搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂系统重构

张海峰 王文旭

引用本文:
Citation:

复杂系统重构

张海峰, 王文旭

Complex system reconstruction

Zhang Hai-Feng, Wang Wen-Xu
PDF
HTML
导出引用
  • 远离平衡态的开放复杂系统遍及自然、社会和技术领域, 是复杂性科学的主要研究对象. 通过与外界的能量和物质交换, 复杂系统通过自组织形成了多种多样的内在结构、秩序和规律, 对认识和预测复杂系统提出了艰巨的挑战. 随着实验技术的提高和科技的进步, 反映和体现各种复杂系统机理的数据呈指数增长, 为研究复杂系统提供了新的机遇. 通过系统行为表象数据, 揭示复杂系统结构和动力学属于物理领域的反问题, 是认识复杂系统的基础, 是预测系统状态演化的前提, 对于实现系统状态的调控必不可少. 然而, 复杂系统的多样性和复杂性给解决这一反问题造成了极大的困难. 因此, 需要开阔思路, 借助多学科的交叉与融合, 充分挖掘数据中隐藏的知识和深层次机理. 本文综述了近年来复杂系统, 特别是复杂结构重构和推断方面的研究成果, 希望能够启发复杂系统反问题方面的创新. 同时, 也希望呼吁各领域学者都能关注复杂系统反问题, 推动自然、社会、经济、生物、科技领域的交叉与融合, 解决大家共同面对的科学问题.
    Open complex systems far from equilibrium widely exist in the nature and the fields of society and technology, which are the main research objects of complexity science. Through the exchange of energy and material with the outside world, complex systems can form a variety of internal structures, orders and laws by self-organization behaviors, which poses an arduous challenge to the understanding and predicting complex systems. With the improvement of experimental technology and the progress of science and technology, the data reflecting the mechanism of various complex systems are increasing exponentially, thereby providing new opportunities for studying complex systems. Revealing the structures and dynamics of complex systems from the measured data is an inverse problem in the field of physics, which is the premise of understanding complex systems, predicting the evolution of system state, and regulating system state. However, it is very difficult to solve this inverse problem due to the diversity and complexity of complex system. Therefore, we need to fully mine the hidden knowledge and deep mechanism in the data with the help of interdisciplinary integration. In this paper we briefly review the research results of complex system in recent years, especially the reconstruction of complex network structures, hoping to inspire the innovation to the inverse problem of complex systems. Meanwhile, we hope that researchers in different fields can pay much attention to the inverse problems of complex systems, promote the cross and integration of nature, society, economy, biology and technology, and solve the scientific problems that we are facing.
      通信作者: 王文旭, wenxuwang@bnu.edu.cn
      Corresponding author: Wang Wen-Xu, wenxuwang@bnu.edu.cn
    [1]

    Prigogine I, Hiebert E N 1982 Phys. Today 35 69

    [2]

    Haken H 2006 Information and Self-organization: A Macroscopic Approach to Complex Systems (Berlin: Springer)

    [3]

    Schrödinger E 1944 What is Life? The Physical Aspect of the Living Cell and Mind (Cambridge: Cambridge University Press)

    [4]

    Wilson E O 1992 The Diversity of Life (Boston: Belknap Press)

    [5]

    Wilson E O 2016 Half Earth: Our Planet’s Fight for Life (London: Liveright)

    [6]

    Lorenz E N 1963 J. Atmos. Sci. 20 130Google Scholar

    [7]

    Conway J H 2000 On Numbers and Games (Boca Raton: AK Peters/CRC Press)

    [8]

    Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)

    [9]

    Barabási A L 2012 Nat. Phys. 8 14Google Scholar

    [10]

    Downey A 2018 Think Complexity: Complexity Science and Computational Modeling (Sebastopol: O'Reilly Media)

    [11]

    Johnson N 2009 Simply Complexity: A Clear Guide to Complexity Theory (Oxford: Oneworld Publications)

    [12]

    Alberts B, Bray D, Hopkin K, Johnson A D, Lewis J, Raff M, Roberts K, Walter P 2013 Essential Cell Biology (New York: Garland Science)

    [13]

    Cartwright E 2018 Behavioral Economics (London: Routledge)

    [14]

    Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press)

    [15]

    Newman M E J 2003 SIAM Rev. 45 167Google Scholar

    [16]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [17]

    Pastor-Satorras R, Castellano C, van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 925Google Scholar

    [18]

    Liu Y Y, Barabási A L 2016 Rev. Mod. Phys. 88 035006Google Scholar

    [19]

    Stankovski T, Pereira T, McClintock P V E, Stefanovska A 2017 Rev. Mod. Phys. 89 045001Google Scholar

    [20]

    Timme M, Casadiego J 2014 J. Phys. A: Math. Theor. 47 343001Google Scholar

    [21]

    Wang W X, Lai Y C, Grebogi C 2016 Phys. Rep. 644 1Google Scholar

    [22]

    陆君安, 吕金虎, 刘慧, 陈娟 2010 复杂系统与复杂性科学 7 63Google Scholar

    Lu J A, Lu J H, Liu H, Chen J 2010 Complex Systems and Complexity Science 7 63Google Scholar

    [23]

    王文旭 2013 电子科技大学学报 42 3

    Wang W X 2013 Journal of Electronic Science and Technology 42 3

    [24]

    Qin S J 2012 Annu. Rev. Control 36 2

    [25]

