搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳电池阵二级轻气炮超高速撞击特性研究

郑建东 牛锦超 钟红仙 龚自正 曹燕

引用本文:
Citation:

太阳电池阵二级轻气炮超高速撞击特性研究

郑建东, 牛锦超, 钟红仙, 龚自正, 曹燕

Hypervelocity impact damage properties of solar arrays by using two-stage light gas gun

Zheng Jian-Dong, Niu Jin-Chao, Zhong Hong-Xian, Gong Zi-Zheng, Cao Yan
PDF
HTML
导出引用
  • 采用二级轻气炮对航天器太阳电池阵开展了超高速撞击地面模拟试验, 研究了不同撞击位置、撞击速度、弹丸直径等工况下太阳电池阵的机械损伤特性. 试验结果显示: 地面模拟试验产生的穿孔区、玻璃盖片剥落区、裂纹扩展区等损伤形貌与在轨撞击产生的损伤形貌符合良好; 穿孔直径和玻璃盖片剥落区直径与弹丸的直径和撞击速度相关. 建立了撞击角为0°时太阳电池阵穿孔直径、玻璃盖片剥落区直径的损伤方程. 本文的研究方法对我国航天器太阳电池阵超高速撞击损伤特征研究有借鉴意义, 所建立的损伤方程对我国航天工程实践具有重要的工程应用价值.
    Using two-stage light gas gun, we study the hypervelocity impact characteristics of spacecraft key component, solar cell arrays. The damage morphologies in the ground simulation tests match well with those on-situ orbital impacts. The main characteristics of mechanical damage, including the central pit, cover glass shatter zone, and conchiodal spallation, are measured by using a microscope under 20 times magnification. To study the mechanical damage properties in solar arrays, we carry out 15 shots totally, under different impact locations, impact velocities, and particle diameters. Under the condition of impact angel of zero degree, the damage equation of perforation diameter of solar arrays and the damage equation of the diameter of shatter zone in cover glass are developed, respectively. The results show that the perforation diameter and the diameter of cover glass shatter zone are mainly related to the diameter of particle with 2/3 power, while related to the velocity of impact with 1/6 power. Compared with the damage equation in the literature, the damage equations in this article are very suitable for describing hypervelocity impact damage properties of solar arrays used in our country's spacecraft. The results are of significance for our country's aerospace engineering.
      通信作者: 牛锦超, 51506283@qq.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010 CB731600)和国家国防科工局空间碎片专项(批准号: KJSP06209)资助的课题
      Corresponding author: Niu Jin-Chao, 51506283@qq.com
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2010 CB731600) and the Specialized Research Program for the Protection against Space Debris of China (Grant No. KJSP06209)
    [1]

    Drolshagen G, Mcdonnell T, Mandeville J C, Moussic A 2006 Acta Astron. 58 471Google Scholar

    [2]

    Medina D F, Wright L, Campbell M 2001 Advances in Space Research 28 1347Google Scholar

    [3]

    Mcdonnell J A, Catling D J, Herbert M K, Clegg R A 2001 Int. J. Impact Engin. 26 487Google Scholar

    [4]

    Stansbery E G, Foster J L 2004 Advances in Space Research 34 878Google Scholar

    [5]

    Drolshagen G, Mcdonnell J A, Stevenson T, Aceti R, Gerlach L 1995 Advances in Space Research 16 85

    [6]

    Moussi A, Drolshagen G, Mcdonnell J A, et al 2005 Advances in Space Research 35 1243Google Scholar

    [7]

    Graham G A, Mcbride N, Kearsley A T, Drolshagen G, Green S F, Mcdonnell J A M, Grady M M, Wright I P 2001 Int. J. Impact Engin. 26 263Google Scholar

    [8]

    Kearsley A T, Graham G A, Mcdonnell J A M, Taylor E A, Drolshagen G, Chater R J, McPhail D, Burchell M J 2007 Advances in Space Research 39 590Google Scholar

    [9]

    Christie R J, Best S R, Myhre C A 1994 NASA Center for AeroSpace Information (CASI), NASA Technical Memorandum 106509 1

    [10]

    Burt R R, Christiansen E L 2001 Orbital Debris Quarterly News 6 2

    [11]

    Burt R R, Christiansen E L 2001 NASA Johnson Space Center Report No. JSC- 29485 1

    [12]

    Stadermann F J, Heiss C H, Reichling M 1997 Advances in Space Research 20 1517Google Scholar

    [13]

