搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti:MgAl2O4激光晶体的提拉法生长及性能表征

孙贵花 张庆礼 罗建乔 孙敦陆 谷长江 郑丽丽 韩松 李为民

引用本文:
Citation:

Ti:MgAl2O4激光晶体的提拉法生长及性能表征

孙贵花, 张庆礼, 罗建乔, 孙敦陆, 谷长江, 郑丽丽, 韩松, 李为民

Growth and characterization of Ti:MgAl2O4 laser crystal by Czochralski method

Sun Gui-Hua, Zhang Qing-Li, Luo Jian-Qiao, Sun Dun-Lu, Gu Chang-Jiang, Zheng Li-Li, Han Song, Li Wei-Min
PDF
HTML
导出引用
  • 通过构建合适的温度梯度, 优化转速、生长速度等工艺条件, 采用提拉法晶体生长技术, 首次成功地生长出了Ti离子掺杂的Ti:MgAl2O4晶体, 晶体尺寸为Ø30 mm × 70 mm, X射线摇摆曲线表明该晶体的结晶质量良好. 对晶体的拉曼振动峰进行了指认. 测量了Ti:MgAl2O4晶体退火前后的透过和荧光发射光谱, 结合电子自旋共振(ESR)谱图分析了晶体中Ti离子的价态. 室温下Ti:MgAl2O4晶体在480 nm附近有个宽带发射峰, 其荧光寿命为14 μs, 是Ti:Al2O3、Ti:BeAl2O4晶体的4—5倍, 长的荧光寿命有利于储能; 发射截面为2 × 10–20 cm2, 较大的发射截面利于实现激光输出. 因此, Ti:MgAl2O4晶体是潜在的能够实现宽带可调谐蓝光激光输出的晶体材料.
    The melting point of Ti:MgAl2O4 crystal is as high as 2130 °C, it is a challenge to obtain a large-sized and high-quality laser crystal. By optimizing the crystal growth process, Ti:MgAl2O4 crystal with a size of 30 mm× 70 mm is successfully grown by the Czochralski method under the condition of weak reducing atmosphere. The X-ray diffraction pattern is studied, and the x-ray rocking curve indicates that the grown crystal has a high crystalline quality in terms of the lower full width at half maximum(FWHM) intensity, which provides a material basis for the next laser output experiment. In a range of 100–1000 cm–1, there are four Raman vibration peaks located at 312, 410, 675 cm–1 and 771 cm–1 respectively. The grown crystal has an absorption cutoff range of 250–318 nm and two wide absorption bands of 395–495 nm and 550–1100 nm. Excited by 271 nm, the grown crystal shows a strong broadband emission ina range of 340–650 nm with a peak centered at 480 nm. After annealing in hydrogen atmosphere, shape of the transmittance spectrum and emission spectrum are both unchanged, but the fluorescent emission intensity is significantly reduced. After annealing in air atmosphere, the original two absorption bands disappear while none of the characteristics of fluorescence emission in a 340–650 nm range changes significantly. In addition, a new fluorescence emission peak near 725 nm is observed. Combining with the ESR spectrum, what we canconfirm is that the Ti:MgAl2O4 as-grown crystal contains Ti3+ and Ti4+ ions, and no ESR signal of Ti3+ is observed after annealing in air atmosphere. Moreover, excitationspectrum is also recorded. The fluorescence lifetime is 14 μs at room temperature, which is 4–5 times that of Ti:Al2O3 crystal and Ti:BeAl2O4 crystal. Furthermore, the emission cross section of the grown Ti:MgAl2O4 crystal is calculated from the Füchtbauer-Ladenburg (F-L) formula and its value is 2 × 10–20 cm2, large emission cross section which is beneficial for realizing laser oscillation. All the above results show that the Ti:MgAl2O4 crystal is a potential crystal material for realizing broadband tunable blue laser output.
      通信作者: 孙贵花, ghsun2011@163.com
    • 基金项目: 国家自然科学基金(批准号: 51502292)资助的课题
      Corresponding author: Sun Gui-Hua, ghsun2011@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51502292)
    [1]

