搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性波动方程的新数值迭代方法

曹娜 陈时 曹辉 王成会 刘航

引用本文:
Citation:

非线性波动方程的新数值迭代方法

曹娜, 陈时, 曹辉, 王成会, 刘航

New numerical iterative method for nonlinear wave equations

Cao Na, Chen Shi, Cao Hui, Wang Cheng-Hui, Liu Hang
PDF
HTML
导出引用
  • 提出了一种新的求解非线性波动方程的数值迭代法, 它是一种半解析的方法. 与完全的数值计算方法(如有限元、有限差分法)相比, 这种迭代法的解具有非常清晰的物理含义, 即它的解是各阶谐波的组合. 与微扰法相比, 它能够考虑各阶谐波的相互作用, 且能够满足能量守恒定律. 用它研究了非线性声波在液体中的传播性质, 结果表明, 在微扰法适用的声强范围内迭代法也适用, 在微扰法不适用的一个较宽的声强范围内迭代法依然适用.
    Nonlinear acoustics is an important branch of acoustics and has important applications in some areas, such as high-intensity focused ultrasound, ultrasonic suspension, acoustic cavitation, acoustic harmonic imaging, and parametric emission array. The solving of nonlinear equations in these fields is very important. Regarding the solution of the wave equation of a nonlinear acoustic system, the methods used at this stage generally include complete numerical calculation method, strict analytical method, and perturbation method. 1) For the complete numerical calculation method, it covers the finite element method and the finite difference method. The physical meaning of the solution obtained by this kind of method is not clear, and it is difficult to reveal the physical nature of nonlinear event. And in many cases it will lead to the numerical divergence problems, and it is not suitable for all nonlinear problems. 2) For the strict analytical method, it can only deal with nonlinear acoustic problems of very few systems, such as the propagation of nonlinear acoustic waves in an ideal fluid. 3) For perturbation method, its advantage is that the method is simple and the physical meaning of the solution is clear, but it is only suitable for dealing with nonlinear effects at low sound intensity. And it takes into consideration only the effect of low-order harmonics on higher-order harmonics, with ignoring its reaction, so it does not satisfy the law of conservation of energy.In this paper, we propose a new, semi-analytical numerical iterative method of solving nonlinear wave equations. It is a form of expanding the sound field into a Fourier series in the frequency domain, realizing the separation of time variables from space coordinates. Then, according to the specific requirements for the calculation accuracy, the high frequency harmonics are cut off to solve the equation. Compared with the results from the complete numerical methods (such as finite element method and finite difference method), the solution from this iterative method has a very clear physical meaning. That is, its solution is a combination of harmonics of all orders. Compared with the perturbation method, it can consider the interaction of various harmonics and can satisfy the law of conservation of energy (provided that the system has no dissipation). It is used to study the propagation properties of nonlinear acoustic waves in liquids. The results show that the iterative method is also applicable in the range of sound intensity where the perturbation method is applicable. In a wide range of sound intensity where the perturbation method is unapplicable, the iterative method is still applicable and satisfies the law of conservation of energy (provided that the system has no dissipation). It is unapplicable only if the sound intensity is extremely loud and strong. And when more high-order harmonics are involved, the calculation time by using the numerical method proposed in this paper does not increase sharply.
      通信作者: 陈时, chenshi@snnu.edu.cn ; 曹辉, caohui@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974232, 11374199, 11074159)资助的课题
      Corresponding author: Chen Shi, chenshi@snnu.edu.cn ; Cao Hui, caohui@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974232, 11374199, 11074159)
    [1]

    叶欣, 费兴波 2004 国外医学: 肿瘤学分册 31 38

    Ye X, Fei X B 2004 Foreign Med. Sci. Cancer Section 31 38

    [2]

    李发琪, 王智彪, 杜永洪, 许贵安, 文爽, 白晋, 伍烽, 王芷龙 2003 中国生物医学工程学报 22 321Google Scholar

    Li F Q, Wang Z B, Du Y H, Xu G A, Wen S, Bai J, Wu F, Wang Z L 2003 Chin. Biological Eng. 22 321Google Scholar

    [3]

    祝宝让, 刁立岩, 李静, 刘滢, 范燕娜, 杨武威 2019 中国超声医学杂志 35 817Google Scholar

    Zhu B R, Diao L Y, Li J, Liu Y, Fan Y N, Yang W W 2019 Chin. J. Ultrasound in Med. 35 817Google Scholar

