搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

入射光照对典型光刻胶纳米结构的光学散射测量影响分析

董正琼 赵杭 朱金龙 石雅婷

引用本文:
Citation:

入射光照对典型光刻胶纳米结构的光学散射测量影响分析

董正琼, 赵杭, 朱金龙, 石雅婷

Influence of incident illumination on optical scattering measurement of typical photoresist nanostructure

Dong Zheng-Qiong, Zhao Hang, Zhu Jin-Long, Shi Ya-Ting
PDF
HTML
导出引用
  • 作为一种快速、低成本和非接触的测量手段, 光学散射测量在半导体制造业中的纳米结构三维形貌表征方面获得了广泛关注与运用. 光学散射测量是一种基于模型的测量方法, 在纳米结构待测参数的逆向提取过程中, 为降低参数之间的耦合性, 通常需要将结构的光学常数作为固定的已知量, 即假设结构的材料光学常数不受光学散射仪入射光照的影响. 事实上, 这一假设对于半导体制造业中的绝大多数材料是成立的, 但某些感光材料的光学常数有可能随着入射光的照射时间增加而发生改变, 而由此产生的误差会在一定程度上传递给待测形貌参数的逆向提取值. 本文针对聚甲基丙烯酸甲酯光刻胶薄膜培片和光栅结构分别开展了光学散射测量实验与仿真研究, 结果表明该光刻胶材料的光学常数随着入射光照时间增加而变化, 进而导致光栅结构形貌参数的提取结果较大地偏离于真实值, 不容被忽视. 这一研究发现将为更进一步提高光刻胶纳米结构三维形貌参数的测量精确度提供理论依据.
    Optical scatterometry, as a fast, low-cost, and non-contact measurement instrument, is widely used in the profile characterization of nanostructure in the semiconductor manufacturing industry. In general, it involves two procedures, i.e. the forward optical modeling of sub-wavelength nanostructures and the reconstruction of structural profiles from the measured signatures. Here, the general term signature means the scattered light information from the diffractive grating structure, which can be in the form of reflectance, ellipsometric angles, Stokes vector elements, or Mueller matrix elements. The profile reconstruction process is an inverse problem with the objective of optimizing a set of floating profile parameters (e.g., critical dimension, sidewall angle, and height) whose theoretical signatures can best match the measured ones through regression analysis or library search. During solving the inverse problem, the refractive index and distinction coefficient of the material of nanostructure are assumed to be constants and they are generally fixed. This assumption is valid for most of the materials in semiconductor industry, but not for certain materials that are very photosensitive. That is, the optical constants of photosensitive materials may vary with the illumination time of the incident light beam in spectroscopic ellipsometer, and the error caused by the variation of optical constants propagates to the final extracted results of structural profiles, which should not be neglected, especially for high precision and accuracy metrology.Experiments performed on SiO2 and polymethyl methacrylate (PMMA) thin films are conducted and demonstrate that the extracted geometric parameters and optical constants of SiO2 film do not change with illumination time increasing, while the twenty groups of values of extracted refractive index n and distinction coefficient k of PMMA resist film vary obviously, and the difference between the extracted maximum and minimum film thickness has reached 40.5 nm, which to some extent illustrates that the above assumption is not valid for PMMA resist, so that the incident light beam of spectroscopic ellipsometer has a great influence on the extracted film thickness. Further, simulations based on a three-dimensional PMMA grating also indicate that the error of optical constant has considerably transferred to the extracted profile parameters. This finding is of significance for improving the accuracy of nanostructure characterization in optical scatterometry.
      通信作者: 石雅婷, yatingshi@hust.edu.cn
    • 基金项目: 国家级-中国博士后科学基金(2016M602269; 2019M652633)
      Corresponding author: Shi Ya-Ting, yatingshi@hust.edu.cn
    [1]

    Fang F Z, Zhang X D, Gao W, Guo Y B, Byrne G, Hansen H N 2017 CIRP Ann.- Manuf. Technol. 66 683Google Scholar

    [2]

    刘宇宏, 雒建斌 2013 中国基础科学 15 3Google Scholar

    Liu Y H, Luo J B 2013 China Basic Sci. 15 3Google Scholar

    [3]

