搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲硬X射线能注量测量技术

苏兆锋 来定国 邱孟通 徐启福 任书庆

引用本文:
Citation:

脉冲硬X射线能注量测量技术

苏兆锋, 来定国, 邱孟通, 徐启福, 任书庆

Energy fluence measurement for pulse hard X-ray

Su Zhao-Feng, Lai Ding-Guo, Qiu Meng-Tong, Xu Qi-Fu, Ren Shu-Qing
PDF
HTML
导出引用
  • 阐述了全吸收法测量脉冲硬X射线能注量的基本原理, 选择了光电管配合硅酸镥(LSO)闪烁体作为探测系统的核心部件, 研制了脉冲硬X射线能注量测量系统. 利用该系统测量了“闪光二号”加速器产生的脉冲硬X射线强度, 结合灵敏度的实验标定结果, 计算得到了脉冲硬X射线的能注量. 在连续5发次的实验中, 能注量平均测量结果为35.9 mJ/cm2, 根据实测剂量和能谱计算得到的能注量为39.8 mJ/cm2, 两者的结果比较一致.
    Pulsed high-energy fluence X-ray source is based on the “Flash II” accelerator. It can be used to carry out effect vulnerability and sensitivity test of unit level system generated electromagnetic pulse (SGEMP). The energy fluence of pulsed hard X-ray is a main parameter of the equipment beam. At present, theoretical calculation method is widely used. Energy fluence can be calculated according to the dose, energy spectrum and energy absorption coefficient of each energy segment.The principle measuring energy fluence of pulsed hard X-ray by total absorption method is introduced. The photoelectric cell with lutetium silicate (LSO) scintillator is selected as a core component of the detection system, and the measurement system is developed. It is composed of scintillation detector, LSO scintillator, dimmer film, photon collimator, visible light shielding material, power supply and signal collecting system. The conversion coefficient between the incident photon energy and the waveform parameter is calibrated by a standard X-ray source. The energy fluence measurement experiment is carried out with the high-energy beam source of the “Flash II” accelerator as an experimental platform. In order to meet the requirements of the effect test experiments, the series diode structure is used in the accelerator for forming a high strength and large area uniform X-ray source. In the experiment, the LiF TLD is located in the front of the phototube and used to monitor the dose. According to the measured waveform, the actual energy of the incident photons is calculated. Combined with the receiving area of incident photons, the energy fluence of pulsed hard X-ray is calculated. The average measured value is 35.9 mJ/cm2 in 5 consecutive experiments. Energy fluence calculated from the measured dose and energy spectrum is 39.8 mJ/cm2. The results of the two methods are compared.It can be found that the experimental result is about 9.8% smaller than the theoretical value. The reasons are as follows. According to the law of exponential decay of rays in matter, in fact, the scintillator cannot absorb all the rays, and some of the rays can penetrate through, the energy of these rays cannot be detected, and thus giving rise to small experimental value. Due to the limited energy point of quasi-monoenergetic source, the sensitivity under the mean photon energy is taken as the sensitivity of the detector, and therefore there is a certain degree of uncertainty. The successful application of the measurement technology provides a good experimental method for the following similar research, and can also provide a reference for X-ray intensity analysis.
      通信作者: 苏兆锋, xcw9504@163.com
    • 基金项目: 国家级-基于散射伽马的高剂量率脉冲辐射混合场时空参数在线诊断技术研究(11875214)
      Corresponding author: Su Zhao-Feng, xcw9504@163.com
    [1]

    Failor B H, Coverdale C A 1999 Rev. Sci. Instrum. 70 569Google Scholar

    [2]

    王雅琴, 胡广月, 赵斌, 郑坚 2017 物理学报 66 104202Google Scholar

    Wang Y Q, Hu G Y, Zhao B, Zheng J 2017 Acta Phys. Sin. 66 104202Google Scholar

    [3]

    戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 物理学报 63 104202Google Scholar

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202Google Scholar

    [4]

