搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改变激发环境调控Ho3+离子的上转换发光特性

高伟 王博扬 孙泽煜 高露 张晨雪 韩庆艳 董军

引用本文:
Citation:

改变激发环境调控Ho3+离子的上转换发光特性

高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军

Tuning upconversion emissions of Ho3+ through changing excitation conditions

Gao Wei, Wang Bo-Yang, Sun Ze-Yu, Gao Lu, Zhang Chen-Xue, Han Qing-Yan, Dong Jun
PDF
HTML
导出引用
  • 稀土掺杂上转换发光材料的发光特性不仅依赖于基质材料本身, 而且与其激发条件密切相关. 本文主要是以Ho3+离子为研究对象, 在NaYF4和LiYF4这两种不同的基质中, 研究其在不同激发条件下的上转换发光特性. 通过共聚焦显微光谱测试系统, 对比Ho3+离子在NaYF4和LiYF4微米晶体中的发光特性. 实验结果发现: Ho3+离子在这两种不同基质中均展现出较强的荧光发射. 然而, 当激发功率增加时, 在单颗粒NaYF4微米晶体中, Ho3+离子展现出了红白色荧光发射, 即展现出较强的红光、绿光及蓝光发射. 然而, 在单个LiYF4微米晶体中, 当激发功率增加时, Ho3+离子则发射出较强绿光及微弱的红光, 红绿比变化并不明显, 其蓝光发射强度也相对较弱. 当激发这两种微米粉末晶体时, 结果发现: Ho3+离子均发射较强的绿光发射并伴有微弱红光发射, 两种晶体中的发射特性极其相似. 由此可见, 在常规测试条件下, 一些特殊发光现象是很难被观测到的. 同时, 通过对其光谱特性的分析, 对Ho3+离子的发光机理进行了研究.
    The upconversion (UC) emission properties of rare-earth ions are not only dependent on the host materials, but also relate to the excitation conditions. In this work, taking the Ho3+ ions for example, upconversion emission properties are studied in two NaYF4 and LiYF4 fluoride microcrystals through changing excitation conditions, namely the excitation power and the sample environment. The NaYF4:20%Yb3+/2%Ho3+ and NaYF4:20%Yb3+/2%Ho3+ microcrystal are synthesized by the hydrothermal method. The typical X-ray diffraction patterns of NaYF4:20%Yb3+/2%Ho3+ and LiYF4:20%Yb3+/2%Ho3+ microcrystal indicate that the prepared samples possess pure hexagonal phase NaYF4 structure and the pure tetragonal phase LiYF4 structure with high crystallinity, respectively. Most of NaYF4:20%Yb3+/2%Ho3+ microcrystals show uniform and regular rod shape with diameter and length of approximately 3 μm and 10 μm, respectively. Few rods with a length of approximately 5 μm are also observed. The LiYF4:20%Yb3+/2%Ho3+ microcrystals are all octahedral in shape with a smooth surface, the average size is around 10 μm. The spectral peculiarities of Ho3+ are investigated by using confocal microscopy equipment under near infrared 980 nm excitation. Beautiful patterns with different upconversion emissions of Ho3+ are discovered in single NaYF4 and LiYF4 microcrystal. As the excitation power increases, the upconversion emission of Ho3+ turns from green to pink in single NaYF4 microrods due to the cross-relaxation between Ho3+ and the energy back transfer from Ho3+ to Yb3+. However, in single LiYF4:Ho3+ microcrystal no similar phenomenon is observed. Nevertheless, when the powder of NaYF4 and LiYF4 microcrystals are excited by a 980 nm laser, increasing the power can turn the output colours of Ho3+ all green. Because particles outside the laser radiation are not directly covered by the laser, most of them are excited by the scattered light from the laser, and the actual excitation energy is low compared with at the center position. This result can be proved in the single NaYF4 and LiYF4 microcrystal under low excitation power. Thus, the results indicate that UC emission of rare-earth ions is controlled by changing the excitation condition. Using the new testing methods we can not only observe more interesting spectral phenomena, but also find a new way to further study its luminescence mechanism.
      通信作者: 董军, dongjun@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604262)、陕西省科技厅面上项目(批准号: 2018JM1052)、陕西省科技新星项目(批准号: 2019KJXX-058)、陕西省国际交流项目(批准号: 2019KW-027)和西安邮电大学创新基金(批准号: CXJJ2017001)资助的课题
      Corresponding author: Dong Jun, dongjun@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604262), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2018JM1052), the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2019KJXX-058), the International (Regional) Exchange Program of Shaanxi Province, China (Grant No. 2019KW-027), and the Research Plan of Xi’an University of Posts & Telecommunications, China (Grant No. CXJJ2017001)
    [1]

