-
光纤激光器系统中的包层功率剥离器在去除残余抽运光和高阶激光时, 由于光热转换会产生大量的热能, 所以将热能高效的耗散成为当前的研究热点. 本文对国内外现有的五种剥离器进行了仿真研究与对比, 发现用高折胶法制作剥离器时, 改变填胶孔的形状, 可以有效地增大热源与传热介质间的表面积-体积比, 从而降低剥离器工作时的温度峰谷值; 还发现将高折胶法和酸腐蚀法结合制备粗细不均匀的两段式光纤包层结构, 可以提升剥离器的热分布均匀性. 根据上述发现, 提出了一种新颖的剥离器结构并进行了热效应研究. 结果表明: 包层功率为150 W时, 该剥离器的温度峰值为298 K, 温度谷值为293 K, 温差为5 K; 相比于上述五种剥离器, 其温度峰值最多降低了11.3%, 温度谷值最多降低了8.4%, 温差最多降低了87.5%, 证明了该剥离器能有效抑制温升及具有热分布均匀性.In the process of eliminating the residual pump light and high-order laser light, the cladding power stripper (CPS) generates abundant heat, which can affect the performance of the fiber laser system due to the photothermal conversion. Hence the efficient dissipation of thermal energy becomes a current research focus. In this paper, the five kinds of existing CPSs are simulated and compared with the results in the literature. It is found that the surface-volume ratio between the heat source and the heat transfer medium can be effectively increased by changing the shape of the polymer filling hole when the CPS is made by the high refractive index polymer method, thus reducing the temperature peak and valley value of the CPS. Besides, the heat distribution uniformity of CPS can be improved by combining the high refractive index polymer method with the acid corrosion method to prepare the two-section fiber cladding structure with uneven thickness. According to the above results, a novel CPS structure is proposed and its thermal effect is studied. The results show that when the cladding light power is 150 W, the temperature peak value of the CPS is 298 K, the temperature valley value is 293 K, and the temperature difference is 5 K. Comparing with the above five CPSs, the peak temperature is reduced by up to 11.3%, and the valley temperature is reduced by up to 8.4%, the temperature difference is reduced by up to 87.5%, which proves that the novel CPS structure can effectively suppress the temperature rising and have excellent heat distribution uniformity.
-
Keywords:
- fiber laser /
- cladding power stripper /
- high refractive index polymer method /
- acid corrosion method /
- thermal effect
[1] Nilsson J, Payne D N 2011 Science 332 921Google Scholar
[2] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar
[3] 张志强 2012 博士学位论文 (北京: 北京邮电大学)
Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[4] 赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749
Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749
[5] 郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602
Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602
[6] Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297Google Scholar
[7] Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296Google Scholar
[8] 龚凯 2019 硕士学位论文 (广州: 广东工业大学)
Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)
[9] 邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)
Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[10] 李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798
Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798
[11] Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327Google Scholar
[12] Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160NGoogle Scholar
[13] Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611Google Scholar
[14] 孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001
Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001
[15] 龚凯, 郝明明, 李京波 2017 科学通报 62 3768
Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768
[16] Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187Google Scholar
[17] Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550NGoogle Scholar
[18] Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199Google Scholar
[19] Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760Google Scholar
[20] 胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004
Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004
[21] 张国庆 2016 博士学位论文 (广州: 华南理工大学)
Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)
-
表 1 Pb = 150 W时五种CPS的整体热性能数据
Table 1. Overall thermal performance data of five CPS when Pb = 150 W.
序号 温度峰值 温度谷值 温差 剥离器1 321 K 314 K 7 K 剥离器2 313 K 299 K 14 K 剥离器3 316 K 295 K 21 K 剥离器4 336 K 296 K 40 K 剥离器5 325 K 320 K 5 K 表 2 Pb = 200 W时五种CPS的整体热性能数据
Table 2. Overall thermal performance data of five CPS when Pb = 200 W.
序号 温度峰值 温度谷值 温差 剥离器1 326 K 318 K 8 K 剥离器2 319 K 301 K 18 K 剥离器3 324 K 295 K 29 K 剥离器4 350 K 296 K 54 K 剥离器5 335 K 328 K 7 K 表 3 Pb = 150 W时剥离器6, 7, 8的整体整体热性能数据
Table 3. Overall thermal performance data of CPS 6, 7 and 8 when Pb = 150 W.
序号 温度峰值 温度谷值 温差 剥离器6 309 K 293 K 16 K 剥离器7 320 K 315 K 5 K 剥离器8 298 K 293 K 5 K -
[1] Nilsson J, Payne D N 2011 Science 332 921Google Scholar
[2] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar
[3] 张志强 2012 博士学位论文 (北京: 北京邮电大学)
Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[4] 赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749
Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749
[5] 郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602
Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602
[6] Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297Google Scholar
[7] Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296Google Scholar
[8] 龚凯 2019 硕士学位论文 (广州: 广东工业大学)
Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)
[9] 邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)
Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[10] 李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798
Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798
[11] Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327Google Scholar
[12] Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160NGoogle Scholar
[13] Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611Google Scholar
[14] 孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001
Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001
[15] 龚凯, 郝明明, 李京波 2017 科学通报 62 3768
Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768
[16] Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187Google Scholar
[17] Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550NGoogle Scholar
[18] Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199Google Scholar
[19] Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760Google Scholar
[20] 胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004
Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004
[21] 张国庆 2016 博士学位论文 (广州: 华南理工大学)
Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)
计量
- 文章访问数: 7972
- PDF下载量: 108
- 被引次数: 0