搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制

李敏 王博婷 许韬 水涓涓

引用本文:
Citation:

四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制

李敏, 王博婷, 许韬, 水涓涓

Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation

Li Min, Wang Bo-Ting, Xu Tao, Shui Juan-Juan
PDF
HTML
导出引用
  • 本文研究了四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制, 该模型既可以模拟高速光纤传输系统中超短脉冲的非线性传输和相互作用, 又可以描述具有八极与偶极相互作用的一维海森堡铁磁链的非线性自旋激发现象. 本文首先通过对四阶色散非线性薛定谔方程的相平面分析, 发现由其约化得到的二维平面自治系统具有同宿轨道和异宿轨道, 并在相应条件下求得了方程的明孤立波解和暗孤立波解, 从而揭示了同异宿轨道和孤立波解的对应关系; 其次, 基于非零背景平面上的精确一阶呼吸子解, 给出了呼吸子的群速度和相速度的显式表达式, 进而分析得出呼吸子的速度存在跳跃现象. 最后, 为了验证在跳跃点处呼吸子可以转化为怪波, 将呼吸子解在速度跳跃条件下取极限获得了一阶怪波解, 从而证实怪波的产生与呼吸子速度的不连续性有关.
    In this paper, we study the generation mechanism of bright and dark solitary waves and rogue wave for the fourth-order dispersive nonlinear Schrödinger (FODNLS) equation, which can not only model the nonlinear propagation and interaction of ultrashort pulses in the high-speed optical fiber transmission system, but also govern the nonlinear spin excitations in the onedimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole-dipole interaction. Firstly, via the phase plane analysis, we obtain both the homoclinic and heteroclinic orbits for the two-dimensional plane autonomous system reduced from the FODNLS equation. Further, we derive the bright and dark solitary wave solutions under the corresponding conditions, which reveals the relationship between the homoclinic (heteroclinic) orbit and solitary wave. Secondly, based on the exact first-order breather solution of the FODNLS equation over a nonvanishing background, we give the explicit expressions of group and phase velocities, and reveal that there exists a jump in both the velocities. Finally, in order to verify that the breather becomes a rogue wave at the jumping point, we obtain the first-order rogue wave solution by taking the limit of the breather solution at such point, which confirms the relationship of the generation of rogue wave with the velocity discontinuity.
      通信作者: 李敏, ml85@ncepu.edu.cn ; 许韬, xutao@cup.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11705284, 61505054)和中央高校基本科研业务费专项资金(批准号: 2017MS051)
      Corresponding author: Li Min, ml85@ncepu.edu.cn ; Xu Tao, xutao@cup.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705284 and 61505054), by the Fundamental Research Funds of the Central Universities (Grant No. 2017MS051)
    [1]

    He J S, Xu S W, Porsezian 2012 Phys. Rev. E 86 066603Google Scholar

    [2]

    Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [3]

    Stenflo L, Marklund M 2010 J. Plasma Phys. 76 293Google Scholar

    [4]

    Li M, Shui J J, Xu T 2018 Appl. Math. Lett. 83 110Google Scholar

    [5]

    Li M, Shui J J, Huang Y H, Wang L, Li H J 2018 Phys. Scr. 93 115203Google Scholar

    [6]

    Li M, Xu T, Meng D X 2016 J. Phys. Soc. Jpn. 85 124001Google Scholar

    [7]

    Xu T, Lan S, Li M, Li L L, Zhang G W 2019 Physica D 390 47Google Scholar

    [8]

    Xu T, Pelinovsky D E 2019 Phys. Lett. A 383 125948 ; Xu T, Chen Y, Li M, Meng D X 2019 Chaos 29 123124

    [9]

    Agrawal G P 2012 Nonlinear Fiber Optics (5th ed.) (San Diego: Academic Press) pp120–150

    [10]

    Ma Y C 1979 Stud. Appl. Math. 60 43Google Scholar

    [11]

    Akhmediev N N, Korneev V I 1986 Theor. Math. Phys. 69 1089Google Scholar

    [12]

    Calini A, Schober C M 2002 Phys. Lett. A 298 335Google Scholar

    [13]

    Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H, Guo R 2016 Phys. Rev. E 93 012214Google Scholar

    [14]

    Akhmediev N N, Soto-Crespo J M, Ankiewica A 2009 Phys. Lett. A 373 2137Google Scholar

    [15]

    Zuo D W, Gao Y T, Xue L, Feng Y J 2014 Chaos, Solitons Fractals 69 217227

    [16]

    Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [17]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. E 106 204502

    [18]

    Peregrine D H 1983 J. Austral. Math. Soc. Ser. B 25 16Google Scholar

    [19]

    Akhmediev N N, Soto-Crespo J M, Ankiewica A 2009 Phys. Rev. A 80 043818Google Scholar

    [20]

    Benjamin T B, Feir J E 1967 J. Fluid. Mech. 27 417Google Scholar

    [21]

    Toffoli T, Fernandez L, Monbaliu J, Benoit M, Gagnaire-Renou E, Lefèvre J M, Cavaleri L, Proment D, Pakozdi C, Stansberg C T, Waseda T, Onorato M 2013 Phys. Fluids 25 091701Google Scholar

    [22]

    Mussot A, Kudlinski A, Kolobov M, Louvergneaux E, Douay M, Taki M 2009 Opt. Express 17 17010Google Scholar

    [23]

    Genty G, de Sterke C M, Bang O, Dias F, Akhmediev N, Dudley J M 2010 Phys. Lett. A 374 989Google Scholar

    [24]

    He J S, Xu S W, Porsezian K, Cheng Y, Dinda P T 2016 Phys. Rev. E 93 062201Google Scholar

    [25]

    He J S, Xu S W, Porsezian K, Dinda P T, Mihalache D, Malomed B A, Ding E 2017 Rom. J. Phys. 62 203

    [26]

    Liu S D, Liu S K 1994 Soliton Wave and Turbulence (Chinese version) (1st ed.) (Shanghai: Shanghai Scientific and Technological Education Press) pp90–97

    [27]

    Infeld E, Rowlands G 2000 Nonlinear Waves, Solitons and Chaos (2th ed.) (Cambridge: Cambridge University Press) pp144–156

    [28]

    Choudhuri A, Porsezian K 2013 Phys. Rev. A 88 033808Google Scholar

    [29]

    Porsezian K, Daniel M, Lakshmanan M 1992 J. Math. Phys. 33 1807Google Scholar

    [30]

    Wang L H, Porsezian K, He J S 2013 Phys. Rev. E 87 053202Google Scholar

    [31]

    Azzouzi F, Triki H, Mezghiche K, Akrmi A E 2009 Chaos, Solitons Fractals 39 1304Google Scholar

    [32]

    Daniel M, Latha M M 2001 Physica A 298 351Google Scholar

    [33]

    Zhang H Q, Tian B, Meng X H, Lü X, Liu W J 2009 Eur. Phys. J. B 72 233Google Scholar

    [34]

    Liu R X, Tian B, Liu L C, Qin B, Lü X 2013 Physica B 413 120Google Scholar

    [35]

    Peregrine D H 1983 The ANZIAM Journal 25 16

    [36]

    Chen S H, Mihalache D 2015 J. Phys.A: Math. Theor. 48 215202Google Scholar

    [37]

    Liu B Y, Fokas A S, Mihalache D, He J S 2016 Rom. Rep. Phys. 68 1425

    [38]

    Zakharov V E, Gelash A A 2013 Phys. Rev. Lett. 111 054101Google Scholar

    [39]

    Whitham G B 1999 Linear and Nonlinear Waves (2nd ed.) (New York: A Wiley-Interscience Publication) pp363-374

    [40]

    Ruban V, Kodama Y, Ruderman M, et al. 2010 Eur. Phys. J. Special Topics 185 5Google Scholar

  • 图 1  系统(15)的相位图 (a)同宿轨道(β1 = –1/10, β2 = 1/18); (b) 异宿轨道(β1 = 1, β2 = –5/9)

    Fig. 1.  Phase portraits of System (15): (a) Homoclinic orbits (β1 = –1/10, β2 = 1/18); (b) heteroclinic orbits (β1 = 1, β2 = –5/9).