    [4]

    杨竹,曹友德, 胡丽娜, 王智彪 2003 临床超声医学杂志 6 33Google Scholar

    Yang Z, Cao Y D, Hu L N, Wang Z B 2003 J. Ultras. Clin. Med. 6 33Google Scholar

    [5]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 物理学报 66 124301Google Scholar

    Qin X P, Gen D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [6]

    Tait A, Glynne-Jones P, Hill A R, Smart D E, Blume C, Hammarstrom B, Fisher A L, Grossel M C, Swindle E J, Hill M, Davies D E 2019 Sci. Rep. 9 9789Google Scholar

    [7]

    Morris R H, Dey E R, Axford D, Newton M L, Beale J H, Docker P T 2019 Sci. Rep. 9 12431Google Scholar

    [8]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第371−421页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) pp371−421 (in Chinese)

    [9]

    Burns P N, Simpson D H, Averkiou A 2000 Ultrasound Med. Biol. 26 19Google Scholar

    [10]

    Tranquart F, Greniek N, Eder V 1999 Ultrasound Med. Biol. 25 889Google Scholar

    [11]

    Gan W S 2012 Appl. Acoust. 73 1209Google Scholar

    [12]

    吴培荣, 李颂文 2010 声学技术 29 41

    Wu P R, Li S W 2010 Tech. Acoust. 29 41

    [13]

    Enflo B O, Hedberg C M 2004 Theory of Nonlinear Acoustics in Fluids (New York: Kluwer Academic Publishers) pp53−112

    [14]

    Rosing T D 2007 Springer Handbook of Acoustics (New York: Springer Science Business Media) p260

    [15]

    Beyer R T 1969 Physical Ultrasonics (New York: Academic Press) pp202—240

    [16]

    Michelle G, Bengt F, Tobin A, Driscoll 2000 SIAM J. Numer. Anal. 38 718Google Scholar

    [17]

    Campos-Pozuelo C, Dubus B, Gallego-Juráez J A 1999 J. Acoust. Soc. Am. 106 91Google Scholar

    [18]

    钱祖文 2009 非线性声学 (北京: 科学出版社) 第57−72页

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) pp57−72 (in Chinese)

    [19]

    Blackstock D T 1966 J. Acoust. Soc. Am. 39 1019

    [20]

    张世功, 吴先梅, 张碧星, 安志武 2016 物理学报 65 104301Google Scholar

    Zhang S G, Wu X M, Zhang B X, An Z W 2016 Acta Phys. Sin. 65 104301Google Scholar

    [21]

    吴先梅, 吕文瀚, 陈家熠 2017 声学技术 36 57

    Wu X M, Lv W H, Zhang J Y 2017 Tech. Acoust. 36 57

    [22]

    Qian Z W 2014 Chin. Phys. B. 23 064301Google Scholar

    [23]

    钱祖文 2009 非线性声学 (北京: 科学出版社) 第19−22页

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) pp19−22 (in Chinese)

    [24]

    Kim J Y, Laurence J J, Qu J M 2006 J. Acoust. Soc. Am. 120 1266

  • 图 1  能量守恒的破坏程度、二次谐波的相对能流和三次谐波的相对能流随入射波能流的变化

    Fig. 1.  Damage degree of energy conservation, the relative energy flow of the second harmonic, and the relative energy flow of the third harmonic with incident wave energy flow.

    图 2  各阶谐波的相对能流随入射波能流的变化

    Fig. 2.  Relation between relative energy of each order of harmonics and incident wave energy.

    图 3  入射波能流不同时二阶谐波的相对能流随迭代次数的变化

    Fig. 3.  Relative energy flow of the second harmonic varies with the number of iterations under different incident wave energy flow.

    图 4  黏度不同的情况下, 各阶谐波的能流随入射波能流的变化(图中曲线的黏度分别是$1 \times {10^{ - 6}}$, $6 \times {10^{ - 1}}$$10 \times {10^{ - 1}}$ Pa/s, 箭头表示黏度减小的方向)

    Fig. 4.  Relation of relative energy flow of each order of harmonics with incident wave energy flow under different viscosity. Viscosites for different curves are $1 \times {10^{ - 6}}$, $6 \times {10^{ - 1}}$, $10 \times {10^{ - 1}}$ Pa/s, respectively. Arrows indicate the direction of decreasing viscosity.