    Hazelton R C, Yadlowsky E J, Moschella J J 2003 IEEE Trans. Plasma Sci. 31 1355Google Scholar

    [5]

    John E, R, Miriam G R, Arnold B 2003 Hard X-Ray and Gamma-Ray Detector Physics V. San Diego, California, USA, August 3, 2003 p334

    [6]

    Meachum J S, Childers F K, Riordan J C 1991 Proceedings of the 8th IEEE International Pulsed Power Conf. San Diego, California, USA, June 16–19, 1991 p571

    [7]

    Ware K D, Bell D E, Gullickson R L 2001 Proceedings of the 13th IEEE International Pulsed Power Conf. Las Vegas, Nevada, USA, June 17–22, 2001 p350

    [8]

    Pellinen D, Ashby S, Gillis P, Nielsen K, Spence P 1979 Proceedings of the 2nd IEEE International Pulsed Power Conf. Lubbock, Texas, USA, June 12, 1979 p410

    [9]

    蒯斌, 邱爱慈, 王亮平, 林东生, 丛培天, 梁天学 2005 强激光与粒子束 17 1739

    Kuai B, Qiu A C, Wang L P, Lin D S, Cong P T, Liang T X 2005 High Power Las. Part. Beam. 17 1739

    [10]

    李进玺, 吴伟, 来定国, 程引会, 马良, 赵墨, 郭景海, 周辉 2014 强激光与粒子束 26 035005Google Scholar

    Li J X, Wu W, Lai D G, Cheng Y H, Ma L, Zhao M, Guo J H, Zhou H 2014 High Power Las. Part. Beam. 26 035005Google Scholar

    [11]

    汲长松 1990 核辐射探测器及其实验技术手册 (北京: 原子能出版社) 第61页

    Ji C S 1990 Handbook of Nuclear Radiation Detectors and Their Experiment Techniques (Beijing: Atomic Energy Press) p61 (in Chinese)

    [12]

    苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005

    Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Power Las. Part. Beam. 32 035005

    [13]

    Kirkby C J 2005 Ph. D. Dissertation (Canada: University of Alberta)

    [14]

    Wesley P, Aparecido A C, Walter K S, et al. 2010 Instrum. Sci. Technol. 38 210Google Scholar

    [15]

    张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹玮 2008 物理学报 57 4238Google Scholar

    Zhang X H, Zhao B S, Miao Z H, Zhu X P, Liu Y A, Zou W 2008 Acta Phys. Sin. 57 4238Google Scholar

    [16]

    丁洪林 2010 核辐射探测器 (哈尔滨: 哈尔滨工业大学出版社) 第103页

    Ding H L 2010 Nuclear Radiation Detectors (Harbin: Harbin Institute of Technology Press) p103 (in Chinese)

    [17]

    Nitzan M, Mahler Y, Bodenheimer J S, Siew F P 1983 IEEE Trans. Biomed. Eng. BME-30 737Google Scholar

    [18]

    Horiai T, Kurosawa S, Murakami R, Yamaji A, Shoji Y, Ohashi Y, Pejchal J, Kamada K, Yokota Y, Yoshikawa A 2017 J. Cryst. Growth 468 391Google Scholar

    [19]

    牛胜利, 雷林峰, 赵军, 张殿辉 2003 核电子学与探测技术 23 129Google Scholar

    Niu S L, Lei L F, Zhao J, Zhang D H 2003 Nucl. Electron. Detect. Technol. 23 129Google Scholar

    [20]

    宋朝晖, 管兴胤, 代秋声, 王奎禄, 刘俊勇 2004 原子能科学技术 38 223Google Scholar

    Song C H, Guan X Y, Dai Q H, Wang K L, Liu J Y 2004 Atom. Energ. Sci. Technol. 38 223Google Scholar

    [21]

    任国浩, 王绍华, 李焕英, 陆晟 2003 无机材料学报 18 269Google Scholar

    Ren G H, Wang S H, Li H Y, Lu S 2003 J. Inorg. Mater. 18 269Google Scholar

    [22]

