搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度卷积神经网络的大气湍流相位提取

徐启伟 王佩佩 曾镇佳 黄泽斌 周新星 刘俊敏 李瑛 陈书青 范滇元

引用本文:
Citation:

基于深度卷积神经网络的大气湍流相位提取

徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元

Extracting atmospheric turbulence phase using deep convolutional neural network

Xu Qi-Wei, Wang Pei-Pei, Zeng Zhen-Jia, Huang Ze-Bin, Zhou Xin-Xing, Liu Jun-Min, Li Ying, Chen Shu-Qing, Fan Dian-Yuan
PDF
HTML
导出引用
  • 光束在自由空间中传播时容易受到大气湍流的影响, 其对传输光束的影响相当于附加一个随机噪声相位, 导致传输光束质量下降. 本文提出了一种基于深度卷积神经网络(convolutional neural network, CNN)的湍流相位信息提取方法, 该方法采用受湍流影响的光强图为特征提取对象, 经过对海量样本进行自主学习后, CNN的损失函数值收敛到0.02左右, 其在测试集上的平均损失函数值低于0.03. 训练好的CNN模型具有很好的泛化能力, 可以直接根据输入的光强图准确提取出湍流相位. 利用I5-8500 CPU, 预测$C_{\rm{n}}^2 = 1 \times $${10^{ - 14}}\;{{\rm{m}}^{ - 2/3}} $, $C_{\rm{n}}^2 = 5 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$$C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$三种湍流强度的湍流相位所需要的平均时间低至$5 \times {10^{ - 3}}\;{\rm{s}}$. 此外, CNN的湍流相位提取能力可以通过提高计算能力或者优化模型结构来进一步提升. 这些结果表明, 基于CNN的湍流相位提取方法能够有效的提取湍流相位, 在湍流补偿、大气湍流特性研究和图像重构等方面具有重要的应用价值.
    When a light beam transmits in free space, it is easily affected by atmospheric turbulence. The effect on transmitted light is equivalent to adding a random noise phase to it, which leads its transmission quality to deteriorate. The method of improving the quality of transmitted beams is usually to compensate for the phase distortion at the receiver by adding reverse turbulence phase, and the premise of this method is to obtain the turbulence phase carried by the distorted beam. The adaptive optics system is the most common way to extract the phase information. However, it is inefficient to be applied to varying turbulence environments due to the fact that a wave-front sensor and complex optical system are usually contained. Deep convolutional neural network (CNN) that can directly capture feature information from images is widely used in computer vision, language processing, optical information processing, etc. Therefore, in this paper proposed is a turbulence phase information extraction scheme based on the CNN, which can quickly and accurately extract the turbulence phase from the intensity patterns affected by atmosphere turbulence. The CNN model in this paper consists of 17 layers, including convolutional layers, pooling layers and deconvolutional layers. The convolutional layers and pooling layers are used to extract the turbulent phase from the feature image, which is the core structure of the network. The function of the deconvolutional layers is to visualize the extracted turbulence information and output the final predicted turbulence phase. After learning a huge number of samples, the loss function value of CNN converges to about 0.02, and the average loss function value on the test set is lower than 0.03. The trained CNN model has a good generalization capability and can directly extract the turbulent phase according to the input light intensity pattern. Using an I5-8500 CPU, the average time to predict the turbulent phase is as low as s under the condition of $C_{{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$, $ 5 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$, and $1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$. In addition, the turbulence phase extraction capability of CNN can be further enhanced by improving computing power or optimizing model structure. These results indicate that the CNN-based turbulence phase extraction method can effectively extract the turbulence phase, which has important application value in turbulence compensation, atmospheric turbulence characteristics research and image reconstruction.
      通信作者: 刘俊敏, liujunmin@sztu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805149, 61575127, 61490713, 61571188)、广东省自然科学基金(批准号: 2016A030310065)、广东省教育委员会(批准号: 2016KCXTD006)、深圳市科技计划基础研究项目(批准号: JCYJ20180507182035270)、深圳市科技计划项目(批准号: ZDSYS201707271014468)和二维材料光电科技国际合作实验室(批准号: 2DMOST2018003)资助的课题
      Corresponding author: Liu Jun-Min, liujunmin@sztu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805149, 61575127, 61490713, 61571188), the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030310065), the Educational Commission of Guangdong Province, China (Grant No. 2016KCXTD006), the Program of Fundamental Research of Shenzhen Science and Technology Planning, China (Grant No. JCYJ20180507182035270), Science and Technology Planning Project of Shenzhen, China (Grant No. ZDSYS201707271014468), and International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, China (Grant No. 2DMOST2018003)
    [1]