    图 5  黏度不同的情况下, 各阶谐波的相对能流随角频率的变化(图中曲线的黏度分别是$1 \times {10^{ - 6}}$$1 \times {10^{ - 1}}$ Pa/s, 箭头表示黏度减小的方向)

    Fig. 5.  Relative energy flow varies with angular frequency under different visco-sity. Viscosites for different curves are $1 \times {10^{ - 6}}$ and $1 \times {10^{ - 1}}$ Pa/s, respectively. Arrows indicate the direction of decreasing viscosity.

  • [1]

    叶欣, 费兴波 2004 国外医学: 肿瘤学分册 31 38

    Ye X, Fei X B 2004 Foreign Med. Sci. Cancer Section 31 38

    [2]

    李发琪, 王智彪, 杜永洪, 许贵安, 文爽, 白晋, 伍烽, 王芷龙 2003 中国生物医学工程学报 22 321Google Scholar

    Li F Q, Wang Z B, Du Y H, Xu G A, Wen S, Bai J, Wu F, Wang Z L 2003 Chin. Biological Eng. 22 321Google Scholar

    [3]

    祝宝让, 刁立岩, 李静, 刘滢, 范燕娜, 杨武威 2019 中国超声医学杂志 35 817Google Scholar

    Zhu B R, Diao L Y, Li J, Liu Y, Fan Y N, Yang W W 2019 Chin. J. Ultrasound in Med. 35 817Google Scholar

    [4]

    杨竹,曹友德, 胡丽娜, 王智彪 2003 临床超声医学杂志 6 33Google Scholar

    Yang Z, Cao Y D, Hu L N, Wang Z B 2003 J. Ultras. Clin. Med. 6 33Google Scholar

    [5]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 物理学报 66 124301Google Scholar

    Qin X P, Gen D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [6]

    Tait A, Glynne-Jones P, Hill A R, Smart D E, Blume C, Hammarstrom B, Fisher A L, Grossel M C, Swindle E J, Hill M, Davies D E 2019 Sci. Rep. 9 9789Google Scholar

    [7]

    Morris R H, Dey E R, Axford D, Newton M L, Beale J H, Docker P T 2019 Sci. Rep. 9 12431Google Scholar

    [8]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第371−421页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) pp371−421 (in Chinese)

    [9]

    Burns P N, Simpson D H, Averkiou A 2000 Ultrasound Med. Biol. 26 19Google Scholar

    [10]

    Tranquart F, Greniek N, Eder V 1999 Ultrasound Med. Biol. 25 889Google Scholar

    [11]

    Gan W S 2012 Appl. Acoust. 73 1209Google Scholar

    [12]

    吴培荣, 李颂文 2010 声学技术 29 41

    Wu P R, Li S W 2010 Tech. Acoust. 29 41

    [13]

    Enflo B O, Hedberg C M 2004 Theory of Nonlinear Acoustics in Fluids (New York: Kluwer Academic Publishers) pp53−112

    [14]

    Rosing T D 2007 Springer Handbook of Acoustics (New York: Springer Science Business Media) p260

    [15]

    Beyer R T 1969 Physical Ultrasonics (New York: Academic Press) pp202—240

    [16]

    Michelle G, Bengt F, Tobin A, Driscoll 2000 SIAM J. Numer. Anal. 38 718Google Scholar

    [17]

    Campos-Pozuelo C, Dubus B, Gallego-Juráez J A 1999 J. Acoust. Soc. Am. 106 91Google Scholar

    [18]

    钱祖文 2009 非线性声学 (北京: 科学出版社) 第57−72页

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) pp57−72 (in Chinese)

    [19]

    Blackstock D T 1966 J. Acoust. Soc. Am. 39 1019

    [20]

    张世功, 吴先梅, 张碧星, 安志武 2016 物理学报 65 104301Google Scholar

    Zhang S G, Wu X M, Zhang B X, An Z W 2016 Acta Phys. Sin. 65 104301Google Scholar

    [21]

    吴先梅, 吕文瀚, 陈家熠 2017 声学技术 36 57

    Wu X M, Lv W H, Zhang J Y 2017 Tech. Acoust. 36 57

    [22]

