation curves of the cooling rate and the coefficient of performanceat different transition coefficient ${\varGamma _{n{\rm{r}}}}$ in the general case.

    图 6  在不同温度${T_{\rm{S}}}$下, 两个优化性能参数${\dot Q}_{\rm{R}}^{\max }$${\eta ^{{Q_{\rm{R}}}}}$随温比的变化

    Fig. 6.  The curves of two optimal performance parameters ${\dot Q}_{\rm{R}}^{\max }$ and ${\eta ^{{Q_{\rm{R}}}}}$ changing with the temperature ratio at different temperature ${T_{\rm{S}}}$

    图 7  在不同跃迁系数${\varGamma _{n{\rm{r}}}}$下, 两个优化性能参数${\dot Q}_{\rm{R}}^{\max }$${\eta ^{{Q_{\rm{R}}}}}$随着温比的变化

    Fig. 7.  The curves of two optimal performance parameters ${\dot Q}_{\rm{R}}^{\max }$ and ${\eta ^{{Q_{\rm{R}}}}}$ changing with the temperature ratio at different transition coefficient ${\varGamma _{n{\rm{r}}}}$

    图 8  在不同温度${T_{\rm{S}}}$下, 两个优化性能参数${\dot Q}_{\rm{R}}^{\max }$${\eta ^{{Q_{\rm{R}}}}}$随温比的变化

    Fig. 8.  The curves of two optimalperformance parameters ${\dot Q}_{\rm{R}}^{\max }$ and ${\eta ^{{Q_{\rm{R}}}}}$ changing with the temperature ratio at different temperature ${T_{\rm{S}}}$.

    图 10  在不同温度${T_{\rm{S}}}$下, 两个优化性能参数${\eta ^{\max }}$${\dot Q}_{\rm{R}}^\eta $随温比的变化

    Fig. 10.  The curves of two optimal performance parameters ${\eta ^{\max }}$ and ${\dot Q}_{\rm{R}}^\eta $ changing with the temperature ratio at different temperature ${T_{\rm{S}}}$.

    图 9  在不同跃迁系数${\varGamma _{n{\rm{r}}}}$下, 两个优化性能参数${\dot Q}_{\rm{R}}^{\max }$${\eta ^{{Q_{\rm{R}}}}}$随着温比的变化

    Fig. 9.  The curves of two optimal performance parameters ${\dot Q}_{\rm{R}}^{\max }$ and ${\eta ^{{Q_{\rm{R}}}}}$ changing with the temperature ratio at different transition coefficient ${\varGamma _{n{\rm{r}}}}$.

  • [1]

    Giazotto F, Heikkila T T, Luukanen A, Savin A M, Pekola J P 2006 Rev. Mod. Phys. 78 217Google Scholar

    [2]

    Koumoto K, Mori T 2013 Thermoelectric Nanomaterials: Materials Design and Applications (Vol. 182) (Berlin: Springer Press) pp255-285

    [3]

    Maciá E 2015 Thermoelectric Materials: Advances and Applications (Jenny: Stanford Publishing)

    [4]

    Pichanusakorn P, Bandaru P 2010 Mater. Sci. Eng. R 67 19Google Scholar

    [5]

    Benenti G, Casati G, Saito K, Whitney R S 2017 Phys. Reports 694 1Google Scholar

    [6]

    Sothmann B, Sánchez R, Jordan A N 2014 Nanotechnology 26 032001Google Scholar

    [7]

    Sánchez R, Büttiker M 2011 Phys. Rev. B 83 085428Google Scholar

    [8]

    Dare A M, Lombardo P 2017 Phys. Rev. B 96 115414Google Scholar

    [9]

    Zhang Y C, Gin G X, Chen J C 2015 Phys. Rev. E 91 052118Google Scholar

    [10]

    Sothmann B, Sánchez R, Jordan A N, Büttiker M 2012 Phys. Rev. B 85 205301Google Scholar

    [11]

    Zhang Y C, Zhang X, Ye Z L, Gin G X, Chen J C 2017 Appl. Phys. Lett. 110 153501Google Scholar

    [12]

    Jordan A N, Sothmann B, Sánchez R, Buttiker M 2013 Phys. Rev. B 87 075312Google Scholar

    [13]

    Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, Ritchie D A 2009 Phys. Rev. Lett. 102 146602Google Scholar

    [14]

    Sothmann B, Sánchez R, Jordan A N, Büttiker M 2013 N. J. Phys. 15 095021Google Scholar

    [15]

    Choi Y J, Jordan A N 2015 Physica E 74 465Google Scholar

    [16]

    Su S H, Zhang Y C, Chen J C, Shih T M 2016 Sci. Rep. 6 21425Google Scholar

    [17]