    Zheng G, Wang L, Wang J, Zhou M C, Song M M 2018 J. Mod. Opt. 65 1616Google Scholar

    [2]

    Yuan Y S, Liu D, Zhou Z X, Xu H F, Qu J, Cai Y J 2018 Opt. Express 26 21861Google Scholar

    [3]

    Li Y Q, Wang L G, Wu Z S 2018 Optik 158 1349Google Scholar

    [4]

    Wang Y K, Xu H Y, Li D Y, Wang R, Jin C B, Yin X H, Gao S J, Mu Q Q, Xuan L, Cao Z L 2018 Sci. Rep. 8 1124Google Scholar

    [5]

    Gerçekcioğlu H 2019 Opt. Commun. 439 233Google Scholar

    [6]

    Usenko V C, Peuntinger C, Heim B, Günthner K, Derkach I, Elser D, Marquardt C, Filip R, Leuchs G 2018 Opt. Express 26 31106Google Scholar

    [7]

    Hope D A, Jefferies S M, Hart M, Nagy J G 2016 Opt. Express 24 12116Google Scholar

    [8]

    Wen W, Jin Y, Hu M J, Liu X L, Cai Y J, Zou C J, Luo M, Zhou L W, Chu X X 2018 Opt. Commun. 415 48Google Scholar

    [9]

    Ren Y X, Xie G D, Huang H, Ahmed N, Yan Y, Li L, Bao C J, Lavery M P, Tur M, Neifeld M A, Boyd R W, Shapiro J H, Willner A E 2014 Optica 1 376Google Scholar

    [10]

    Yin X L, Chang H, Cui X Z, Ma J X, Wang Y J, Wu G H, Zhang L J, Xin X J 2018 Appl. Opt. 57 7644Google Scholar

    [11]

    Neo R, Goodwin M, Zheng J, Lawrence J, Leon-Saval S, Bland-Hawthorn J, Molina-Terriza G 2016 Opt. Express 24 2919Google Scholar

    [12]

    Gerchberg R W 1972 Optik 35 237

    [13]

    Fu S Y, Zhang S K, Wang T L, Gao C Q 2016 Opt. Lett. 41 3185Google Scholar

    [14]

    Nelson W, Palastro J P, Wu C, Davis C C 2016 Opt. Lett. 41 1301Google Scholar

    [15]

    Hinton G E, Salakhutdinov R R 2006 Science 313 504Google Scholar

    [16]

    Lecun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [17]

    Li J, Zhang M, Wang D S, Wu S J, Zhan Y Y 2018 Opt. Express 26 10494Google Scholar

    [18]

    Roddier N A 1990 Opt. Eng. 29 1174Google Scholar

    [19]

    Mcglamery B L 1967 J. Opt. Soc. Am. 57 293Google Scholar

    [20]

    Zhao S M, Leach J, Gong L Y, Ding J, Zheng B Y 2012 Opt. Express 20 452Google Scholar

    [21]

    Rumerlhar D E 1986 Nature 323 533Google Scholar

    [22]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE 86 2278Google Scholar

    [23]

    Barakat R, Newsam G 1985 J. Opt. Soc. Am. A 2 2027Google Scholar

    [24]

    Guo Y M, Liu Y, Oerlemans A, Lao S Y, Wu S, Lew M S 2016 Neurocomputing 187 27Google Scholar

    [25]

    Hinton G E, Osindero S, Teh Y 2006 Neural Comput. 18 1527Google Scholar

    [26]

    Qian Y M, Bi M X, Tan T, Yu K 2016 IEEE Trans. Audio Speech Lang. Process. 24 2263Google Scholar

    [27]

    Sheridan P M, Cai F X, Du C, Ma W, Zhang Z Y, Lu W D 2017 Nat. Nanotech. 12 784Google Scholar

  • 图 1  各湍流强度下的随机相位屏 (a), (b) $C_{{n}}^2 \!=\! 1 \!\!\times\!\! {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (c), (d) $C_{{n}}^2 \!=\! 5 \!\!\times\!\!{10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (e), (f) $C_{\rm{n}}^2 \!=\! 1 \!\!\times\!\! {10^{ - 13}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$

    Fig. 1.  Random phase screen at each turbulence intensity: (a), (b) $C_{{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (c), (d) $C_{\rm{n}}^2 = 5 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (e), (f) $C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$.