    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237Google Scholar

    [2]

    Sang J K, Zhou J Y, Zhang J C, Zhou H, Li H H, Ci Z P, Peng S L, Wang Z F 2019 ACS Appl. Mater. Interfaces 11 20150Google Scholar

    [3]

    Wang Y H, Ohwaki J 1993 Appl. Phys. Lett. 63 3268Google Scholar

    [4]

    Strassel K, Ramanandan S P, Abdolhosseinzadeh S, Diethelm M, Nuesch F, Hany R 2019 ACS Appl. Mater. Interfaces 11 23428Google Scholar

    [5]

    Park Y I, Lee K T, Suh Y D, Hyeon T 2015 Chem. Soc. Rev. 44 1302Google Scholar

    [6]

    Feng Y S, Wu Y N, Zuo J, Tu L P, Quec I, Chang Y L, Cruzc L J, Chanc A, Zhang H 2019 Biomaterials 201 33

    [7]

    Huang B L, Dong H, Wong K L, Sun L D, Yan C H 2016 J. Phys. Chem. C 120 18858Google Scholar

    [8]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 22 10889Google Scholar

    [9]

    Chen D Q, Yu Y L, Huang F, Yang A P, Wang Y S 2011 J. Mater. Chem. 21 6186Google Scholar

    [10]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [11]

    Huang P, Zheng W, Zhou S Y, Tu D T, Chen Z, Zhu H M, Li R F, Ma E, Huang M D, Chen X Y 2014 Angew. Chem. Int. Ed. 53 1252Google Scholar

    [12]

    Zhou J J, Chen G X, Wu E, Bi G, Wu B T, Teng Y, Zhou S F, Qiu J R 2013 Nano Lett. 13 2241Google Scholar

    [13]

    Ma C S, Xu X X, Wang F, Zhou Z G, Liu D M, Zhao J B, Guan M, Lang C I, Jin Y D 2017 Nano. Lett. 17 2858Google Scholar

    [14]

    Han Q Y, Zhang C Y, Wang C, Wang Z J, Li C X, Gao W, Dong J, He E J, Zhang Z L, Zheng H R 2017 Sci. Rep. 7 5371Google Scholar

    [15]

    Chen B, Kong W, Liu Y, Lu Y H, Li M Y, Qiao X S, Fan X P, Wang F 2017 Angew. Chem. Int. Ed. 56 10383Google Scholar

    [16]

    Gao D L, Zhang X Y, Pang Q, Zhao J, Xiao G Q, Tian D 2018 J. Mater. Chem. C 6 8011Google Scholar

    [17]

    Gao D L, Zhao D, Xin H, Cai A J, Zhang X Y 2019 J. Mater. Chem. C 7 11879Google Scholar

    [18]

    Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704Google Scholar

    [19]

    Wu S J, Duan N, Li X L, Tan G L, Ma X Y, Xia Y, Wang Z P, Wang H X 2013 Talanta 116 611Google Scholar

    [20]

    Tao F, Pan F, Wang Z J, Cai W L, Yao L Z 2010 CrystEngComm 12 4263Google Scholar

    [21]

    高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205Google Scholar

    Ga oW, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar

    [22]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [23]

    Dominika P, Anna E, Bartosz F G, Tomasz G 2019 Sci. Rep. 9 8669Google Scholar

    [24]

    Tan X J, Xu S L, Liu F H, Wang X Y, Goodman B A. Xiong D K, Deng W 2019 J. Lumin. 209 95Google Scholar

    [25]

    Gao D L, Wang D, Zhang X Y, Feng X J, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622Google Scholar

    [26]

    Dai X, Lei L, Xia J, Han X, Hua Y, Xu S 2018 J. Alloys Compd. 766 261Google Scholar

    [27]

    Schmidt T, Müller G, Spanhel L, Kerkel K, Forchel A 1998 Chem. Mater. 10 65Google Scholar

    [28]

    Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C 2009 Spectrochim. Acta., Part A 74 441Google Scholar

    [29]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395

    [30]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

  • 图 1  (a) NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和(b) LiYF4:20.0%Yb3+/2.0%Ho3+微米晶体的XRD图谱

    Fig. 1.  XRD patterns of (a) NaYF4:20%Yb3+/2%Ho3+ and (b) LiYF4:20%Yb3+/2%Ho3+ microcrystals.

    图 2  (a) NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和(b) LiYF4:20.0%Yb3+/2.0%Ho3+微米晶体的SEM图谱

    Fig. 2.  The SEM images of (a) NaYF4:20%Yb3+/2%Ho3+ and (b) LiYF4:20%Yb3+/2%Ho3+ microcrystals.