    周海洋, 朱晓东, 詹如娟 2010 物理学报 59 1620Google Scholar

    Zhou H Y, Zhu X D, Zhan R J 2010 Acta Phys. Sin. 59 1620Google Scholar

    [23]

    张显鹏, 欧阳晓平, 张忠兵, 田耕, 陈彦丽, 李大海, 张小东 2008 物理学报 57 82Google Scholar

    Zhang X P, Ouyang X P, Zhang Z B, Tian G, Chen Y L, Li D H, Zhang X D 2008 Acta Phys. Sin. 57 82Google Scholar

  • 图 1  硬X射线能注量测量系统组成示意图

    Fig. 1.  The abridged general view of the fluence measurement system for pulse hard X-ray.

    图 2  标定平台组成框图

    Fig. 2.  The block diagram of the calibration platform composition.

    图 3  探测器灵敏度标定现场图

    Fig. 3.  The field diagram of detector sensitivity calibration.

    图 4  能注量测量实验框图

    Fig. 4.  Experimental diagram of energy fluence measurement.

    图 5  能注量测量典型波形

    Fig. 5.  Typical waveform of energy fluence measurement.

    表 1  几种常见高密度闪烁体参数对比

    Table 1.  The parameter comparison of several common high density scintillators.

    闪烁体最强发射波长/nm闪烁衰减时间/ns折射率密度/g·cm–3相对光输出/%
    Bi4Ge3O124803002.157.1312.0—14.0
    BSO4802/30/1002.066.802.0—5.0
    LSO:Ce420401.827.4075.0
    PbWO4480102.168.200.5—1.0
    GSO:Ce45031/651.906.7120.0
    ZnWO448050002.207.8726.0
    CdWO454050002.307.9040.0
    CaWO454050002.307.9040.0
    下载: 导出CSV

    表 2  入射光子透过不同厚度闪烁体的透射率

    Table 2.  The transmissivity of the photon transmitting scintillators of different thicknesses.

    Thicknesses of scintillators /mm0.0110.0015.0020.0025.0030.0035.00
    Transmissivity/%97.82001.99700.87500.44400.22700.12000.0695
    下载: 导出CSV

    表 3  探测器在不同能量下的灵敏度

    Table 3.  Sensitivity of the detector at different energies.

    靶材光谱仪电压/kV光谱仪电流/mAX射线能量/keV本底电流/nA输出电流/nA剂量率/mGy·s–1灵敏度/10–17 C·cm2·MeV–1
    Pb1002575.03.924.28.785.29
    W953059.22.211.93.256.79
    Dy753546.03.729.450.773.87
    Sn506025.33.926.755.773.13
    下载: 导出CSV

    表 4  连续5次实验的能注量测量结果

    Table 4.  Measurement results of energy fluence in five successive experiments.

    发次二极管电压/kV二极管电流/kA剂量/rad能注量/mJ·cm–2
    1705311415.636.0
    2741315342.435.0
    3686323293.437.0
    4746327309.336.6
    5718305325.634.8
    平均值719.2 ± 25.0316.2 ± 8.9337.3 ± 47.435.9 ± 1.0
    下载: 导出CSV

    表 5  脉冲硬X射线能注量理论值

    Table 5.  Theoretial values of pulsed hard X-ray energy fluence.

    能量/keV15306090120150
    能谱归一化数值0.11740.22600.21100.14650.11040.0865
    质能吸收系数/cm2·kg–197904080143696969
    能注量/ mJ·cm–20.047610.219965.859068.434046.354754.97756
    能量/keV180210300400500600
    能谱归一化数值0.05330.03190.01030.00360.00210.0004
    质能吸收系数/cm2·kg–129.129.129.129.129.129.1
    能注量/ mJ·cm–27.275544.360811.417930.497080.292620.06403
    下载: 导出CSV
  • [1]

    Failor B H, Coverdale C A 1999 Rev. Sci. Instrum. 70 569Google Scholar

    [2]