    Akahoshi Y, Nakamura T, Fukushige S, Furusawa N, Kusunoki S, Machida Y, Koura T, Watanabe K, Hosoda S, Fujita T, Cho M 2008 Int. J. Impact Engin. 35 1678Google Scholar

    [14]

    Harano T, Machida Y, Fukushige S, Koura T, Hosoda S, Cho M, Akahoshi Y 2006 Int. J. Impact Engin. 33 326Google Scholar

    [15]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 物理学报 57 7950Google Scholar

    Huang J G, Han W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar

    [16]

    李宏伟, 黄建国, 韩建伟, 蔡明辉, 李小银, 高著秀 2010 航天器环境工程 27 290Google Scholar

    Li H W, Huang J G, Han J W, Cai M H, Li X Y, Gao Z X 2010 Spacecraft Environment Engineering 27 290Google Scholar

    [17]

    张立佼 2015 硕士学位论文 (沈阳: 沈阳理工大学)

    Zhang L J 2005 M. S. Thesis (Shenyang: Shenyang Ligong University) (in Chinese)

    [18]

    Tang En LLng, Li Z, Zhang Q M, Wang M, Xiang S H, Liu S H, He L P, Han Y F, Xia J, Wang H L, Xu M Y 2016 Int. J. Appl. Electromagn. Mech. 51 337Google Scholar

    [19]

    姜东升, 郑世贵, 马宁, 刘莹, 邱羽玲 2017 航天器工程 26 114Google Scholar

    Jiang D S, Zheng S G, Ma N, Liu Y, Qiu Y L 2017 Spacecraft Engineering 26 114Google Scholar

    [20]

    张书锋, 柴昊, 周玉新, 张明志, 刘振风, 王田 2016 爆炸与冲击 36 386Google Scholar

    Zhang SF, Chai H, Zhou Y X, Zhang M Z, Liu Z F, Wang T 2016 Explosion and Shock Waves 36 386Google Scholar

  • 图 1  太阳电池片单元与碳纤维蜂窝板试样

    Fig. 1.  Experimental speicmen: Solar array cells and carbon fiber honeycomb plate.

    图 2  超高速撞击试件照片

    Fig. 2.  Photograph of experimental specimen in hypervelocity tests.

    图 3  撞击点位置示意图 (a)单片中心A; (b)单片边缘B; (c)两片连接处C

    Fig. 3.  Impact point location: (a) Center of a cell; (b) edge of a cell; (c) joints of two or more cells.

    图 4  太阳电池片损伤形貌 (a)撞击单片中心区域No.5; (b)撞击两片连接处No.12; (c)撞击单片边界No.8

    Fig. 4.  Damage morphology of solar cells: (a) Center of a cell; (b) joints of two cells; (c) edge of a cell.

    图 5  哈勃望远镜太阳电池阵电池面超高速撞击穿孔形貌[1,6]

    Fig. 5.  A front-back perforation of the solar arrays exposed on the hubble space telescope caused by orbital debris impact[1,6]

    图 6  穿孔面积与剥落区面积(No.16)

    Fig. 6.  Measured parameters of perforation hole area and conchoidal area (No.16).

    图 7  穿孔直径Dh与弹丸直径d的关系

    Fig. 7.  Relationship between projectile diameter d and perforation diameter Dh.

    图 8  穿孔直径Dh与撞击速度v的关系

    Fig. 8.  Relationship between perforation diameter Dh and impact velocity v.

    图 9  穿孔直径Dh方程的曲线

    Fig. 9.  Equations of perforation diameter Dh.

    图 10  贝壳状剥落区直径Ds方程的曲线(撞击位置类型A)

    Fig. 10.  Equations of conchoidal diameter Ds (Type A of impact position).

    图 11  贝壳状剥落区直径Ds方程的曲线(撞击位置类型B, C)

    Fig. 11.  Equations of conchoidal diameter Ds (Type B and C of impact position).

    图 12  穿孔直径Dh与剥落区等效直径Ds的关系

    Fig. 12.  Relationship between perforation diameter Dh and conchoidal diameter Ds.

    表 1  试验结果

    Table 1.  Test result.