    图 3  共聚焦显微光谱测试系统示意图

    Fig. 3.  Schematic illustration of confocal microscopy setup.

    图 4  在980 nm激光激发下, 单颗NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和LiYF4:20.0%Yb3+/2.0%Ho3+微米晶体的上转换发射光谱图(激发功率为100 mW/cm2)

    Fig. 4.  Upconversion emission spectra and corresponding optical micrographs of single NaYF4:20%Yb3+/2%Ho3+ and LiYF4:20%Yb3+/2%Ho3+ microcrystal under local excitation at 980 nm (100 mW/cm2).

    图 5  在980 nm激光激发下, 单颗粒(a) NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和(b) LiYF4:20.0%Yb3+/2.0%Ho3+微米晶的上转换发射与其激发功率的依赖关系, 插图为其对应光谱图案; (c)和(d)为对应不用激发功率下的峰面积, 插图为其随激发功率变化的红绿比图

    Fig. 5.  (a), (b) Upconversion emission spectra and corresponding optical micrographs, (c), (d) the peak area of the green and red emission intensity and corresponding R/G ratio of single NaYF4:20%Yb3+/2%Ho3+ (a), (c) and LiYF4:20%Yb3+/2%Ho3+ (b), (d) microcrystal with excitation power densities increasing from 20 mW to 100 mW.

    图 6  在980 nm激光激发下 (a) NaYF4:20.0%Yb3+/2.0%Ho3+微米粉末和(b) LiYF4:20.0%Yb3+/2.0%Ho3+微米粉末的上转换发射与其激发功率的依赖关系, 插图为其对应发光光谱图案; (c)和(d)为对应不用激发功率下的峰面积图, 插图为其随激发功率变化的红绿比图

    Fig. 6.  (a), (b) UC emission spectra and corresponding optical micrographs, (c), (d) the peak area of the green and red emission intensity and corresponding R/G ratio of cluster NaYF4:20%Yb3+/2%Ho3+ (a), (c) and LiYF4:20%Yb3+/2%Ho3+ (b), (d) microcrystals with excitation power densities increasing from 20 mW to 100 mW.

    图 7  Ho3+离子相应的能级图及其可能跃迁机理图

    Fig. 7.  Energy level diagrams and proposed energy transfer pathways.

    图 8  在532 nm激发下, 单粒NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和 LiYF4:20.0%Yb3+/2.0%Ho3+微米晶的下转换发射光谱(a)及相应跃迁机理图(b)

    Fig. 8.  (a) Downconversion emission spectra and (b) emission mechanism of single NaYF4:20%Yb3+/2%Ho3+ and LiYF4:20%Yb3+/2%Ho3+ microcrystal under laser 532 nm excitation.

  • [1]

    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237Google Scholar

    [2]

    Sang J K, Zhou J Y, Zhang J C, Zhou H, Li H H, Ci Z P, Peng S L, Wang Z F 2019 ACS Appl. Mater. Interfaces 11 20150Google Scholar

    [3]

    Wang Y H, Ohwaki J 1993 Appl. Phys. Lett. 63 3268Google Scholar

    [4]

    Strassel K, Ramanandan S P, Abdolhosseinzadeh S, Diethelm M, Nuesch F, Hany R 2019 ACS Appl. Mater. Interfaces 11 23428Google Scholar

    [5]

    Park Y I, Lee K T, Suh Y D, Hyeon T 2015 Chem. Soc. Rev. 44 1302Google Scholar

    [6]

    Feng Y S, Wu Y N, Zuo J, Tu L P, Quec I, Chang Y L, Cruzc L J, Chanc A, Zhang H 2019 Biomaterials 201 33

    [7]

    Huang B L, Dong H, Wong K L, Sun L D, Yan C H 2016 J. Phys. Chem. C 120 18858Google Scholar

    [8]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 22 10889Google Scholar

    [9]

    Chen D Q, Yu Y L, Huang F, Yang A P, Wang Y S 2011 J. Mater. Chem. 21 6186Google Scholar

    [10]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [11]

    Huang P, Zheng W, Zhou S Y, Tu D T, Chen Z, Zhu H M, Li R F, Ma E, Huang M D, Chen X Y 2014 Angew. Chem. Int. Ed. 53 1252Google Scholar

    [12]

    Zhou J J, Chen G X, Wu E, Bi G, Wu B T, Teng Y, Zhou S F, Qiu J R 2013 Nano Lett. 13 2241Google Scholar

    [13]