    王雅琴, 胡广月, 赵斌, 郑坚 2017 物理学报 66 104202Google Scholar

    Wang Y Q, Hu G Y, Zhao B, Zheng J 2017 Acta Phys. Sin. 66 104202Google Scholar

    [3]

    戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 物理学报 63 104202Google Scholar

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202Google Scholar

    [4]

    Hazelton R C, Yadlowsky E J, Moschella J J 2003 IEEE Trans. Plasma Sci. 31 1355Google Scholar

    [5]

    John E, R, Miriam G R, Arnold B 2003 Hard X-Ray and Gamma-Ray Detector Physics V. San Diego, California, USA, August 3, 2003 p334

    [6]

    Meachum J S, Childers F K, Riordan J C 1991 Proceedings of the 8th IEEE International Pulsed Power Conf. San Diego, California, USA, June 16–19, 1991 p571

    [7]

    Ware K D, Bell D E, Gullickson R L 2001 Proceedings of the 13th IEEE International Pulsed Power Conf. Las Vegas, Nevada, USA, June 17–22, 2001 p350

    [8]

    Pellinen D, Ashby S, Gillis P, Nielsen K, Spence P 1979 Proceedings of the 2nd IEEE International Pulsed Power Conf. Lubbock, Texas, USA, June 12, 1979 p410

    [9]

    蒯斌, 邱爱慈, 王亮平, 林东生, 丛培天, 梁天学 2005 强激光与粒子束 17 1739

    Kuai B, Qiu A C, Wang L P, Lin D S, Cong P T, Liang T X 2005 High Power Las. Part. Beam. 17 1739

    [10]

    李进玺, 吴伟, 来定国, 程引会, 马良, 赵墨, 郭景海, 周辉 2014 强激光与粒子束 26 035005Google Scholar

    Li J X, Wu W, Lai D G, Cheng Y H, Ma L, Zhao M, Guo J H, Zhou H 2014 High Power Las. Part. Beam. 26 035005Google Scholar

    [11]

    汲长松 1990 核辐射探测器及其实验技术手册 (北京: 原子能出版社) 第61页

    Ji C S 1990 Handbook of Nuclear Radiation Detectors and Their Experiment Techniques (Beijing: Atomic Energy Press) p61 (in Chinese)

    [12]

    苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005

    Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Power Las. Part. Beam. 32 035005

    [13]

    Kirkby C J 2005 Ph. D. Dissertation (Canada: University of Alberta)

    [14]

    Wesley P, Aparecido A C, Walter K S, et al. 2010 Instrum. Sci. Technol. 38 210Google Scholar

    [15]

    张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹玮 2008 物理学报 57 4238Google Scholar

    Zhang X H, Zhao B S, Miao Z H, Zhu X P, Liu Y A, Zou W 2008 Acta Phys. Sin. 57 4238Google Scholar

    [16]

    丁洪林 2010 核辐射探测器 (哈尔滨: 哈尔滨工业大学出版社) 第103页

    Ding H L 2010 Nuclear Radiation Detectors (Harbin: Harbin Institute of Technology Press) p103 (in Chinese)

    [17]

    Nitzan M, Mahler Y, Bodenheimer J S, Siew F P 1983 IEEE Trans. Biomed. Eng. BME-30 737Google Scholar

    [18]

    Horiai T, Kurosawa S, Murakami R, Yamaji A, Shoji Y, Ohashi Y, Pejchal J, Kamada K, Yokota Y, Yoshikawa A 2017 J. Cryst. Growth 468 391Google Scholar

    [19]

    牛胜利, 雷林峰, 赵军, 张殿辉 2003 核电子学与探测技术 23 129Google Scholar

    Niu S L, Lei L F, Zhao J, Zhang D H 2003 Nucl. Electron. Detect. Technol. 23 129Google Scholar

    [20]

