搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究

李强 赵磊 陈苏宇 江涛 庄宇 张扣立

引用本文:
Citation:

展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究

李强, 赵磊, 陈苏宇, 江涛, 庄宇, 张扣立

Experimental study on effect of transverse groove with/without discharge hole on hypersonic blunt flat-plate boundary layer transition

Li Qiang, Zhao Lei, Chen Su-Yu, Jiang Tao, Zhuang Yu, Zhang Kou-Li
PDF
HTML
导出引用
  • 针对展向凹槽和泄流孔对高超声速钝平板边界层转捩的影响, 在中国空气动力研究与发展中心Φ2 m激波风洞(FD-14A)开展了试验及初步的计算与理论研究. 试验的来流马赫数为6、单位雷诺数为3.3 × 107 /m, 平板的前缘半径为1 mm, 攻角为–4°. 在距平板前缘110 mm处布置三组不同的二维展向凹槽, 凹槽的宽度与深度分别为凹槽1 (2.5 mm, 1 mm)、凹槽2 (3.75 mm, 1.5 mm)、凹槽3 (5 mm, 2 mm), 同时凹槽1的两端可以打开泄流孔, 记为凹槽4, 不含凹槽时的光滑平板情况记为凹槽5或平板. 采用热流传感器测量了不同情况下平板中心线的热流分布, 测量结果显示, 光滑平板情况在x ≈ 340 mm处开始转捩, 在x ≈ 425 mm处转捩接近完成. 凹槽导致平板边界层的转捩位置提前, 且随着凹槽宽度及深度的增加, 对转捩的促进作用增强, 转捩位置向上游移动. 凹槽1增加泄流孔后(凹槽4)其热流分布及转捩位置与光滑平板情况基本一致. 边界层流动完全转捩为湍流后, 各情况下的热流差别较小, 表明不同规格的凹槽只影响转捩过程中的热流分布, 对转捩完成后的湍流壁面热流影响较小. 数值计算 (CFD)结果显示, 泄流孔导致了被动抽吸, 试验结果显示凹槽两端的泄流孔抽吸效应抵消了凹槽对平板中心线边界层转捩的促进作用. 采用线性稳定性理论(LST)及最优扰动方法分析了光滑钝平板情况的流动失稳机制. LST结果显示, 本文平板流动不存在Mack第一模态、第二模态失稳, 因此传统的模态失稳机制无法解释试验中观测到的转捩现象. 最优扰动计算显示, 平板流动存在较强的非模态失稳, 可以定性解释观测到的转捩现象.
    Experiments are carried out on the Φ2 m Shock Tunnel (FD-14A) at the China Aerodynamics Research and Development Center to study the effect of the transverse groove with/without discharge hole on the hypersonic blunt flat-plate boundary layer transition, and the preliminary computational and theoretical research are carried out. The inflow Mach number of the test is 6, the unit Reynolds number is 3.3 × 107/m, the leading edge radius of the flat-plate is 1 mm, and the angle of attack is –4°. Three different sets of two-dimensional transverse grooves are arranged at 110 mm away from the leading edge of the flat-plate. The width and depth of the grooves are, respectively, 2.5 mm and 1 mm for groove 1, 3.75 mm and 1.5 mm for groove 2, and 5 mm and 2 mm for groove 3, at the same time, both ends of the groove 1 can open the discharge hole (the discharge hole has a size of 2.5 mm × 5.0 mm and a width the same as that of groove 1). The discharge hole is denoted as the groove 4, and the smooth flat-plate when the groove is not included is denoted as groove 5 or the flat. The Φ2-mm-diameter cylindrical heat flux sensor is used to measure the heat flux distributions of the center line of the flat-plate under different conditions, and thus we can judge the transition of the boundary layer. The measurement results show that the smooth plate starts to transit at x ≈ 340 mm, and the transition is nearly completed at x ≈ 425 mm. The groove causes the transition position of the boundary layer of the plate to advance, and as the width and depth of the groove increase, the promoting effect on the transition is enhanced, and the transition position moves upstream. After the groove 1 is added to the discharge hole (groove 4), the heat flux distribution and the transition position are substantially the same as those of the smooth plate. After the boundary layer flow completely transits into turbulent flow, the difference in heat flux for each case is small, which indicates that the grooves of different specifications affect only the heat flux distribution in the transition process, but have little effect on the heat flux of the turbulent wall after the transition. The computational fluid dynamic results show that the discharge holes cause passive suction, and the test results show that the suction effect of the discharge holes at both ends of the groove counteracts the effect of the groove on the transition of the center line boundary layer, but it may be just a coincidence, and further research is needed. The linear stability theory (LST) and the optimal perturbation method are used to analyze the flow instability mechanism of the smooth blunt plate. The LST results show that there is no first mode instability nor second mode instability in the blunt plate flow. The modal instability mechanism cannot explain the observed transition in the test. The optimal disturbance calculation shows that the blunt plate flow suffers strong non-modal instability, which can qualitatively explain the observed transition phenomenon.
      通信作者: 张扣立, zhangkouli@cardc.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0401201)资助的课题
      Corresponding author: Zhang Kou-Li, zhangkouli@cardc.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401201)
    [1]

    陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚 2017 空气动力学学报 35 311Google Scholar

    Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017 Acta Aerodyn. Sin. 35 311Google Scholar

    [2]

    杨武兵, 沈清, 朱德华, 禹旻, 刘智勇 2018 空气动力学学报 36 183Google Scholar

    Yang W B, Shen Q, Zhu D H, Yu M, Liu Z Y 2018 Acta Aerodyn. Sin. 36 183Google Scholar

    [3]

    刘向宏, 赖光伟, 吴杰 2018 空气动力学学报 36 197

    Liu X H, Lai G W, Wu J 2018 Acta Aerodyn. Sin. 36 197

    [4]

    Hahn M 1969 AIAA J. 7 1092Google Scholar

    [5]

    Soltani S, Hillier R 1994 AIAA Paper 1994−0766

    [6]

    Netterfield M P, Hillier R 1989 AIAA Paper 1989−1842

    [7]

    Nestler D E 1981 AIAA Paper 1981−0335

    [8]

    Everhart J L, Alter S J, Merski N R, Wood W A, Prabhu R K 2006 AIAA Paper 2006−0185

    [9]

    Everhart J L, Greene F A 2009 AIAA Paper 2009−1400

    [10]

    Everhart J L 2008 AIAA Paper 2008−1283

    [11]

    Everhart J L 2011 AIAA Paper 2011−3480

    [12]

    Horvath T J, Berry S A, Merski N R, Berger K T, Buck G M, Liechty D S 2006 AIAA Paper 2006−2919

    [13]

    Ohmichi Y, Suzuki K 2011 AIAA Paper 2011−3966

    [14]

    Xiao L H, Xiao Z X, Duan Z W, Fu S 2015 Int. J. Heat Fluid Flow 51 138Google Scholar

    [15]

    Beguet S, Perraud J, Forte M, Brazier J P 2017 J. Aircr. 14 794

    [16]

    Fedorov A V, Khokhlov A P 2002 Theor. Comput. Fluid Dyn. 15 231Google Scholar

    [17]

    江贤洋, 李存标 2017 实验流体力学 31 1Google Scholar

    Jiang X Y, Li C B 2017 J. Exper. Fluid Mech. 31 1Google Scholar

    [18]

    Collier F S 1993 AIAA Paper. 1993−2987

    [19]

    朱自强, 鞠胜军, 吴宗成 2016 航空学报 37 2065Google Scholar

    Zhu Z Q, Ju S J, Wu Z C 2016 Acta Aeronaut. Astronaut. Sin. 37 2065Google Scholar

    [20]