    Ma C S, Xu X X, Wang F, Zhou Z G, Liu D M, Zhao J B, Guan M, Lang C I, Jin Y D 2017 Nano. Lett. 17 2858Google Scholar

    [14]

    Han Q Y, Zhang C Y, Wang C, Wang Z J, Li C X, Gao W, Dong J, He E J, Zhang Z L, Zheng H R 2017 Sci. Rep. 7 5371Google Scholar

    [15]

    Chen B, Kong W, Liu Y, Lu Y H, Li M Y, Qiao X S, Fan X P, Wang F 2017 Angew. Chem. Int. Ed. 56 10383Google Scholar

    [16]

    Gao D L, Zhang X Y, Pang Q, Zhao J, Xiao G Q, Tian D 2018 J. Mater. Chem. C 6 8011Google Scholar

    [17]

    Gao D L, Zhao D, Xin H, Cai A J, Zhang X Y 2019 J. Mater. Chem. C 7 11879Google Scholar

    [18]

    Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704Google Scholar

    [19]

    Wu S J, Duan N, Li X L, Tan G L, Ma X Y, Xia Y, Wang Z P, Wang H X 2013 Talanta 116 611Google Scholar

    [20]

    Tao F, Pan F, Wang Z J, Cai W L, Yao L Z 2010 CrystEngComm 12 4263Google Scholar

    [21]

    高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205Google Scholar

    Ga oW, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar

    [22]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [23]

    Dominika P, Anna E, Bartosz F G, Tomasz G 2019 Sci. Rep. 9 8669Google Scholar

    [24]

    Tan X J, Xu S L, Liu F H, Wang X Y, Goodman B A. Xiong D K, Deng W 2019 J. Lumin. 209 95Google Scholar

    [25]

    Gao D L, Wang D, Zhang X Y, Feng X J, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622Google Scholar

    [26]

    Dai X, Lei L, Xia J, Han X, Hua Y, Xu S 2018 J. Alloys Compd. 766 261Google Scholar

    [27]

    Schmidt T, Müller G, Spanhel L, Kerkel K, Forchel A 1998 Chem. Mater. 10 65Google Scholar

    [28]

    Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C 2009 Spectrochim. Acta., Part A 74 441Google Scholar

    [29]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395

    [30]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

  • [1] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [3] 阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提. Tm3+, Yb3+共掺Bi2WO6上转换发光材料的制备及其温度传感性质. 物理学报, 2023, 72(6): 060701. doi: 10.7498/aps.72.20222143
    [4] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [5] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [6] 陈癸伶, 马佳佳, 孙佳石, 张金苏, 李香萍, 徐赛, 张希珍, 程丽红, 陈宝玖. 试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究. 物理学报, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [7] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [8] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [9] 高伟, 董军. 共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射. 物理学报, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [10] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣. Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性. 物理学报, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [11] 杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成. Ba5SiO4Cl6: Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究. 物理学报, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [12] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性. 物理学报, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [13] 郑龙江, 李雅新, 刘海龙, 徐伟, 张治国. Tm3+,Yb3+共掺钨酸钙多晶材料的上转换发光及荧光温度特性. 物理学报, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [14] 王大刚, 周亚训, 王训四, 戴世勋, 沈祥, 陈飞飞, 王森. 应用于白光显示的Tm3+/Ho3+/Yb3+共掺碲酸盐玻璃上转换发光特性研究. 物理学报, 2010, 59(9): 6256-6260. doi: 10.7498/aps.59.6256
    [15] 袁宁一, 陈效双, 丁建宁, 何泽军, 李锋, 陆卫. 溶胶-凝胶制备ZnO-SiO2复合膜的量子效应和上转换发光. 物理学报, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [16] 甘棕松, 余 华, 李妍明, 王亚楠, 陈 晖, 赵丽娟. Tm3+/Yb3+共掺氟氧硅铝酸盐玻璃陶瓷蓝色上转换发光研究. 物理学报, 2008, 57(9): 5699-5704. doi: 10.7498/aps.57.5699
    [17] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] 温 磊, 张丽艳, 杨建虎, 汪国年, 陈 伟, 胡丽丽. 掺铒氟(卤)磷碲酸盐玻璃的上转换发光性能研究. 物理学报, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [19] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究. 物理学报, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] 赵丽娟, 孙聆东, 许京军, 张光寅. 用转移函数方法研究铒离子上转换发光与抽运功率的关系. 物理学报, 2001, 50(1): 63-67. doi: 10.7498/aps.50.63
计量
  • 文章访问数:  11214
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-02
  • 修回日期:  2019-10-22
  • 刊出日期:  2020-02-05

/

返回文章
返回