    Fujiwara H 2007 Spectroscopic Ellipsometry Principles and Applications (New York: John Wiley & Sons Inc) pp81–141

    [4]

    Liu J M, Lin J B, Jiang H, Gu H G, Chen X G, Zhang C W, Liao G L, Liu S Y 2019 Phys. Scripta 94 085802Google Scholar

    [5]

    Sunkoju S, Schujman S, Dixit D, Diebold A, Li J, Collins R, Haldar P 2016 Thin Solid Films 606 113Google Scholar

    [6]

    Matthias W, Johannes E, Jürgen P, Max S, Alexander D, Bernd B 2017 Opt. Express 25 2460Google Scholar

    [7]

    陈修国, 刘世元, 张传维, 吴懿平, 马智超, 孙堂友, 徐智谋 2014 物理学报 63 180701Google Scholar

    Chen X G, Liu S Y, Zhang C W, Wu Y P, Ma Z C, Sun T Y, Xu Z M 2014 Acta Phys. Sin. 63 180701Google Scholar

    [8]

    Huang H T, Kong W, Terry Jr F L 2001 Appl. Phys. Lett. 78 3983Google Scholar

    [9]

    张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元 2013 物理学报 62 168102Google Scholar

    Zhang Z, Xu Z M, Sun T Y, He J, Xu H F, Zhang X M, Liu S Y 2013 Acta Phys.Sin 62 168102Google Scholar

    [10]

    Chen X, Zhang C, and Liu S 2013 Appl. Phys. Lett. 103 151605Google Scholar

    [11]

    Liu S, Chen X, and Zhang C 2015 Thin Solid Films 584 176Google Scholar

    [12]

    Moharam M G, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068Google Scholar

    [13]

    Zhu J L, Liu S Y, Zhang C W, Chen X G, Dong Z Q 2013 J. Micro-Nanolith. Mem. 12 013004

    [14]

    Ichikawa H 1998 J. Opt. Soc. Am. A 15 152

    [15]

    Nakata Y, Koshiba M 1990 J. Opt. Soc. Am. A 7 1494Google Scholar

    [16]

    傅克祥, 王植恒, 张大跃, 张靖, 张奇志 1999 中国科学(A辑) 29 356

    Fu K X, Wang Z H, Zhang D Y, Zhang J, Zhang Q Z 1999 Sci. China Ser. A 29 356

    [17]

    Moharam M G, Pommet D A, Grann E B, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1077Google Scholar

    [18]

    Raymond C J, Littau M E, Chuprin A, Ward S 2004 Proceedings of SPIE Santa Clara, California, United States, May 24, 2004 p564

    [19]

    Levenberg, K 1944 Quart. Appl. Math. 2 164Google Scholar

    [20]

    Hanke, M 1997 Inverse Probl. 13 79Google Scholar

    [21]

    Vagos P, Hu J, Liu Z, Rabello S 2009 Proc. SPIE 7272 72721NGoogle Scholar

    [22]

    Littau M, Forman D, Bruce J, Raymond C J, Hummel S G 2006 Proceedings of SPIE San Jose, California, United States, March 24, 2006 p615236

    [23]

    Chen X, Liu S, Zhang C, Jiang H, Ma Z, Sun T, Xu Z 2014 Opt. Express 22 15165Google Scholar

    [24]

    Chen X, Liu S, Zhang C, Jiang H 2013 J. Micro-Nanolith. Mem. 12 033013

    [25]

    Dong Z, Liu S, Chen X, Zhang C 2014 Thin Solid Films 562 16Google Scholar

    [26]

    Li Y G, Susumu S 2007 Microsyst. Technol. 13 227

    [27]

    李以贵, 颜平, 黄远, 杉山进 2016 红外与激光工程 45 0620001

    Li Y G, Yan P, Huang Y, Susumu S 2016 Infrared Laser Eng. 45 0620001

    [28]

    Li L 1996 J. Opt. Soc. Am. A 13 1870Google Scholar

    [29]

    Marquardt D 1963 J. Soc. Indust. Appl. Math. 11 431

    [30]

    Collins R W, Koh J 1999 J.Opt. Soc. Am. A 16 1997Google Scholar

    [31]

    Shekar P V, Latha D M, Pisipati V G K M 2017 Opt. Mater. 64 564Google Scholar

    [32]