    章佶, 孙真荣, 王祖赓, 司继良, 王静雅, 杭寅, 徐军 2005 人工晶体学报 34 657Google Scholar

    Zhang J, Sun Z R, Wang Z G, Si J L, Wang J Y, Hang Y, Xu J 2005 J. Synth. Cryst. 34 657Google Scholar

    [2]

    Gourier D, Colle L, Lejus A M, Vivein D, Moncorge R 1988 J. Appl. Phys. 63 1144Google Scholar

    [3]

    夏海平, 徐铁峰, 张新民, 王金浩, 章践立 2009 光学技术 35 307Google Scholar

    Xia H P, Xu T F, Zhang X M, Wang J H, Zhang J L 2009 Opt. Tech. 35 307Google Scholar

    [4]

    Basun S A, Danger T, Kaplyanskii A A, McClure D S, Petermann K, Wong W C 1996 Phys. Rev. B 54 6141Google Scholar

    [5]

    Bausa l E, Vergara I, Garcia-Sole J, Strek W, Deren P J 1990 J. Appl. Phys. 68 736Google Scholar

    [6]

    Sato T, Shirai M, Tanaka K, Kawabe Y, Hanamura E 2005 J. Lumin. 114 155Google Scholar

    [7]

    Jouini A, Sato H, Yoshikawa A, Fukuda T 2006 J. Mater. Res. 21 2337Google Scholar

    [8]

    Kuleshov N V, Shcherbitsky V G, Mikhailov V P, Kiick S, Koetke J, Petermann K, Huber G 1997 J. Lumin. 71 265Google Scholar

    [9]

    Tomita A, Sato T, Tanaka K, Kawabe Y, Shirai M, Tanaka K, Hanamura E 2004 J. Lumin. 109 19Google Scholar

    [10]

    Jouini A, Yoshikawa A, Fukuda T, Boulon G 2006 J. Cryst. Growth 293 517Google Scholar

    [11]

    Lombard P, Boizot B, Ollier N, Jouini A, Yoshikawa A 2009 J. Cryst. Growth 311 899Google Scholar

    [12]

    Wood D L, Imbusch G F, Macfarlane R M, Kisliuk P, Larkin D M 1968 J. Chem. Phys. 48 5255Google Scholar

    [13]

    王成思, 沈锡田, 刘云贵, 张倩 2019 光谱学与光谱分析 39 109

    Wang C S, Shen X T, Liu Y G, Zhang Q 2019 Spectrosc. Spect. Anal. 39 109

    [14]

    O'Horo M P, Frisillo A L, White W B 1973 J. Phys. Chem. Solids 34 23Google Scholar

    [15]

    Takahashi S, Kan A, Ogawa H 2017 J. Eur. Ceram. Soc. 37 1001Google Scholar

    [16]

    Frass L W, Moore J E, Salzberg J B 1973 J. Chem. Phys. 58 3585Google Scholar

    [17]

    Simeone D, Dodane-Thiriet C, Gosset D, Daniel P, Beauvy M 2002 J. Nucl. Mater. 300 151Google Scholar

    [18]

    Dash S, Sahoo R K, Das A, Bajpai S, Debasish D, Singh S K 2017 J. Alloy. Compd. 726 1186Google Scholar

    [19]

    Watterich A, Hofstaetter A, Wuerz’ R and Scharmann A 1996 Solid State Commun. 100 513Google Scholar

    [20]

    Jiang Y Q, Halliburton L E, Roth M, Tseitlin M, Angert N, 2007 Physica B 400 190Google Scholar

    [21]

    Dong S Y, Wang X Y, Shen L F, Li H S, Wang J, Nie P, Wang J J, Zhang X G 2015 J. Electroanal. Chem. 757 1Google Scholar

  • 图 1  尺寸为Ø30 mm × 70 mm的Ti:MgAl2O4晶体

    Fig. 1.  As-grown Ti:MgAl2O4 crystal with the size of Ø30 mm × 70 mm.

    图 2  Ti:MgAl2O4晶体的粉末衍射图和MgAl2O4晶体的标准谱图(JCPDS, no. 77-0435)

    Fig. 2.  X-ray diffraction patterns of the as-grown Ti:MgAl2O4 crystal and MgAl2O4 standard patterns (JCPDS, no. 77-0435).