    图 2  (a)由明孤立波解(22)式描述的明孤立波传输图形, 其中参数选取为 α1 = 1, α2 = 2, α3 = 1, α4 = 8, α5 = 2,α6 = 6, α7 = 4, α8 = 6, c = 1, K = 1, $\varOmega $ = 51/16, ε = 1, a = 1; (b) 由暗孤立波解(25)式描述的暗孤立波传输图形, 其中参数选取为α1 = –1, α2 = 2, α3 = 1, α4 = –8, α5 = –2, α6 = –6, α 7 = –4, α8 = 6, c = –7, K = 1, $\varOmega $ = –123/32, ε = 1, a = 1

    Fig. 2.  (a) Propagation of bright solitary wave via Solution (22) with the parameters chosen as α1 = 1, α2 = 2, α3 = 1, α4 = 8, α5 = 2, α6 = 6, α7 = 4, α8 = 6, c = 1, K = 1, $\varOmega $ = 51/16, ε = 1, a = 1; (b) propagation of dark solitary wave via Solution (25) with the parameters chosen as α1 = –1, α2 = 2, α3 = 1, α4 = –8, α5 = –2, α6 = –6, α7 = –4, α8 = 6, c = –7, K = 1, $\varOmega $ = –123/32, ε = 1, a = 1.

    图 3  解(32)式描述的一阶呼吸子的动力学演化, 其中参数选取为$\xi=0$, $\eta={1}/{2}$, $c={2}/{5}$$a=0$

    Fig. 3.  The propagation of one breather via Solution (32) with the parameters chosen as $\xi=0$, $\eta={1}/{2}$, $c={2}/{5}$ and $a=0$.

    图 4  呼吸子的群速度$V_{\rm g}$(红实线)和相速度$V_{\rm p}$(蓝虚线)随参数a的变化关系

    Fig. 4.  Group velocity $V_{\rm g}$ (red-solid line) and phase velocity $V_{\rm p}$ (blue-dot line) of the breather

    图 5  解(42)式描述的一阶怪波的动力学演化, 其中参数选取为$\xi=1$, $\eta=1$, $c=1$, $\alpha_1=1$, $\alpha_2=1$$a=-2$

    Fig. 5.  The propagation of first-order rogue wave via Solution (42) with the parameters chosen as $\xi=1$, $\eta=1$, $c=1$, $\alpha_1=1$, $\alpha_2=1$ and $a=-2$.

    图 6  (a) 群速度$V_{\rm g}$随振幅参数c的变化(红实线)和(b)相速度$V_{\rm p}$随振幅参数c的变化(蓝点线), 其中参数选取为$\xi={1}/{2}(\sqrt{-4 c^2}-a)$, $\eta=0$$a=1$

    Fig. 6.  Variation of the group velocity $V_{\rm g}$ (red-solid line) and phase velocity $V_{\rm p}$ (blue-dot line) about the amplitude parameter c with the parameters chosen as $\xi={1}/{2}(\sqrt{-4 c^2}-a)$, $\eta=0$ and $a=1$.

  • [1]

    He J S, Xu S W, Porsezian 2012 Phys. Rev. E 86 066603Google Scholar

    [2]

    Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [3]

    Stenflo L, Marklund M 2010 J. Plasma Phys. 76 293Google Scholar

    [4]

    Li M, Shui J J, Xu T 2018 Appl. Math. Lett. 83 110Google Scholar

    [5]

    Li M, Shui J J, Huang Y H, Wang L, Li H J 2018 Phys. Scr. 93 115203Google Scholar

    [6]

    Li M, Xu T, Meng D X 2016 J. Phys. Soc. Jpn. 85 124001Google Scholar

    [7]

    Xu T, Lan S, Li M, Li L L, Zhang G W 2019 Physica D 390 47Google Scholar

    [8]

    Xu T, Pelinovsky D E 2019 Phys. Lett. A 383 125948 ; Xu T, Chen Y, Li M, Meng D X 2019 Chaos 29 123124

    [9]

    Agrawal G P 2012 Nonlinear Fiber Optics (5th ed.) (San Diego: Academic Press) pp120–150