    Zhang Y H, Zhou X Q, Cao K, Chen X G, Deng Z, Liu S Y, Shan B, Chen R 2015 Thin Solid Films 593 144Google Scholar

    [33]

    Nidamanuri R R, Zbell B 2010 Prog. Phys. Geog. 34 47Google Scholar

    [34]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson M 1998 J. Appl. Phys 83 3323Google Scholar

    [35]

    韩建, 巴音贺希格, 李文昊, 孔鹏 2012 光学精密工程 20 2380Google Scholar

    Han J, Bayanheshig, Li W H, Kong P 2012 Opt. Precis. Eng. 20 2380Google Scholar

  • 图 1  (a) 线条光栅结构的几何形貌示意图; (b) RCWA建模的分层示意图

    Fig. 1.  (a) Geometry of the trapezoidal groove line grating; (b) layers division for inverse modeling based on RCWA.

    图 2  双旋转补偿器型Mueller矩阵椭偏仪 (a)基本光路; (b)仪器

    Fig. 2.  Principle and instrument of the dual rotating-compensator Mueller matrix ellipsometer: (a) Principle; (b) instrument.

    图 3  (a) SiO2薄膜样品; (b) 在SiO2表面旋涂PMMA光刻胶后的薄膜样品

    Fig. 3.  (a) The SiO2 sample; (b) the PMMA sample spinning coated on the surface of the SiO2 film.

    图 4  拟合得到的20组SiO2膜厚d1及其表面粗糙度等效膜厚r1 (a) r1; (b) d1; (c) MSE

    Fig. 4.  Extracted results of the thicknesses of SiO2 film h1 and equivalent surface roughness r1: (a) r1; (b) d1; (c) MSE.

    图 5  拟合得到的第1, 5, 10, 15和20组SiO2薄膜光学常数n1k1的计算值, 以及文献[34]给出的折射率与消光系数 (a) n1; (b) k1

    Fig. 5.  Extracted results of the optical constants n1 and k1 of SiO2 film calculated by Cauchy model and the ones from Ref. [34]: (a) n1; (b) k1.

    图 6  拟合得到的20组PMMA膜厚d2及其表面粗糙度等效膜厚r2 (a) r2; (b) d2; (c) MSE

    Fig. 6.  Extracted results of the thicknesses of PMMA film d2 and equivalent surface roughness r2: (a) r2; (b) d2; (c) MSE.

    图 7  拟合得到的第1, 5, 10, 15和20组PMMA薄膜光学常数n2k2的计算值 (a) n2; (b) k2

    Fig. 7.  Extracted results of the optical constants n2 and k2 of PMMA film calculated by Cauchy model: (a) n2; (b) k2

    图 8  PMMA光刻胶仿真光栅的结构示意图

    Fig. 8.  Geometry of the simulated PMMA grating sample

    图 9  在入射角θ = 65°、方位角φ = 0°的入射条件下, PMMA光刻胶仿真光栅的模型计算Mueller矩阵光谱与“测量”光谱之间的拟合曲线

    Fig. 9.  Fitting results of the calculated and the “ellipsometer-measured” Mueller matrix elements at the incidence and azimuthal angles fixed at θ = 65° and φ = 0°.

    表 1  对比PMMA仿真光栅3个待测形貌参数的拟合值与真实值

    Table 1.  Comparison of these three true dimensions and the extracted results of the simulated PMMA grating.

    参数名称真实值拟合值绝对误差
    顶部线宽w1/nm350.00352.902.90
    线高h/nm387.42387.900.50
    底部线宽w2/nm365.00368.500.35
    下载: 导出CSV
  • [1]

    Fang F Z, Zhang X D, Gao W, Guo Y B, Byrne G, Hansen H N 2017 CIRP Ann.- Manuf. Technol. 66 683Google Scholar

    [2]

    刘宇宏, 雒建斌 2013 中国基础科学 15 3Google Scholar

    Liu Y H, Luo J B 2013 China Basic Sci. 15 3Google Scholar

    [3]

    Fujiwara H 2007 Spectroscopic Ellipsometry Principles and Applications (New York: John Wiley & Sons Inc) pp81–141

    [4]