    图 2  各湍流强度影响下传输光束截面光斑 (a)初始高斯光束; (b), (c) $C_{\rm{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}}^{ - 2/3}}$; (d), (e) $C_{\rm{n}}^2 = 5 \times $ ${10^{ - 14}}\;{{\rm{m}}^{ - 2/3}} $; (f), (g) $C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}}^{ - 2/3}}$

    Fig. 2.  The cross-section spot of transmission beam at each turbulence intensity: (a) Initial Gaussian beam; (b), (c) $C_{\rm{n}}^2 = $ $1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (d), (e) $C_{\rm{n}}^2 = 5 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (f), (g) $C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$.

    图 3  提取湍流相位的CNN结构

    Fig. 3.  The CNN structure of extracting the turbulent phase.

    图 4  训练过程损失函数曲线

    Fig. 4.  The loss function curve of training process.

    图 5  训练过程提取到的湍流相 (a)与(b), (c)与(d), (e)与(f), (g)与(h), (i)与(j)和(k)与(l)的迭代次数分别为1, 100, 500, 4000, 8000, 14000

    Fig. 5.  The turbulent phase during the training process: The number of iterations of (a) and (b), (c) and (d), (e) and (f), (g) and (h), (i) and (j), and (k) and (l) is 1, 100, 500, 4000, 8000, 14000.

    图 6  各湍流强度损失函数曲线

    Fig. 6.  The loss function curve at each turbulence intensity.

    图 7  不同湍流强度下, 经过CNN提取到的湍流相位 (a), (b), (c)初始高斯光束; (d), (e), (f) 受大气湍流影响的高斯光束; (g), (h), (i)实际的大气湍流相位; (j), (k), (l) CNN输出的预测湍流相位

    Fig. 7.  The predicted turbulent phase based on CNN at each turbulence intensity: (a), (b), (c) Initial Gaussian beam; (d), (e), (f) Gaussian beam affected by atmospheric turbulence; (g), (h), (i) the actual turbulence phase; (j), (k), (l) the output phase of CNN.

    图 8  CNN与GS算法提取湍流相位效果对比 (a), (b), (c)受湍流强度为$C_{\rm{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$影响的高斯光束; (d), (e), (f)实际湍流相位; (g), (h), (i)基于CNN模型提取的湍流相位; (j), (k), (l) GS算法提取的湍流相位

    Fig. 8.  The comparison of CNN and GS algorithm for extracting turbulence phase: (a), (b), (c) Gaussian beam affected by atmospheric turbulence with $C_{\rm{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$; (d), (e), (f) the actual turbulence phase; (g), (h), (i) the predicted turbulent phase based on CNN; (j), (k), (l) the predicted turbulent phase based on GS algorithm.

    图 9  训练及验证测试结果 (a)训练过程损失函数曲线; (b)训练过程中利用验证集测试得到的预测湍流相位

    Fig. 9.  Training and validation set test results: (a) The loss function curve of training process; (b) the predicted turbulence phase obtained by testing the validation set during training.

    表 1  仿真参数

    Table 1.  Parameter of simulation.

    ParameterSimulation Value
    Number of Grid Elements N128
    Grid spacing ${{\varDelta x} / {\rm{cm}}}$About 0.047
    Laser wavelength ${\lambda / {\rm{nm}}}$1550
    Initial ${1 / {\rm{e}}}$ amplitude radius ${{{\omega _0}} / {\rm{cm}}}$2
    Total path length ${L / {\rm{m}}}$20
    Inner scale of Turbulence ${{{l_0}} / {\rm{m}}}$$2 \times {10^{ - 4}}$
    Outer scale of Turbulence ${{{L_0}} / {\rm{m}}}$50
    Number of phase screens n1
    下载: 导出CSV

    表 2  两方法预测时间对比

    Table 2.  The predicted time comparison of two methods.

    Data SetAverage time/s
    GS algorithm (70 iterations)CNN model
    $C_{\rm{n}}^2 = 1 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$0.390.0049
    $C_{\rm{n}}^2 = 5 \times {10^{ - 14}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$0.390.0048
    $C_{\rm{n}}^2 = 1 \times {10^{ - 13}}\;{{\rm{m}} ^{{{ - 2} / 3}}}$0.410.0051
    下载: 导出CSV
  • [1]

    Zheng G, Wang L, Wang J, Zhou M C, Song M M 2018 J. Mod. Opt. 65 1616Google Scholar

    [2]

    Yuan Y S, Liu D, Zhou Z X, Xu H F, Qu J, Cai Y J 2018 Opt. Express 26 21861Google Scholar

    [3]

    Li Y Q, Wang L G, Wu Z S 2018 Optik 158 1349Google Scholar

    [4]

    Wang Y K, Xu H Y, Li D Y, Wang R, Jin C B, Yin X H, Gao S J, Mu Q Q, Xuan L, Cao Z L 2018 Sci. Rep. 8 1124Google Scholar

    [5]