    [10]

    Ma Y C 1979 Stud. Appl. Math. 60 43Google Scholar

    [11]

    Akhmediev N N, Korneev V I 1986 Theor. Math. Phys. 69 1089Google Scholar

    [12]

    Calini A, Schober C M 2002 Phys. Lett. A 298 335Google Scholar

    [13]

    Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H, Guo R 2016 Phys. Rev. E 93 012214Google Scholar

    [14]

    Akhmediev N N, Soto-Crespo J M, Ankiewica A 2009 Phys. Lett. A 373 2137Google Scholar

    [15]

    Zuo D W, Gao Y T, Xue L, Feng Y J 2014 Chaos, Solitons Fractals 69 217227

    [16]

    Solli D R, Ropers C, Koonath P, Jalali B 2007 Nature 450 1054Google Scholar

    [17]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. E 106 204502

    [18]

    Peregrine D H 1983 J. Austral. Math. Soc. Ser. B 25 16Google Scholar

    [19]

    Akhmediev N N, Soto-Crespo J M, Ankiewica A 2009 Phys. Rev. A 80 043818Google Scholar

    [20]

    Benjamin T B, Feir J E 1967 J. Fluid. Mech. 27 417Google Scholar

    [21]

    Toffoli T, Fernandez L, Monbaliu J, Benoit M, Gagnaire-Renou E, Lefèvre J M, Cavaleri L, Proment D, Pakozdi C, Stansberg C T, Waseda T, Onorato M 2013 Phys. Fluids 25 091701Google Scholar

    [22]

    Mussot A, Kudlinski A, Kolobov M, Louvergneaux E, Douay M, Taki M 2009 Opt. Express 17 17010Google Scholar

    [23]

    Genty G, de Sterke C M, Bang O, Dias F, Akhmediev N, Dudley J M 2010 Phys. Lett. A 374 989Google Scholar

    [24]

    He J S, Xu S W, Porsezian K, Cheng Y, Dinda P T 2016 Phys. Rev. E 93 062201Google Scholar

    [25]

    He J S, Xu S W, Porsezian K, Dinda P T, Mihalache D, Malomed B A, Ding E 2017 Rom. J. Phys. 62 203

    [26]

    Liu S D, Liu S K 1994 Soliton Wave and Turbulence (Chinese version) (1st ed.) (Shanghai: Shanghai Scientific and Technological Education Press) pp90–97

    [27]

    Infeld E, Rowlands G 2000 Nonlinear Waves, Solitons and Chaos (2th ed.) (Cambridge: Cambridge University Press) pp144–156

    [28]

    Choudhuri A, Porsezian K 2013 Phys. Rev. A 88 033808Google Scholar

    [29]

    Porsezian K, Daniel M, Lakshmanan M 1992 J. Math. Phys. 33 1807Google Scholar

    [30]

    Wang L H, Porsezian K, He J S 2013 Phys. Rev. E 87 053202Google Scholar

    [31]

    Azzouzi F, Triki H, Mezghiche K, Akrmi A E 2009 Chaos, Solitons Fractals 39 1304Google Scholar

    [32]

    Daniel M, Latha M M 2001 Physica A 298 351Google Scholar

    [33]

    Zhang H Q, Tian B, Meng X H, Lü X, Liu W J 2009 Eur. Phys. J. B 72 233Google Scholar

    [34]

    Liu R X, Tian B, Liu L C, Qin B, Lü X 2013 Physica B 413 120Google Scholar

    [35]

    Peregrine D H 1983 The ANZIAM Journal 25 16

    [36]

    Chen S H, Mihalache D 2015 J. Phys.A: Math. Theor. 48 215202Google Scholar

    [37]

    Liu B Y, Fokas A S, Mihalache D, He J S 2016 Rom. Rep. Phys. 68 1425

    [38]

    Zakharov V E, Gelash A A 2013 Phys. Rev. Lett. 111 054101Google Scholar

    [39]

    Whitham G B 1999 Linear and Nonlinear Waves (2nd ed.) (New York: A Wiley-Interscience Publication) pp363-374

    [40]