    宋朝晖, 管兴胤, 代秋声, 王奎禄, 刘俊勇 2004 原子能科学技术 38 223Google Scholar

    Song C H, Guan X Y, Dai Q H, Wang K L, Liu J Y 2004 Atom. Energ. Sci. Technol. 38 223Google Scholar

    [21]

    任国浩, 王绍华, 李焕英, 陆晟 2003 无机材料学报 18 269Google Scholar

    Ren G H, Wang S H, Li H Y, Lu S 2003 J. Inorg. Mater. 18 269Google Scholar

    [22]

    周海洋, 朱晓东, 詹如娟 2010 物理学报 59 1620Google Scholar

    Zhou H Y, Zhu X D, Zhan R J 2010 Acta Phys. Sin. 59 1620Google Scholar

    [23]

    张显鹏, 欧阳晓平, 张忠兵, 田耕, 陈彦丽, 李大海, 张小东 2008 物理学报 57 82Google Scholar

    Zhang X P, Ouyang X P, Zhang Z B, Tian G, Chen Y L, Li D H, Zhang X D 2008 Acta Phys. Sin. 57 82Google Scholar

  • [1] 宋文刚, 张立军, 张晶, 王冠鹰. 硅漂移探测器数字脉冲处理技术. 物理学报, 2022, 71(1): 012903. doi: 10.7498/aps.71.20211062
    [2] 张艳文, 郭刚, 肖舒颜, 殷倩, 杨新宇. 中能质子注量率测量. 物理学报, 2022, 71(1): 012902. doi: 10.7498/aps.71.20211561
    [3] 黄广伟, 吴坤, 陈晔, 李林祥, 张思远, 王尊刚, 朱红英, 周春芝, 张逸韵, 刘志强, 伊晓燕, 李晋闽. 单晶金刚石探测器对14 MeV单能中子的响应. 物理学报, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [4] 李乾利, 胡亚华, 马逸凡, 孙志祥, 王敏, 刘小林, 赵景泰, 张志军. 基于ZnO:In纳米棒阵列的X射线闪烁转换屏制备与性能研究. 物理学报, 2020, 69(10): 102902. doi: 10.7498/aps.69.20200282
    [5] 周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰. 一种聚焦型X射线探测器在轨性能标定方法. 物理学报, 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [6] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [7] 姚志明, 段宝军, 宋顾周, 严维鹏, 马继明, 韩长材, 宋岩. ST401塑料闪烁体的脉冲中子相对光产额评估方法. 物理学报, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [8] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇. 硬X射线调制望远镜低能探测器量子效率标定. 物理学报, 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [9] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [10] 张治国. 垂直多结光伏型集成硅X射线探测器的实现和实验. 物理学报, 2014, 63(24): 248501. doi: 10.7498/aps.63.248501
    [11] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线. 物理学报, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [12] 闫振纲, 林颖璐, 杨娟, 李振华, 卞保民. 光电探测器随机噪声特征量统计分布函数. 物理学报, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [13] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [14] 徐妙华, 李红伟, 刘峰, 刘必成, 杜飞, 张璐, 苏鲁宁, 李英骏, 李玉同, 陈佳洱, 张杰. 实时离子探测器塑料闪烁体性能的实验研究. 物理学报, 2012, 61(10): 105202. doi: 10.7498/aps.61.105202
    [15] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器. 物理学报, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [16] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [17] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱. 物理学报, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [18] 徐荣昆, 郭 存, 温树槐, 夏广新, 宁佳敏, 宋凤军, 何锡钧, 吴永刚, 顾 牡, 陈玲燕, 吴 翔. 改进BaF2闪烁体光输出特征研究. 物理学报, 2003, 52(9): 2140-2144. doi: 10.7498/aps.52.2140
    [19] 孙景文. X射线探测器的脉冲标定技术. 物理学报, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
    [20] 徐平茂. 体吸收、边电极热电探测器的分析. 物理学报, 1980, 29(11): 1445-1451. doi: 10.7498/aps.29.1445
计量
  • 文章访问数:  5880
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-07
  • 修回日期:  2020-03-09
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回