搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有内参考热补偿功能的三层膜结构微球腔折射率传感器

孟令俊 王梦宇 沈远 杨煜 徐文斌 张磊 王克逸

引用本文:
Citation:

具有内参考热补偿功能的三层膜结构微球腔折射率传感器

孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸

Triple-layer-coated microspheres for refractive index sensor with internally referenced self-compensated thermal effect

Meng Ling-Jun, Wang Meng-Yu, Shen Yuan, Yang Yu, Xu Wen-Bin, Zhang Lei, Wang Ke-Yi
PDF
HTML
导出引用
  • 光学微腔在高灵敏度传感中有着重要的应用前景, 而在传感中热漂移是制约其走向实用的重要因素. 本文提出了一种镀有三层膜结构的微球腔, 可以在实现高灵敏度折射率传感的同时, 具备内参考热补偿功能. 该结构由内到外分别涂覆折射率为高、低、高的薄膜, 内外两高折射率层可以分别支持各自的回音壁模式, 称之为内层模式和外层模式. 研究了波导耦合的内外模式在折射率传感和温度传感应用的表现. 结果表明, 中间膜层厚度${t_{B}}$为550 nm时, 内外模式的折射率灵敏度分别为0.0168和102.56 nm/RIU, 温度灵敏度分别为–19.57和–28.98 pm/K. 通过监测内外模式谐振波长的差值进行传感, 对中间膜层厚度进行优化, ${t_{B}}$ = 400 nm时, 折射率灵敏度为75.219 nm/RIU, 探测极限可以达到2.2 × 10–4 RIU, 热漂移被减小到3.17 pm/K, 极大地减小了热漂移对系统的影响. 本研究可为微球腔折射率传感器的设计和改进提供指导.
    Optical microcavity has an important and promising application in high sensitivity sensing, but thermal drift hinders its practical use. In this study, we propose a triple-layer-coated microsphere resonator, which has a high sensitivity in refractive index sensing with low thermal drift. The refractive indexes of the three layers from the inside to the outside are high, low, and high, respectively. The two high refractive index layers can support their own whispering-gallery modes, called the inner mode (IM) and the outer mode (OM). We study the performance of IM and OM with waveguide coupling in refractive index sensing and temperature sensing. The results show that when the thickness of the middle layer is 550 nm, the refractive index sensitivity of IM and OM will be 0.0168 nm/RIU, 102.56 nm/RIU, and the temperature sensitivity will be –19.57 pm/K and –28.98 pm/K, respectively. The sensing is carried out by monitoring the difference in resonant wavelength between IM and OM and the sensing characteristics are optimized by adjusting the thickness of the middle layer. Further, when ${t_B}$ = 400 nm, the refractive index sensitivity can arrive at 75.219 nm/RIU, the detection limit can reach 2.2 × 10–4 RIU, and the thermal drift is reduced to 3.17 pm/K, thereby eliminating the effect of thermal drift to a great degree. This study provides the guidance for designing and improving the microsphere refractive index sensors.
      通信作者: 王克逸, kywang@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775209, 41871229, 61275011)资助的课题
      Corresponding author: Wang Ke-Yi, kywang@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61775209, 41871229, 61275011)
    [1]

    Vahala K J 2003 Nature 424 839Google Scholar

    [2]

    Song Q H 2019 Sci. China Phys. Mech. Astron. 62 074231Google Scholar

    [3]

    Hanumegowda N M, Stica C J, Patel B C, White I, Fan X D 2005 Appl. Phys. Lett. 87 201107Google Scholar

    [4]

    Yang K, Dai S X, Wu Y H, Nie Q H 2018 Chin. Phys. B 27 117701Google Scholar

    [5]

    Dong C H, He L, Xiao Y F, Gaddam V, Ozdemir S, Han Z F, Guo G C, Yang L 2009 Appl. Phys. Lett. 94 231119Google Scholar

    [6]

    Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612Google Scholar

    [7]

    Ioppolo T, Kozhevnikov M, Stepaniuk V, Otugen M V, Sheverev V 2008 Appl. Opt. 47 3009Google Scholar

    [8]

    Qian K, Tang J, Guo H, Zhang W, Liu J H, Liu J, Xue C Y, Zhang W D 2016 Chin. Phys. B 25 114209Google Scholar

    [9]

    Rubino E, Ioppolo T 2018 Vibration 1 239Google Scholar

    [10]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [11]

    Frustaci S, Vollmer F 2019 Curr. Opin. Chem. Biol. 51 66

    [12]

    Teraoka I, Arnold S 2007 J. Opt. Soc. Am. B 24 653Google Scholar

    [13]

    Raghunathan V, Ye W N, Hu J, Izuhara T, Michel J, Kimerling L 2010 Opt. Express 18 17631Google Scholar

    [14]