    Ruban V, Kodama Y, Ruderman M, et al. 2010 Eur. Phys. J. Special Topics 185 5Google Scholar

  • [1] 饶继光, 陈生安, 吴昭君, 贺劲松. 空间位移$\mathcal{PT}$对称非局域非线性薛定谔方程的高阶怪波解. 物理学报, 2023, 72(10): 104204. doi: 10.7498/aps.72.20222298
    [2] 张解放, 俞定国, 金美贞. 二维自相似变换理论和线怪波激发. 物理学报, 2022, 71(1): 014205. doi: 10.7498/aps.71.20211417
    [3] 王艳, 李禄. 基于怪波实现光脉冲串的全光放大. 物理学报, 2021, 70(22): 224213. doi: 10.7498/aps.70.20210959
    [4] 陈智敏, 段文山. 弹性管中的怪波. 物理学报, 2020, 69(1): 014701. doi: 10.7498/aps.69.20191308
    [5] 张解放, 金美贞. Fokas系统的怪波激发. 物理学报, 2020, 69(21): 214203. doi: 10.7498/aps.69.20200710
    [6] 闻小永, 王昊天. 高阶Ablowitz-Ladik方程的局域波解及稳定性分析. 物理学报, 2020, 69(1): 010205. doi: 10.7498/aps.69.20191235
    [7] 周聪, 王庆良. 考虑频散效应的一维非线性地震波数值模拟. 物理学报, 2015, 64(23): 239101. doi: 10.7498/aps.64.239101
    [8] 那仁满都拉. 微结构固体中的孤立波及其存在条件. 物理学报, 2014, 63(19): 194301. doi: 10.7498/aps.63.194301
    [9] 黄德财, 陈伟中, 杨安娜, 孙敏, 胡凤兰, 赵敏. 孤立波在一维复合颗粒链中传播特性的模拟研究. 物理学报, 2014, 63(15): 154502. doi: 10.7498/aps.63.154502
    [10] 李淑青, 杨光晔, 李禄. Hirota方程的怪波解及其传输特性研究. 物理学报, 2014, 63(10): 104215. doi: 10.7498/aps.63.104215
    [11] 韩海英, 那仁满都拉, 双山. 具微结构地壳中非线性地震波的演化. 物理学报, 2012, 61(5): 059101. doi: 10.7498/aps.61.059101
    [12] 莫嘉琪, 陈贤峰. 一类非线性扰动Nizhnik-Novikov-Veselov系统的孤立波近似解析解. 物理学报, 2010, 59(5): 2919-2923. doi: 10.7498/aps.59.2919
    [13] 莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解. 物理学报, 2010, 59(3): 1403-1408. doi: 10.7498/aps.59.1403
    [14] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性. 物理学报, 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [15] 那仁满都拉, 韩元春. 非均匀圆柱壳中非线性波传播模型的同伦分析解法. 物理学报, 2010, 59(5): 2942-2947. doi: 10.7498/aps.59.2942
    [16] 朱海平, 郑春龙. (2+1)维广义Nizhnik-Novikov-Veselov系统的新严格解和复合波激发. 物理学报, 2006, 55(10): 4999-5006. doi: 10.7498/aps.55.4999
    [17] 张介秋, 梁昌洪, 王耕国, 朱家珍. 阿尔芬高斯波包演化为阿尔芬孤波的条件及阿尔芬波的调制不稳定性判据. 物理学报, 2003, 52(4): 890-895. doi: 10.7498/aps.52.890
    [18] 王登龙, 颜晓红, 唐 翌. 考虑次近邻相互作用下一维单原子链中的孤立波. 物理学报, 2000, 49(9): 1736-1740. doi: 10.7498/aps.49.1736
    [19] 陶福臻. 引力孤立波. 物理学报, 1987, 36(3): 350-356. doi: 10.7498/aps.36.350
    [20] 黄宏嘉. 关于耦合波理论中的不连续性问题. 物理学报, 1962, 18(1): 56-62. doi: 10.7498/aps.18.56
计量
  • 文章访问数:  11978
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-12
  • 修回日期:  2019-11-04
  • 上网日期:  2019-12-14
  • 刊出日期:  2020-01-05

/

返回文章
返回