    张驰宇, 肖志祥, 邓一菊 2014 中国科学: 物理学 力学 天文学 44 944Google Scholar

    Zhang C Y, Xiao Z X, Deng Y J 2014 Sci. China-Phys. Mech. Astron. 44 944Google Scholar

    [21]

    邓双国, 额日其太, 聂俊杰 2011 实验流体力学 25 30Google Scholar

    Deng S G, ERIQITAI, Nie J J 2011 J. Exper. Fluid Mech. 25 30Google Scholar

    [22]

    段会申, 刘沛清, 陈建中, 佟增军 2010 空气动力学学报 28 676Google Scholar

    Duan H S, Liu P Q, Chen J Z, Tong Z J 2010 Acta Aerodyn. Sin. 28 676Google Scholar

    [23]

    Joslin R D 1998 Annu. Rev. Fluid Mech. 30 1Google Scholar

    [24]

    Denning R M, Allen J E, Armstrong F W 1997 J. Aeronaut. 101 187

    [25]

    Wilson R A L, Jones R I 1996 Aerosp. Eng. 16 21

    [26]

    Macmanus D G, Eaton J A 2000 J. Fluid Mech. 417 47Google Scholar

    [27]

    Macmanus D G, Eaton J A. 1998 AIAA J. 36 1553Google Scholar

    [28]

    赵耕夫 2001 力学学报 33 519Google Scholar

    Zhao G F 2001 Chin. J. Theor. Appl. Mech. 33 519Google Scholar

    [29]

    Wang X W, Zhong X L 2004 AIAA Paper 2004−254

    [30]

    李强, 刘济春, 孔荣宗 2017 电子测量与仪器学报 31 623Google Scholar

    Li Q, Liu J Q, Kong R Z 2017 J. of Electr. Measur. Instr. 31 623Google Scholar

    [31]

    李强, 江涛, 陈苏宇, 常雨, 赵磊, 张扣立 2019 航空学报 40 122740

    Li Q, Jiang T, Chen S Y, Chang Y, Zhao L, Zhang K L 2019 Acta Aeronaut. Astronaut. Sin. 40 122740

    [32]

    李强, 张扣立, 庄宇, 赵金山 2017 宇航学报 38 758

    Li Q, Zhang K L, Zhuang Y, Zhao J S 2017 J. Astronaut. 38 758

    [33]

    Li Q, Nie L, Zhong K L, Li Y, Chen S Y, Zhu G Y 2019 Chin. J. Aeronaut. 32 1215Google Scholar

    [34]

    Paredes P, Choudhari M M, Li F, Chang C L 2016 AIAA Paper 2016−3050

  • 图 1  Φ2 mm柱状热流传感器

    Fig. 1.  The Φ2-mm-diameter cylindrical heat flux sensors.

    图 2  平板凹槽测点分布示意图

    Fig. 2.  Schematic diagram of measuring point distribution.

    图 3  不同尺寸凹槽对比图

    Fig. 3.  Comparison chart of different size grooves.

    图 4  凹槽4泄流孔出口

    Fig. 4.  The discharge hole outlet of Groove 4.

    图 5  平板中心线热流测量结果与计算结果

    Fig. 5.  The heat flux measurement and CFD results of the flat centerline.

    图 6  泄流孔中心轴线压力分布

    Fig. 6.  Pressure distribution at the center axis of the discharge hole.

    图 7  z = 97.5 mm剖面总温分布图

    Fig. 7.  Total temperature distribution of z = 97.5 mm profile

    图 8  凹槽1中心对称面总温分布图

    Fig. 8.  Total temperature distribution of the symmetry plane of Groove 1.

    图 9  凹槽4中心对称面总温分布图

    Fig. 9.  Total temperature distribution of the symmetry plane of Groove 4.

    图 10  x = 110 mm剖面横向速度分布

    Fig. 10.  Transverse velocity distribution of the profile x = 110 mm.