    Gerçekcioğlu H 2019 Opt. Commun. 439 233Google Scholar

    [6]

    Usenko V C, Peuntinger C, Heim B, Günthner K, Derkach I, Elser D, Marquardt C, Filip R, Leuchs G 2018 Opt. Express 26 31106Google Scholar

    [7]

    Hope D A, Jefferies S M, Hart M, Nagy J G 2016 Opt. Express 24 12116Google Scholar

    [8]

    Wen W, Jin Y, Hu M J, Liu X L, Cai Y J, Zou C J, Luo M, Zhou L W, Chu X X 2018 Opt. Commun. 415 48Google Scholar

    [9]

    Ren Y X, Xie G D, Huang H, Ahmed N, Yan Y, Li L, Bao C J, Lavery M P, Tur M, Neifeld M A, Boyd R W, Shapiro J H, Willner A E 2014 Optica 1 376Google Scholar

    [10]

    Yin X L, Chang H, Cui X Z, Ma J X, Wang Y J, Wu G H, Zhang L J, Xin X J 2018 Appl. Opt. 57 7644Google Scholar

    [11]

    Neo R, Goodwin M, Zheng J, Lawrence J, Leon-Saval S, Bland-Hawthorn J, Molina-Terriza G 2016 Opt. Express 24 2919Google Scholar

    [12]

    Gerchberg R W 1972 Optik 35 237

    [13]

    Fu S Y, Zhang S K, Wang T L, Gao C Q 2016 Opt. Lett. 41 3185Google Scholar

    [14]

    Nelson W, Palastro J P, Wu C, Davis C C 2016 Opt. Lett. 41 1301Google Scholar

    [15]

    Hinton G E, Salakhutdinov R R 2006 Science 313 504Google Scholar

    [16]

    Lecun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [17]

    Li J, Zhang M, Wang D S, Wu S J, Zhan Y Y 2018 Opt. Express 26 10494Google Scholar

    [18]

    Roddier N A 1990 Opt. Eng. 29 1174Google Scholar

    [19]

    Mcglamery B L 1967 J. Opt. Soc. Am. 57 293Google Scholar

    [20]

    Zhao S M, Leach J, Gong L Y, Ding J, Zheng B Y 2012 Opt. Express 20 452Google Scholar

    [21]

    Rumerlhar D E 1986 Nature 323 533Google Scholar

    [22]

    Lecun Y, Bottou L, Bengio Y, Haffner P 1998 Proc. IEEE 86 2278Google Scholar

    [23]

    Barakat R, Newsam G 1985 J. Opt. Soc. Am. A 2 2027Google Scholar

    [24]

    Guo Y M, Liu Y, Oerlemans A, Lao S Y, Wu S, Lew M S 2016 Neurocomputing 187 27Google Scholar

    [25]

    Hinton G E, Osindero S, Teh Y 2006 Neural Comput. 18 1527Google Scholar

    [26]

    Qian Y M, Bi M X, Tan T, Yu K 2016 IEEE Trans. Audio Speech Lang. Process. 24 2263Google Scholar

    [27]

    Sheridan P M, Cai F X, Du C, Ma W, Zhang Z Y, Lu W D 2017 Nat. Nanotech. 12 784Google Scholar

  • [1] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [2] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [3] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [4] 张冬晓, 陈志斌, 肖程, 秦梦泽, 吴浩. 基于引力搜索算法的湍流相位屏生成方法. 物理学报, 2019, 68(13): 134205. doi: 10.7498/aps.68.20190081
    [5] 范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才. 面向真彩色三维显示的分层角谱算法和Gerchberg-Saxton算法研究. 物理学报, 2018, 67(9): 094203. doi: 10.7498/aps.67.20172464
    [6] 张玉燕, 周航, 闫美素. 基于经验模态分解的自混合干涉相位提取方法研究. 物理学报, 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [7] 蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞. 非均匀采样的功率谱反演大气湍流相位屏的快速模拟. 物理学报, 2015, 64(22): 224217. doi: 10.7498/aps.64.224217
    [8] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [9] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [10] 蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞. 功率谱反演大气湍流随机相位屏采样方法的研究. 物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217
    [11] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [12] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [14] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [15] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [16] 黎芳, 唐华, 江月松, 欧军. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性. 物理学报, 2011, 60(1): 014204. doi: 10.7498/aps.60.014204
    [17] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [18] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [19] 郑巍巍, 王丽琴, 许静平, 王立刚. 带初相位分布的径向基模激光束列阵在湍流大气中的传输特性研究. 物理学报, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [20] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
计量
  • 文章访问数:  13342
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-10-15
  • 刊出日期:  2020-01-05

/

返回文章
返回