    Liu J M, Lin J B, Jiang H, Gu H G, Chen X G, Zhang C W, Liao G L, Liu S Y 2019 Phys. Scripta 94 085802Google Scholar

    [5]

    Sunkoju S, Schujman S, Dixit D, Diebold A, Li J, Collins R, Haldar P 2016 Thin Solid Films 606 113Google Scholar

    [6]

    Matthias W, Johannes E, Jürgen P, Max S, Alexander D, Bernd B 2017 Opt. Express 25 2460Google Scholar

    [7]

    陈修国, 刘世元, 张传维, 吴懿平, 马智超, 孙堂友, 徐智谋 2014 物理学报 63 180701Google Scholar

    Chen X G, Liu S Y, Zhang C W, Wu Y P, Ma Z C, Sun T Y, Xu Z M 2014 Acta Phys. Sin. 63 180701Google Scholar

    [8]

    Huang H T, Kong W, Terry Jr F L 2001 Appl. Phys. Lett. 78 3983Google Scholar

    [9]

    张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元 2013 物理学报 62 168102Google Scholar

    Zhang Z, Xu Z M, Sun T Y, He J, Xu H F, Zhang X M, Liu S Y 2013 Acta Phys.Sin 62 168102Google Scholar

    [10]

    Chen X, Zhang C, and Liu S 2013 Appl. Phys. Lett. 103 151605Google Scholar

    [11]

    Liu S, Chen X, and Zhang C 2015 Thin Solid Films 584 176Google Scholar

    [12]

    Moharam M G, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068Google Scholar

    [13]

    Zhu J L, Liu S Y, Zhang C W, Chen X G, Dong Z Q 2013 J. Micro-Nanolith. Mem. 12 013004

    [14]

    Ichikawa H 1998 J. Opt. Soc. Am. A 15 152

    [15]

    Nakata Y, Koshiba M 1990 J. Opt. Soc. Am. A 7 1494Google Scholar

    [16]

    傅克祥, 王植恒, 张大跃, 张靖, 张奇志 1999 中国科学(A辑) 29 356

    Fu K X, Wang Z H, Zhang D Y, Zhang J, Zhang Q Z 1999 Sci. China Ser. A 29 356

    [17]

    Moharam M G, Pommet D A, Grann E B, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1077Google Scholar

    [18]

    Raymond C J, Littau M E, Chuprin A, Ward S 2004 Proceedings of SPIE Santa Clara, California, United States, May 24, 2004 p564

    [19]

    Levenberg, K 1944 Quart. Appl. Math. 2 164Google Scholar

    [20]

    Hanke, M 1997 Inverse Probl. 13 79Google Scholar

    [21]

    Vagos P, Hu J, Liu Z, Rabello S 2009 Proc. SPIE 7272 72721NGoogle Scholar

    [22]

    Littau M, Forman D, Bruce J, Raymond C J, Hummel S G 2006 Proceedings of SPIE San Jose, California, United States, March 24, 2006 p615236

    [23]

    Chen X, Liu S, Zhang C, Jiang H, Ma Z, Sun T, Xu Z 2014 Opt. Express 22 15165Google Scholar

    [24]

    Chen X, Liu S, Zhang C, Jiang H 2013 J. Micro-Nanolith. Mem. 12 033013

    [25]

    Dong Z, Liu S, Chen X, Zhang C 2014 Thin Solid Films 562 16Google Scholar

    [26]

    Li Y G, Susumu S 2007 Microsyst. Technol. 13 227

    [27]

    李以贵, 颜平, 黄远, 杉山进 2016 红外与激光工程 45 0620001

    Li Y G, Yan P, Huang Y, Susumu S 2016 Infrared Laser Eng. 45 0620001

    [28]

    Li L 1996 J. Opt. Soc. Am. A 13 1870Google Scholar

    [29]

    Marquardt D 1963 J. Soc. Indust. Appl. Math. 11 431

    [30]

    Collins R W, Koh J 1999 J.Opt. Soc. Am. A 16 1997Google Scholar

    [31]

    Shekar P V, Latha D M, Pisipati V G K M 2017 Opt. Mater. 64 564Google Scholar

    [32]