    图 11  –4°攻角平板边界层第二模态不稳定区

    Fig. 11.  The unstable zone of Mack second-mode waves for the cases of –4° attack angle.

    图 12  固定入口x0 (a)和出口x1 (b)时不同计算域的最优能量增益

    Fig. 12.  Dependence of the optimal energy gain on the computational domain for fixed inlet location (a) and outlet lo-cation (b)

  • [1]

    陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚 2017 空气动力学学报 35 311Google Scholar

    Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017 Acta Aerodyn. Sin. 35 311Google Scholar

    [2]

    杨武兵, 沈清, 朱德华, 禹旻, 刘智勇 2018 空气动力学学报 36 183Google Scholar

    Yang W B, Shen Q, Zhu D H, Yu M, Liu Z Y 2018 Acta Aerodyn. Sin. 36 183Google Scholar

    [3]

    刘向宏, 赖光伟, 吴杰 2018 空气动力学学报 36 197

    Liu X H, Lai G W, Wu J 2018 Acta Aerodyn. Sin. 36 197

    [4]

    Hahn M 1969 AIAA J. 7 1092Google Scholar

    [5]

    Soltani S, Hillier R 1994 AIAA Paper 1994−0766

    [6]

    Netterfield M P, Hillier R 1989 AIAA Paper 1989−1842

    [7]

    Nestler D E 1981 AIAA Paper 1981−0335

    [8]

    Everhart J L, Alter S J, Merski N R, Wood W A, Prabhu R K 2006 AIAA Paper 2006−0185

    [9]

    Everhart J L, Greene F A 2009 AIAA Paper 2009−1400

    [10]

    Everhart J L 2008 AIAA Paper 2008−1283

    [11]

    Everhart J L 2011 AIAA Paper 2011−3480

    [12]

    Horvath T J, Berry S A, Merski N R, Berger K T, Buck G M, Liechty D S 2006 AIAA Paper 2006−2919

    [13]

    Ohmichi Y, Suzuki K 2011 AIAA Paper 2011−3966

    [14]

    Xiao L H, Xiao Z X, Duan Z W, Fu S 2015 Int. J. Heat Fluid Flow 51 138Google Scholar

    [15]

    Beguet S, Perraud J, Forte M, Brazier J P 2017 J. Aircr. 14 794

    [16]

    Fedorov A V, Khokhlov A P 2002 Theor. Comput. Fluid Dyn. 15 231Google Scholar

    [17]

    江贤洋, 李存标 2017 实验流体力学 31 1Google Scholar

    Jiang X Y, Li C B 2017 J. Exper. Fluid Mech. 31 1Google Scholar

    [18]

    Collier F S 1993 AIAA Paper. 1993−2987

    [19]

    朱自强, 鞠胜军, 吴宗成 2016 航空学报 37 2065Google Scholar

    Zhu Z Q, Ju S J, Wu Z C 2016 Acta Aeronaut. Astronaut. Sin. 37 2065Google Scholar

    [20]

    张驰宇, 肖志祥, 邓一菊 2014 中国科学: 物理学 力学 天文学 44 944Google Scholar

    Zhang C Y, Xiao Z X, Deng Y J 2014 Sci. China-Phys. Mech. Astron. 44 944Google Scholar

    [21]

    邓双国, 额日其太, 聂俊杰 2011 实验流体力学 25 30Google Scholar

    Deng S G, ERIQITAI, Nie J J 2011 J. Exper. Fluid Mech. 25 30Google Scholar

    [22]

    段会申, 刘沛清, 陈建中, 佟增军 2010 空气动力学学报 28 676Google Scholar

    Duan H S, Liu P Q, Chen J Z, Tong Z J 2010 Acta Aerodyn. Sin. 28 676Google Scholar

    [23]

    Joslin R D 1998 Annu. Rev. Fluid Mech. 30 1Google Scholar

    [24]

    Denning R M, Allen J E, Armstrong F W 1997 J. Aeronaut. 101 187

    [25]