    图 3  Ti:MgAl2O4晶体(100)面的摇摆曲线

    Fig. 3.  X-ray rocking curve of (100) plane of the as-grown Ti:MgAl2O4 crystal.

    图 4  Ti:MgAl2O4晶体的拉曼谱图

    Fig. 4.  Raman spectra of the as-grown Ti:MgAl2O4 crystal.

    图 5  退火前后Ti:MgAl2O4晶体在250−1200 nm范围内的透过光谱

    Fig. 5.  Transmittance spectra of the as-grown Ti:MgAl2O4 crystal before and after annealing in the range of 250−1200 nm.

    图 6  退火前后Ti:MgAl2O4晶体在271 nm波长激发下的室温荧光发射光谱

    Fig. 6.  Emission spectra of the as-grown Ti:MgAl2O4 crystal before and after annealing excited by 271 nm at room temperature.

    图 7  Ti:MgAl2O4晶体在130 K时的ESR谱

    Fig. 7.  ESR spectrum of the as-grown Ti:MgAl2O4 crystal before and after annealing at 130 K.

    图 8  退火前后Ti:MgAl2O4晶体480 nm发射的激发光谱

    Fig. 8.  Excitation spectra of the as-grown Ti:MgAl2O4 crystal before and after annealing with 480 nm as monitoring.

    图 9  室温下Ti:MgAl2O4晶体的荧光衰减曲线

    Fig. 9.  Emission decay curve of the as-grown Ti:MgAl2O4 crystal at room temperature.

    表 1  几种不同的MgAl2O4的拉曼振动峰

    Table 1.  Raman vibration peaks of several different MgAl2O4.

    不同的MgAl2O4振动模式/cm–1
    F2g(1)EgF2g(2)A1g
    Natural Cr:MgAl2O4 crystal[13]312407667769
    MgAl2O4 crystal[14]311410671772
    MgAl2O4 ceramic[15]312407666767
    Natural Cr, V:MgAl2O4 crystal[16]305405663770
    Non-stoichiometric MgAl2O4 powder[17]306406670766
    MgAl2O4 polycrystalline [18]311407667767
    下载: 导出CSV
  • [1]

    章佶, 孙真荣, 王祖赓, 司继良, 王静雅, 杭寅, 徐军 2005 人工晶体学报 34 657Google Scholar

    Zhang J, Sun Z R, Wang Z G, Si J L, Wang J Y, Hang Y, Xu J 2005 J. Synth. Cryst. 34 657Google Scholar

    [2]

    Gourier D, Colle L, Lejus A M, Vivein D, Moncorge R 1988 J. Appl. Phys. 63 1144Google Scholar

    [3]

    夏海平, 徐铁峰, 张新民, 王金浩, 章践立 2009 光学技术 35 307Google Scholar

    Xia H P, Xu T F, Zhang X M, Wang J H, Zhang J L 2009 Opt. Tech. 35 307Google Scholar

    [4]

    Basun S A, Danger T, Kaplyanskii A A, McClure D S, Petermann K, Wong W C 1996 Phys. Rev. B 54 6141Google Scholar

    [5]

    Bausa l E, Vergara I, Garcia-Sole J, Strek W, Deren P J 1990 J. Appl. Phys. 68 736Google Scholar

    [6]

    Sato T, Shirai M, Tanaka K, Kawabe Y, Hanamura E 2005 J. Lumin. 114 155Google Scholar

    [7]

    Jouini A, Sato H, Yoshikawa A, Fukuda T 2006 J. Mater. Res. 21 2337Google Scholar

    [8]

    Kuleshov N V, Shcherbitsky V G, Mikhailov V P, Kiick S, Koetke J, Petermann K, Huber G 1997 J. Lumin. 71 265Google Scholar

    [9]

    Tomita A, Sato T, Tanaka K, Kawabe Y, Shirai M, Tanaka K, Hanamura E 2004 J. Lumin. 109 19Google Scholar

    [10]

    Jouini A, Yoshikawa A, Fukuda T, Boulon G 2006 J. Cryst. Growth 293 517Google Scholar

    [11]

    Lombard P, Boizot B, Ollier N, Jouini A, Yoshikawa A 2009 J. Cryst. Growth 311 899Google Scholar

    [12]

    Wood D L, Imbusch G F, Macfarlane R M, Kisliuk P, Larkin D M 1968 J. Chem. Phys. 48 5255Google Scholar