    Zhang Y H, Zhou X Q, Cao K, Chen X G, Deng Z, Liu S Y, Shan B, Chen R 2015 Thin Solid Films 593 144Google Scholar

    [33]

    Nidamanuri R R, Zbell B 2010 Prog. Phys. Geog. 34 47Google Scholar

    [34]

    Herzinger C M, Johs B, McGahan W A, Woollam J A, Paulson M 1998 J. Appl. Phys 83 3323Google Scholar

    [35]

    韩建, 巴音贺希格, 李文昊, 孔鹏 2012 光学精密工程 20 2380Google Scholar

    Han J, Bayanheshig, Li W H, Kong P 2012 Opt. Precis. Eng. 20 2380Google Scholar

  • [1] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. 聚甲基丙烯酸甲酯的冲击破碎扩散特性. 物理学报, 2022, 71(21): 216201. doi: 10.7498/aps.71.20220740
    [2] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [3] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [4] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [5] 陈修国, 袁奎, 杜卫超, 陈军, 江浩, 张传维, 刘世元. 基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量. 物理学报, 2016, 65(7): 070703. doi: 10.7498/aps.65.070703
    [6] 李江, 唐敬友, 裴旺, 魏贤华, 黄峰. 椭偏精确测定透明衬底上吸收薄膜的厚度及光学常数. 物理学报, 2015, 64(11): 110702. doi: 10.7498/aps.64.110702
    [7] 于天燕, 秦杨, 刘定权. 沉积温度对硫化锌(ZnS)薄膜的结晶和光学特性影响研究. 物理学报, 2013, 62(21): 214211. doi: 10.7498/aps.62.214211
    [8] 黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭. 基于透射率曲线确定聚合物太阳能电池功能层的光学常数和厚度. 物理学报, 2012, 61(4): 048801. doi: 10.7498/aps.61.048801
    [9] 周学懋, 陈晓萌, 吴学邦, 水嘉鹏, 朱震刚. 聚甲基丙烯酸甲酯/镓纳米复合物的动力学弛豫行为. 物理学报, 2011, 60(3): 036102. doi: 10.7498/aps.60.036102
    [10] 李国龙, 黄卓寅, 李衎, 甄红宇, 沈伟东, 刘旭. 基于光学与光—电转换模型对聚合物电池功能层厚度与性能相关性分析. 物理学报, 2011, 60(7): 077207. doi: 10.7498/aps.60.077207
    [11] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [12] 李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛. 一种可控纳米柱阵列的研制. 物理学报, 2010, 59(8): 5851-5856. doi: 10.7498/aps.59.5851
    [13] 周毅, 吴国松, 代伟, 李洪波, 汪爱英. 椭偏与光度法联用精确测定吸收薄膜的光学常数与厚度. 物理学报, 2010, 59(4): 2356-2363. doi: 10.7498/aps.59.2356
    [14] 王晓栋, 沈军, 王生钊, 张志华. 椭偏光谱法研究溶胶-凝胶TiO2薄膜的光学常数. 物理学报, 2009, 58(11): 8027-8032. doi: 10.7498/aps.58.8027
    [15] 薛春荣, 易葵, 齐红基, 邵建达, 范正修. 氟化物材料在深紫外波段的光学常数. 物理学报, 2009, 58(7): 5035-5040. doi: 10.7498/aps.58.5035
    [16] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [17] 樊荣伟, 夏元钦, 李晓晖, 姜玉刚, 陈德应. 宽带输出PM580掺杂聚甲基丙烯酸甲酯固体染料激光器研究. 物理学报, 2008, 57(9): 5705-5708. doi: 10.7498/aps.57.5705
    [18] 苏伟涛, 李 斌, 刘定权, 张凤山. 氟化铒薄膜晶体结构与红外光学性能的关系. 物理学报, 2007, 56(5): 2541-2546. doi: 10.7498/aps.56.2541
    [19] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [20] 王成伟, 王 建, 李 燕, 刘维民, 徐 洮, 孙小伟, 力虎林. 多孔阳极氧化铝薄膜光学常数的确定. 物理学报, 2005, 54(1): 439-444. doi: 10.7498/aps.54.439
计量
  • 文章访问数:  11607
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2019-11-27
  • 刊出日期:  2020-02-05

/

返回文章
返回