    Yi H J, Citrin D S, Zhou Z P 2011 IEEE J. Quantum Elect. 47 354Google Scholar

    [15]

    Zhang X J, Feng X, Zhang D K, Huang Y D 2012 Chin. Phys. B 21 250

    [16]

    Deng Q Z, Li X B, Zhou Z P, Yi H X 2014 Photonics Res. 2 71Google Scholar

    [17]

    Ma T, Yuan J H, Sun L, Kang Z, Yan B B, Sang X Z, Wang K R, Wu Q, Liu H, Gao J H, Yu C X 2017 IEEE Photonics J. 9 6800913

    [18]

    Wang M Y, Jin X Y, Li F, Cai B L, Wang K Y 2018 Opt. Commun. 427 70Google Scholar

    [19]

    唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar

    Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar

    [20]

    Dong Y C, Wang K Y, Jin X Y 2015 Opt. Commun. 344 92Google Scholar

    [21]

    Wang P F, Ding M, Murugan G S, Bo L, Guan C Y, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar

    [22]

    Wang P F, Ding M, Lee T, Murugan G S, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G 2013 Appl. Phys. Lett. 102 131110Google Scholar

    [23]

    Tuchin V V, Maksimova I L, Zimnyakov D A, Kon I L, Mavlyutov A H, Mishin A A 1997 J. Biomed. Opt. 2 401Google Scholar

    [24]

    He L, Xiao Y F, Dong C, Zhu J, Gaddam V, Yang L 2008 Appl. Phys. Lett. 93 201102Google Scholar

    [25]

    Reshef O, Shtyrkova K, Moebius M, Nascimento S, Spector S, Evans C, Ippen E, Mazur E 2015 J. Opt. Soc. Am. B 32 2288Google Scholar

    [26]

    Daimon M, Masumura A 2007 Appl. Opt. 46 3811Google Scholar

    [27]

    White M I, Fan X D 2008 Opt. Express 16 1020Google Scholar

  • 图 1  耦合三层膜结构微球腔模型示意图 (a)三层膜结构微球腔模型; (b)二维仿真模型

    Fig. 1.  Schematic drawing of a coupled triple-layer-coated microsphere model: (a) Triple-layer-coated microsphere model; (b) 2D simulation model.

    图 2  不同中间膜层厚度时内外模式的电场径向分布曲线及电场分布云图

    Fig. 2.  Electric field distributions of the inner and outer modes and the distributions along the radial direction with a various ${t_B}$.

    图 3  (a) ${t_B} = 550$ nm时球腔的透射谱; (b)外层模式(m = 148); (c)内层模式(m = 140)

    Fig. 3.  (a) The transmission spectrum of the microsphere when ${t_B} = 550$ nm; (b) the outer mode (m = 148); (c) the inner mode (m = 140).

    图 4  外层模式(a)与内层模式(c)透射谱随外界环境折射率的变化趋势; 外层模式(b)与内层模式(d)谐振波长偏移量${\rm{\text{δ}}}{\lambda _{\rm{R}}}$与外界环境折射率变化量${\rm{\text{δ} }}n$的关系

    Fig. 4.  Transmission spectra for the outer mode (a) and the inner mode (c) with the change of the external environment RI; The relationship between the shift of the resonance wavelength ${\rm{\text{δ} }}{\lambda _{\rm{R}}}$ and the change of the external environment RI $\text{δ} n$for the outer mode (b) and the inner mode (d).

    图 5  外层模式(a)与内层模式(b)谐振波长${\lambda _{\rm{R}}}$与环境温度$T$的关系

    Fig. 5.  The relationship between the resonance wavelength ${\lambda _{\rm{R}}}$ and the environment temperature $T$ for the outer mode (a) and the inner mode (b).

    图 6  不同中间层厚度${t_B}$时内外模式的折射率灵敏度(a)和温度灵敏度(b)

    Fig. 6.  The refractive index sensitivity (a) and temperature sensitivity (b) for the inner mode and the outer mode with a various ${t_B}$.

  • [1]

    Vahala K J 2003 Nature 424 839Google Scholar

    [2]

    Song Q H 2019 Sci. China Phys. Mech. Astron. 62 074231Google Scholar

    [3]

    Hanumegowda N M, Stica C J, Patel B C, White I, Fan X D 2005 Appl. Phys. Lett. 87 201107Google Scholar

    [4]

    Yang K, Dai S X, Wu Y H, Nie Q H 2018 Chin. Phys. B 27 117701Google Scholar

    [5]

    Dong C H, He L, Xiao Y F, Gaddam V, Ozdemir S, Han Z F, Guo G C, Yang L 2009 Appl. Phys. Lett. 94 231119Google Scholar

    [6]

    Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612Google Scholar

    [7]

    Ioppolo T, Kozhevnikov M, Stepaniuk V, Otugen M V, Sheverev V 2008 Appl. Opt. 47 3009Google Scholar