    [13]

    王成思, 沈锡田, 刘云贵, 张倩 2019 光谱学与光谱分析 39 109

    Wang C S, Shen X T, Liu Y G, Zhang Q 2019 Spectrosc. Spect. Anal. 39 109

    [14]

    O'Horo M P, Frisillo A L, White W B 1973 J. Phys. Chem. Solids 34 23Google Scholar

    [15]

    Takahashi S, Kan A, Ogawa H 2017 J. Eur. Ceram. Soc. 37 1001Google Scholar

    [16]

    Frass L W, Moore J E, Salzberg J B 1973 J. Chem. Phys. 58 3585Google Scholar

    [17]

    Simeone D, Dodane-Thiriet C, Gosset D, Daniel P, Beauvy M 2002 J. Nucl. Mater. 300 151Google Scholar

    [18]

    Dash S, Sahoo R K, Das A, Bajpai S, Debasish D, Singh S K 2017 J. Alloy. Compd. 726 1186Google Scholar

    [19]

    Watterich A, Hofstaetter A, Wuerz’ R and Scharmann A 1996 Solid State Commun. 100 513Google Scholar

    [20]

    Jiang Y Q, Halliburton L E, Roth M, Tseitlin M, Angert N, 2007 Physica B 400 190Google Scholar

    [21]

    Dong S Y, Wang X Y, Shen L F, Li H S, Wang J, Nie P, Wang J J, Zhang X G 2015 J. Electroanal. Chem. 757 1Google Scholar

  • [1] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr, Yb, Ho:GdScO3晶体生长及光谱性能. 物理学报, 2024, 73(5): 059801. doi: 10.7498/aps.73.20231362
    [2] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [3] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr,Yb,Ho:GdScO3晶体生长及光谱性能研究. 物理学报, 2023, 0(0): . doi: 10.7498/aps.72.20231362
    [4] 李源, 石爱红, 陈国玉, 顾秉栋. 基于蒙特卡罗方法的4H-SiC(0001)面聚并台阶形貌演化机理. 物理学报, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [5] 张妮, 刘丁, 冯雪亮. 直拉硅单晶生长过程中工艺参数对相变界面形态的影响. 物理学报, 2018, 67(21): 218701. doi: 10.7498/aps.67.20180305
    [6] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究. 物理学报, 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [7] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合. 物理学报, 2015, 64(20): 208102. doi: 10.7498/aps.64.208102
    [8] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [9] 周鹏宇, 张庆礼, 杨华军, 宁凯杰, 孙敦陆, 罗建乔, 殷绍唐. 5 at%Yb3+: YNbO4 的提拉法晶体生长和光谱特性. 物理学报, 2012, 61(22): 228103. doi: 10.7498/aps.61.228103
    [10] 肖进, 张庆礼, 周文龙, 谭晓靓, 刘文鹏, 殷绍唐, 江海河, 夏上达, 郭常新. Nd3+:Gd3Sc2Al3O12 晶场能级及拟合. 物理学报, 2010, 59(10): 7306-7313. doi: 10.7498/aps.59.7306
    [11] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长. 物理学报, 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [12] 牛睿祺, 董慧茹, 王云平. 非线性光学晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的制备与性能研究. 物理学报, 2007, 56(7): 4235-4241. doi: 10.7498/aps.56.4235
    [13] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱. 物理学报, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [14] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [15] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [16] 严成锋, 赵广军, 杭 寅, 张连翰, 徐 军. Ce:Lu2Si2O7闪烁晶体的结构和光谱特性. 物理学报, 2005, 54(8): 3745-3748. doi: 10.7498/aps.54.3745
    [17] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律. 物理学报, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
    [18] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [19] 隋妍萍, 马忠元, 陈坤基, 李 伟, 徐 骏, 黄信凡. nc-Si/SiO2多层膜的制备及蓝光发射. 物理学报, 2003, 52(4): 989-992. doi: 10.7498/aps.52.989
    [20] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究. 物理学报, 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
计量
  • 文章访问数:  8926
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-28
  • 修回日期:  2019-09-27
  • 上网日期:  2019-12-17
  • 刊出日期:  2020-01-05

/

返回文章
返回