    Qian Z W 2014 Chin. Phys. B. 23 064301Google Scholar

    [23]

    钱祖文 2009 非线性声学 (北京: 科学出版社) 第19−22页

    Qian Z W 2009 Nonlinear Acoustics (Beijing: Science Press) pp19−22 (in Chinese)

    [24]

    Kim J Y, Laurence J J, Qu J M 2006 J. Acoust. Soc. Am. 120 1266

  • [1] 程双毅, 郁钧瑾, 付亚鹏, 他得安, 许凯亮. 非线性造影超声成像数值仿真方法. 物理学报, 2023, 72(15): 154302. doi: 10.7498/aps.72.20230323
    [2] 钟鸣, 田守富, 时怡清. 修正的变分迭代法在四阶Cahn-Hilliard方程和BBM-Burgers方程中的应用. 物理学报, 2021, 70(19): 190202. doi: 10.7498/aps.70.20202147
    [3] 郝世峰, 楼茂园, 杨诗芳, 李超, 孔照林, 裘薇. 干斜压大气拉格朗日原始方程组的半解析解法和非线性密度流数值试验. 物理学报, 2015, 64(19): 194702. doi: 10.7498/aps.64.194702
    [4] 程生毅, 陈善球, 董理治, 王帅, 杨平, 敖明武, 许冰. 变形镜高斯函数指数对迭代法自适应光学系统的影响. 物理学报, 2015, 64(9): 094207. doi: 10.7498/aps.64.094207
    [5] 许永红, 石兰芳, 莫嘉琪. 强阻尼广义sine-Gordon方程特征问题的变分迭代法. 物理学报, 2015, 64(1): 010201. doi: 10.7498/aps.64.010201
    [6] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [7] 张世功, 吴先梅, 张碧星. 基于迟滞应力应变关系的非线性声学检测理论与方法研究. 物理学报, 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [8] 唐碧华, 罗亚梅, 姜云海, 陈淑琼. 双曲余弦高斯涡旋光束的远场特性研究. 物理学报, 2013, 62(13): 134202. doi: 10.7498/aps.62.134202
    [9] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究. 物理学报, 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [10] 洪清泉, 仲伟博, 余燕忠, 蔡植善, 陈木生, 林顺达. 电偶极子在磁各向异性介质中的辐射功率. 物理学报, 2012, 61(16): 160302. doi: 10.7498/aps.61.160302
    [11] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法. 物理学报, 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [12] 李中新, 金亚秋. 分形粗糙面双站散射的快速前后向迭代法数值模拟. 物理学报, 2001, 50(5): 797-804. doi: 10.7498/aps.50.797
    [13] 范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法. 物理学报, 1998, 47(3): 353-362. doi: 10.7498/aps.47.353
    [14] 马大猷. 微扰法求解非线性驻波问题. 物理学报, 1996, 45(5): 796-800. doi: 10.7498/aps.45.796
    [15] 应和平, 季达人, 王志坚. 量子Monte Carlo簇团迭代法关于蜂窝状点阵QHAF模型研究. 物理学报, 1995, 44(11): 1839-1846. doi: 10.7498/aps.44.1839
    [16] 钱祖文. 非线性声学谐波方程的特解及其在边值问题中的应用. 物理学报, 1993, 42(6): 949-953. doi: 10.7498/aps.42.949
    [17] 雷啸霖, 丁秦生. 非线性电子输运中声学和光学声子的联合散射效应. 物理学报, 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
    [18] 冯若, 龚秀芬, 朱正亚, 石涛. 生物媒质中非线性声学参量B/A的研究. 物理学报, 1984, 33(9): 1282-1286. doi: 10.7498/aps.33.1282
    [19] 张洪钧, 戴建华, 吕迺光. 利用胶片非线性特性提取密度切片. 物理学报, 1980, 29(7): 956-960. doi: 10.7498/aps.29.956
    [20] 霍裕平, 杨国桢, 顾本源. 用光学方法实现幺正变换及一般线性变换(Ⅱ)——用迭代法求解. 物理学报, 1976, 25(1): 31-46. doi: 10.7498/aps.25.31
计量
  • 文章访问数:  8478
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-20
  • 修回日期:  2019-11-18
  • 上网日期:  2020-01-13
  • 刊出日期:  2020-02-05

/

返回文章
返回