    Wilson R A L, Jones R I 1996 Aerosp. Eng. 16 21

    [26]

    Macmanus D G, Eaton J A 2000 J. Fluid Mech. 417 47Google Scholar

    [27]

    Macmanus D G, Eaton J A. 1998 AIAA J. 36 1553Google Scholar

    [28]

    赵耕夫 2001 力学学报 33 519Google Scholar

    Zhao G F 2001 Chin. J. Theor. Appl. Mech. 33 519Google Scholar

    [29]

    Wang X W, Zhong X L 2004 AIAA Paper 2004−254

    [30]

    李强, 刘济春, 孔荣宗 2017 电子测量与仪器学报 31 623Google Scholar

    Li Q, Liu J Q, Kong R Z 2017 J. of Electr. Measur. Instr. 31 623Google Scholar

    [31]

    李强, 江涛, 陈苏宇, 常雨, 赵磊, 张扣立 2019 航空学报 40 122740

    Li Q, Jiang T, Chen S Y, Chang Y, Zhao L, Zhang K L 2019 Acta Aeronaut. Astronaut. Sin. 40 122740

    [32]

    李强, 张扣立, 庄宇, 赵金山 2017 宇航学报 38 758

    Li Q, Zhang K L, Zhuang Y, Zhao J S 2017 J. Astronaut. 38 758

    [33]

    Li Q, Nie L, Zhong K L, Li Y, Chen S Y, Zhu G Y 2019 Chin. J. Aeronaut. 32 1215Google Scholar

    [34]

    Paredes P, Choudhari M M, Li F, Chang C L 2016 AIAA Paper 2016−3050

  • [1] 满良, 邓浩川, 吴洋, 余西龙, 肖志河. 风洞模拟等离子体绕流场回波频谱调制特性实验研究. 物理学报, 2022, 71(3): 035203. doi: 10.7498/aps.71.20211471
    [2] 满良, 邓浩川. 风洞模拟等离子体绕流场回波频谱调制特性实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211471
    [3] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [4] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验. 物理学报, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [5] 刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海. 高超声速条件下7°直圆锥边界层转捩实验研究. 物理学报, 2018, 67(17): 174701. doi: 10.7498/aps.67.20180531
    [6] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [7] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云. 激波/边界层干扰对等离子体合成射流的响应特性. 物理学报, 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [8] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [9] 金铭, 韦笑, 吴洋, 张羽淮, 余西龙. 激波风洞设施中的等离子体包覆目标电磁散射实验研究. 物理学报, 2015, 64(20): 205205. doi: 10.7498/aps.64.205205
    [10] 刘彧, 周进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波. 物理学报, 2014, 63(20): 204701. doi: 10.7498/aps.63.204701
    [11] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [12] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究. 物理学报, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [13] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [14] 张艳, 郑连存, 张欣欣. 边界耦合的Marangoni对流边界层问题的近似解析解. 物理学报, 2009, 58(8): 5501-5506. doi: 10.7498/aps.58.5501
    [15] 连祺祥, 郭 辉. 湍流边界层中下扫流与“反发卡涡”. 物理学报, 2004, 53(7): 2226-2232. doi: 10.7498/aps.53.2226
    [16] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
    [17] 李存标. 关于转捩边界层中流向涡的产生. 物理学报, 2001, 50(1): 182-184. doi: 10.7498/aps.50.182
    [18] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅲ)——边界层解. 物理学报, 1985, 34(2): 213-224. doi: 10.7498/aps.34.213
    [19] 江体乾. 关于非牛顿型流体边界层的研究. 物理学报, 1962, 18(4): 224-226. doi: 10.7498/aps.18.224
    [20] 林鸿荪. 片流边界层中气流及热转移. 物理学报, 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
计量
  • 文章访问数:  7859
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-27
  • 修回日期:  2019-08-29
  • 刊出日期:  2020-01-20

/

返回文章
返回