    试样编号弹丸直径d/mm弹丸速度v/km·s–1穿孔直径Dh/mm剥落区直径Ds/mm撞击点分组
    No.013.043.2133.918.15A1
    No.023.026.2455.1711.93B1
    No.033.046.0934.8110.65A2
    No.045.006.3017.1614.42A1
    No.055.004.0976.3112.65A1
    No.065.005.2426.6713.83A2
    No.074.026.5815.8611.70A1
    No.085.003.2476.3719.15B1
    No.105.004.3326.7013.50B1
    No.114.045.1275.5818.26C1
    No.125.003.2056.9012.83C2
    No.142.046.3984.2110.06B1
    No.151.006.6752.485.93A1
    No.164.525.8927.0717.92B2
    下载: 导出CSV

    表 2  穿孔直径方程的检验

    Table 2.  Comparison between the equation values and experimental data.

    试样编号弹丸直径d/mm弹丸速度v/km·s–1穿孔直径Dh/mm撞击位置类型本文方程预测Dh预测误差
    No.033.046.0934.81A5.055.0%
    No.065.005.2426.67A6.862.8%
    No.125.003.2056.90B6.32–8.4%
    No.164.525.8927.07A6.54–7.5%
    下载: 导出CSV
  • [1]

    Drolshagen G, Mcdonnell T, Mandeville J C, Moussic A 2006 Acta Astron. 58 471Google Scholar

    [2]

    Medina D F, Wright L, Campbell M 2001 Advances in Space Research 28 1347Google Scholar

    [3]

    Mcdonnell J A, Catling D J, Herbert M K, Clegg R A 2001 Int. J. Impact Engin. 26 487Google Scholar

    [4]

    Stansbery E G, Foster J L 2004 Advances in Space Research 34 878Google Scholar

    [5]

    Drolshagen G, Mcdonnell J A, Stevenson T, Aceti R, Gerlach L 1995 Advances in Space Research 16 85

    [6]

    Moussi A, Drolshagen G, Mcdonnell J A, et al 2005 Advances in Space Research 35 1243Google Scholar

    [7]

    Graham G A, Mcbride N, Kearsley A T, Drolshagen G, Green S F, Mcdonnell J A M, Grady M M, Wright I P 2001 Int. J. Impact Engin. 26 263Google Scholar

    [8]

    Kearsley A T, Graham G A, Mcdonnell J A M, Taylor E A, Drolshagen G, Chater R J, McPhail D, Burchell M J 2007 Advances in Space Research 39 590Google Scholar

    [9]

    Christie R J, Best S R, Myhre C A 1994 NASA Center for AeroSpace Information (CASI), NASA Technical Memorandum 106509 1

    [10]

    Burt R R, Christiansen E L 2001 Orbital Debris Quarterly News 6 2

    [11]

    Burt R R, Christiansen E L 2001 NASA Johnson Space Center Report No. JSC- 29485 1

    [12]

    Stadermann F J, Heiss C H, Reichling M 1997 Advances in Space Research 20 1517Google Scholar

    [13]

    Akahoshi Y, Nakamura T, Fukushige S, Furusawa N, Kusunoki S, Machida Y, Koura T, Watanabe K, Hosoda S, Fujita T, Cho M 2008 Int. J. Impact Engin. 35 1678Google Scholar

    [14]

    Harano T, Machida Y, Fukushige S, Koura T, Hosoda S, Cho M, Akahoshi Y 2006 Int. J. Impact Engin. 33 326Google Scholar

    [15]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 物理学报 57 7950Google Scholar

    Huang J G, Han W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar

    [16]

    李宏伟, 黄建国, 韩建伟, 蔡明辉, 李小银, 高著秀 2010 航天器环境工程 27 290Google Scholar

    Li H W, Huang J G, Han J W, Cai M H, Li X Y, Gao Z X 2010 Spacecraft Environment Engineering 27 290Google Scholar

    [17]

    张立佼 2015 硕士学位论文 (沈阳: 沈阳理工大学)

    Zhang L J 2005 M. S. Thesis (Shenyang: Shenyang Ligong University) (in Chinese)

    [18]

    Tang En LLng, Li Z, Zhang Q M, Wang M, Xiang S H, Liu S H, He L P, Han Y F, Xia J, Wang H L, Xu M Y 2016 Int. J. Appl. Electromagn. Mech. 51 337Google Scholar

    [19]

    姜东升, 郑世贵, 马宁, 刘莹, 邱羽玲 2017 航天器工程 26 114Google Scholar

    Jiang D S, Zheng S G, Ma N, Liu Y, Qiu Y L 2017 Spacecraft Engineering 26 114Google Scholar

    [20]

    张书锋, 柴昊, 周玉新, 张明志, 刘振风, 王田 2016 爆炸与冲击 36 386Google Scholar

    Zhang SF, Chai H, Zhou Y X, Zhang M Z, Liu Z F, Wang T 2016 Explosion and Shock Waves 36 386Google Scholar