    [8]

    Qian K, Tang J, Guo H, Zhang W, Liu J H, Liu J, Xue C Y, Zhang W D 2016 Chin. Phys. B 25 114209Google Scholar

    [9]

    Rubino E, Ioppolo T 2018 Vibration 1 239Google Scholar

    [10]

    陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar

    Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar

    [11]

    Frustaci S, Vollmer F 2019 Curr. Opin. Chem. Biol. 51 66

    [12]

    Teraoka I, Arnold S 2007 J. Opt. Soc. Am. B 24 653Google Scholar

    [13]

    Raghunathan V, Ye W N, Hu J, Izuhara T, Michel J, Kimerling L 2010 Opt. Express 18 17631Google Scholar

    [14]

    Yi H J, Citrin D S, Zhou Z P 2011 IEEE J. Quantum Elect. 47 354Google Scholar

    [15]

    Zhang X J, Feng X, Zhang D K, Huang Y D 2012 Chin. Phys. B 21 250

    [16]

    Deng Q Z, Li X B, Zhou Z P, Yi H X 2014 Photonics Res. 2 71Google Scholar

    [17]

    Ma T, Yuan J H, Sun L, Kang Z, Yan B B, Sang X Z, Wang K R, Wu Q, Liu H, Gao J H, Yu C X 2017 IEEE Photonics J. 9 6800913

    [18]

    Wang M Y, Jin X Y, Li F, Cai B L, Wang K Y 2018 Opt. Commun. 427 70Google Scholar

    [19]

    唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar

    Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar

    [20]

    Dong Y C, Wang K Y, Jin X Y 2015 Opt. Commun. 344 92Google Scholar

    [21]

    Wang P F, Ding M, Murugan G S, Bo L, Guan C Y, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar

    [22]

    Wang P F, Ding M, Lee T, Murugan G S, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G 2013 Appl. Phys. Lett. 102 131110Google Scholar

    [23]

    Tuchin V V, Maksimova I L, Zimnyakov D A, Kon I L, Mavlyutov A H, Mishin A A 1997 J. Biomed. Opt. 2 401Google Scholar

    [24]

    He L, Xiao Y F, Dong C, Zhu J, Gaddam V, Yang L 2008 Appl. Phys. Lett. 93 201102Google Scholar

    [25]

    Reshef O, Shtyrkova K, Moebius M, Nascimento S, Spector S, Evans C, Ippen E, Mazur E 2015 J. Opt. Soc. Am. B 32 2288Google Scholar

    [26]

    Daimon M, Masumura A 2007 Appl. Opt. 46 3811Google Scholar

    [27]

    White M I, Fan X D 2008 Opt. Express 16 1020Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [3] 张伟, 万静, 蒙列, 罗曜伟, 郭明瑞. D型光纤与微管耦合的微流控折射率传感器. 物理学报, 2022, 71(21): 210701. doi: 10.7498/aps.71.20221137
    [4] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [5] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] 侯智善, 徐帅, 骆杨, 李爱武, 杨罕. 激光3D纳米打印温度敏感的微球激光器. 物理学报, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [7] 谷红明, 黄永清, 王欢欢, 武刚, 段晓峰, 刘凯, 任晓敏. 一种新型光学微腔的理论分析. 物理学报, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [8] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [9] 张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远. Tm3+掺杂Ge-Ga-S玻璃微球-石英光纤锥耦合系统的荧光回廊模特性. 物理学报, 2016, 65(14): 144205. doi: 10.7498/aps.65.144205
    [10] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [11] 舒方杰. 微盘腔垂直耦合器特性的拓展分析. 物理学报, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [12] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭. 基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器. 物理学报, 2013, 62(21): 214209. doi: 10.7498/aps.62.214209
    [13] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [14] 祝昆, 周丽, 尤洪海, 江楠, 普小云. 光纤回音壁模式激光产生长度的实验与理论研究. 物理学报, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [15] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [16] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [17] 张远宪, 冯永利, 周丽, 普小云. 偏斜光线抽运下的回音壁模式光纤激光辐射特性. 物理学报, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [18] 普小云, 白然, 向文丽, 杜飞, 江楠. 消逝波激励的双波段光纤回音壁模式激光辐射. 物理学报, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [19] 张远宪, 普小云, 祝昆, 韩德昱, 江楠. 回音壁模式光纤激光器的阈值特性研究. 物理学报, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [20] 杨 睿, 於文华, 鲍 洋, 张远宪, 普小云. 消逝场耦合圆柱形微腔中回音壁模式结构的实验研究. 物理学报, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
计量
  • 文章访问数:  7972
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 修回日期:  2019-10-11
  • 上网日期:  2019-12-13
  • 刊出日期:  2020-01-05

/

返回文章
返回