    Wohlman O E, Imry Y, Aharony A 2015 Phys. Rev. B 91 054302Google Scholar

    [18]

    Szukiewicz B, Eckern U, Wysokinski K I 2016 New J. Phys. 18 023050Google Scholar

    [19]

    Whitney R S, Sánchez R, Haupt F, Splettstoesser J 2016 Physica E 75 257Google Scholar

    [20]

    Lim J S, Sanchez D, Lopez R 2018 New J. Phys. 20 023038Google Scholar

    [21]

    Walldorf N, Jauho A P, Kaasbjerg K 2017 Phys. Rev. B 96 115415

    [22]

    Jiang J H, Entin-Wohlman O, Imry Y 2013 New J. Phys. 15 075021Google Scholar

    [23]

    Su H, Shi Z C, He J Z 2015 Chin. Phys. Lett. 32 100501Google Scholar

    [24]

    Lin Z B, Li W, Fu J, Yang Y Y, He J Z 2019 Chin. Phys. Lett. 36 060501Google Scholar

    [25]

    Josefsson M, Svilans A, Burke A M, Hoffmann E A, Fahlvik S, Thelander C, Leijnse M, Linke H 2018 Nature Nanotechnol. 13 920Google Scholar

    [26]

    Thierschmann H, Sanchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, Molenkamp L W 2015 Nature Nanotechnol. 10 854Google Scholar

    [27]

    Roche B, Roulleau P, Ulien T J, Jompol Y, Farrer I, Ritchie D A, Glattli D C 2015 Nature Commun. 6 6738Google Scholar

    [28]

    Hartmann F, Pfeffer P, Hofling S, Kamp M, Worschech L 2015 Phys. Rev. Lett. 114 146805Google Scholar

    [29]

    Cleuren B, Rutten B, van den Broeck C 2012 Phys. Rev. Lett. 108 120603Google Scholar

    [30]

    Levy A, Alicki R, Kosloff R 2012 Phys. Rev. Lett. 109 248901Google Scholar

    [31]

    Wang J H, Lai Y M, Ye Z L, He J Z, Ma Y L, Liao Q H 2015 Phys. Rev. E 91 050102Google Scholar

    [32]

    van den Broeck C 2005 Phys. Rev. Lett. 95 190602Google Scholar

    [33]

    Yuan Y, Wang R, He J Z, Ma Y L, Wang J H 2014 Phys. Rev. E 90 052151Google Scholar

    [34]

    Sheng S Q, Tu Z C 2014 Phys. Rev. E 89 012129Google Scholar

  • [1] 周亮亮, 吴宏博, 李学铭, 唐利斌, 郭伟, 梁晶. ZrS2量子点: 制备、结构及光学特性. 物理学报, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [2] 廖天军, 林比宏, 王宇珲. 新型高效热离子功率器件的性能特性研究. 物理学报, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [3] 张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂. 单光子调制频谱用于量子点荧光寿命动力学的研究. 物理学报, 2019, 68(1): 017803. doi: 10.7498/aps.68.20181797
    [4] 张荣, 卢灿灿, 李倩文, 刘伟, 白龙. 线性不可逆热力学框架下一个无限尺寸热源而有限尺寸冷源的制冷机的性能分析. 物理学报, 2018, 67(4): 040502. doi: 10.7498/aps.67.20172010
    [5] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [6] 刘志民, 赵谡玲, 徐征, 高松, 杨一帆. 红光量子点掺杂PVK体系的发光特性研究. 物理学报, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [7] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [8] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [9] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 王雪艳. 碳纳米管掺杂对聚合物聚(2-甲氧基-5-辛氧基)对苯乙炔-PbSe量子点复合材料性能的影响. 物理学报, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [10] 李霞, 冯东海, 潘贤群, 贾天卿, 单璐繁, 邓莉, 孙真荣. 室温下CdSe胶体量子点超快自旋动力学. 物理学报, 2012, 61(20): 207202. doi: 10.7498/aps.61.207202
    [11] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学. 物理学报, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [12] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [13] 何弦, 何济洲, 肖宇玲. 四能级量子制冷循环. 物理学报, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [14] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响. 物理学报, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [15] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [16] 王秀梅, 何济洲, 何弦, 肖宇玲. 非线性二极管系统构成的不可逆热机性能特征分析. 物理学报, 2010, 59(7): 4460-4465. doi: 10.7498/aps.59.4460
    [17] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [18] 邓宇翔, 颜晓红, 唐娜斯. 量子点环的电子输运研究. 物理学报, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [19] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [20] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征. 物理学报, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
计量
  • 文章访问数:  6990
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-16
  • 修回日期:  2019-08-29
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回