  • [1] 殷茂淑, 杨广, 王训春, 范斌, 姜德鹏, 杨洪东. 空间太阳电池阵应变规律研究. 物理学报, 2021, 70(19): 198801. doi: 10.7498/aps.70.20210320
    [2] 郑建东, 周江, 皮晓丽, 邹晨, 李一帆, 徐坤博, 龚自正, 胡帼杰. 空间碎片超高速撞击下太阳电池阵伏安特性. 物理学报, 2021, 70(18): 188801. doi: 10.7498/aps.70.20210458
    [3] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟. 物理学报, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [4] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究. 物理学报, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [5] 李宏伟, 韩建伟, 吴逢时, 蔡明辉, 张振龙. 微小空间碎片撞击发光信号监测及应用研究. 物理学报, 2014, 63(12): 129601. doi: 10.7498/aps.63.129601
    [6] 岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 兰慕杰. 质子辐射损伤对单结GaAs/Ge太阳电池暗特性参数的影响. 物理学报, 2014, 63(18): 188101. doi: 10.7498/aps.63.188101
    [7] 侯明强, 龚自正, 徐坤博, 郑建东, 曹燕, 牛锦超. 密度梯度薄板超高速撞击特性的实验研究. 物理学报, 2014, 63(2): 024701. doi: 10.7498/aps.63.024701
    [8] 蔡明辉, 吴逢时, 李宏伟, 韩建伟. 空间微小碎片超高速撞击诱发的等离子体特性研究. 物理学报, 2014, 63(1): 019401. doi: 10.7498/aps.63.019401
    [9] 张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武. 空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制. 物理学报, 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [10] 李宏伟, 韩建伟, 蔡明辉, 吴逢时. 微小空间碎片撞击诱发放电效应研究. 物理学报, 2013, 62(22): 229601. doi: 10.7498/aps.62.229601
    [11] 黄建国, 刘丹秋, 高著秀, 李宏伟, 蔡明辉, 韩建伟. 空间微小碎片累积撞击损伤效应加速模拟研究. 物理学报, 2012, 61(2): 029601. doi: 10.7498/aps.61.029601
    [12] 高著秀, 李宏伟, 蔡明辉, 刘丹秋, 黄建国, 韩建伟. 超高速空间微小碎片撞击充电材料诱发的放电. 物理学报, 2012, 61(3): 039601. doi: 10.7498/aps.61.039601
    [13] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [14] 李宏伟, 韩建伟, 黄建国, 蔡明辉, 李小银, 高著秀. 利用超高速撞击产生的等离子体测量微粒速度的方法研究. 物理学报, 2010, 59(2): 1385-1390. doi: 10.7498/aps.59.1385
    [15] 韩晓艳, 侯国付, 魏长春, 张晓丹, 戴志华, 李贵君, 孙建, 陈新亮, 张德坤, 薛俊明, 赵颖, 耿新华. 高速沉积本征微晶硅的优化及其在太阳电池中的应用. 物理学报, 2009, 58(6): 4254-4259. doi: 10.7498/aps.58.4254
    [16] 刘永生, 杨文华, 朱艳燕, 陈静, 杨正龙, 杨金焕. 新型空间硅太阳电池纳米减反射膜系的优化设计. 物理学报, 2009, 58(7): 4992-4996. doi: 10.7498/aps.58.4992
    [17] 赵慧杰, 何世禹, 孙彦铮, 孙强, 肖志斌, 吕伟, 黄才勇, 肖景东, 吴宜勇. 100 keV质子辐照对空间GaAs/Ge太阳电池光电效应的影响. 物理学报, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [18] 胡建民, 吴宜勇, 钱勇, 杨德庄, 何世禹. GaInP/GaAs/Ge三结太阳电池的电子辐照损伤效应. 物理学报, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [19] 韩晓艳, 侯国付, 李贵君, 张晓丹, 袁育杰, 张德坤, 陈新亮, 魏长春, 孙 健, 耿新华. 低速p/i界面缓冲层对高速沉积微晶硅太阳电池性能的影响. 物理学报, 2008, 57(8): 5284-5289. doi: 10.7498/aps.57.5284
    [20] 黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银. 空间微小碎片对低轨道航天器太阳电池表面撞击损伤研究. 物理学报, 2008, 57(12): 7950-7954. doi: 10.7498/aps.57.7950
计量
  • 文章访问数:  8217
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-23
  • 修回日期:  2019-08-23
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回