    张朝阳, 陈阳, 弭元元, 胡岗 2020 中国科学: 物理学 力学 天文学 1 3

    Zhang Z Y, Chen Y, Mi Y Y, Hu G 2020 Sci. Sin.-Phys. Mech. Astron. 1 3

    [26]

    Candes E J, Tao T 2006 IEEE Trans. Inf. Theory 52 5406Google Scholar

    [27]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14

    [28]

    Candes E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21Google Scholar

    [29]

    Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489Google Scholar

    [30]

    Baraniuk R G 2007 IEEE Signal Process. Mag. 24 118

    [31]

    Wang W X, Yang R, Lai Y C, Kovanis V, Harrison M A F 2011 EPL 94 48006Google Scholar

    [32]

    Su R Q, Ni X, Wang W X, Lai Y C 2012 Phys. Rev. E 85 056220Google Scholar

    [33]

    Szabó G, Fáth G 2007 Phys. Rep. 446 97Google Scholar

    [34]

    Nowak M A, May R M 1992 Nature 359 826Google Scholar

    [35]

    Wang W X, Lai Y C, Grebogi C, Ye J P 2011 Phys. Rev. X 1 290

    [36]

    Ma L, Han X, Shen Z S, Wang W X, Di Z R 2015 PLoS ONE 10 0142837

    [37]

    Han X, Shen Z S, Wang W X, Lai Y C, Grebogi C 2016 Sci. Rep. 6 30241Google Scholar

    [38]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2002 Phy. Rev. E 66 16104Google Scholar

    [39]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117Google Scholar

    [40]

    Nowak M A, May R M 1993 Int. J. Bifurcation Chaos 3 35Google Scholar

    [41]

    Wang Y, Xiao G, Liu J 2012 New J. Phys. 14 13015Google Scholar

    [42]

    Shen Z S, Wang W X, Fan Y, Di Z R, Lai Y C 2014 Nat. Commun. 5 4323Google Scholar

    [43]

    Li J, Shen Z S, Wang W X, Grebogi C, Lai Y C 2017 Phys. Rev. E 95 032303

    [44]

    Wang W X, Yang R, Lai Y C, Kovanis V, Grebogi C 2011 Phys. Rev. Lett. 106 154101Google Scholar

    [45]

    Su R Q, Wang W X, Wang X, Lai Y C 2016 R. Soc. Open Sci. 3 150577Google Scholar

    [46]

    Su R Q, Wang W X, Lai Y C 2012 Phys. Rev. E 85 065201Google Scholar

    [47]

    Tang S Q, Shen Z S, Wang W X, Di Z R 2015 Eur. Phys. J. B 88 211Google Scholar

    [48]

    Chen Y Z, Lai Y C 2018 Phys. Rev. E 97 032317

    [49]

    Li G J, Li N, Liu S H, Wu X Q 2019 Chaos 29 53117Google Scholar

    [50]

    Mei G F, Wu X Q, Wang Y F, Hu M, Lu J A, Chen G R 2018 IEEE Trans. Cybern. 48 754Google Scholar

    [51]

    Wang X, Lu J H, Wu X Q 2018 IEEE Trans. Syst. Man Cybern. Part A Syst. HumansGoogle Scholar

    [52]

    Liu J, Mei G F, Wu X Q, Lu J H 2018 IEEE Trans. Circuits Syst. I 65 2970Google Scholar

    [53]

    Shandilya S G, Timme M 2011 New J. Phys. 13 13004Google Scholar

    [54]

    Han X, Shen Z S, Wang W X, Di Z R 2015 Phys. Rev. Lett. 114 028701Google Scholar

    [55]

    Yu D, Righero M, Kocarev L 2006 Phys. Rev. Lett. 97 188701Google Scholar

    [56]

    Zhou J, Lu J A 2007 Physica A 386 481Google Scholar

    [57]

    Liu H, Lu J A, Lü J H, Hill D J 2009 Automatica 45 1799Google Scholar

    [58]

    Wu X Q, Zhao X Y, Lu J H, Tang L K, Lu J A 2016 IEEE Trans. Control Netw. Syst. 3 379Google Scholar

    [59]

    Zhao X Y, Zhou J, Zhu S B, Ma C, Lu J A 2019 IEEE Trans. Circuits Syst. II 67 290Google Scholar

    [60]

    Chen L, Lu J A, Tse C K 2009 IEEE Trans. Circuits Syst. II 56 310Google Scholar

    [61]

    Zhou J, Yu W W, Li X M, Small M, Lu J A 2009 IEEE Trans. Neural Networks 20 1679Google Scholar

    [62]

    Zhu S B, Zhou J, Chen G R, Lu J A 2019 IEEE Trans. Cybern.Google Scholar

    [63]

    Zhu S B, Zhou J, Lu J A 2018 Chaos 28 43108Google Scholar

    [64]

    杨浦, 郑志刚 2012 物理学报 61 120508Google Scholar

    Yang P, Zheng Z G 2012 Acta Phys. Sin. 61 120508Google Scholar

    [65]

    Gardner T S, Di Bernardo D, Lorenz D, Collins J J 2003 Science 301 102Google Scholar

    [66]

    Tegner J, Yeung M K S, Hasty J, Collins J J 2003 Proc. Natl. Acad. Sci. 100 5944Google Scholar

    [67]

    Yeung M K S, Tegnér J, Collins J J 2002 Proc. Natl. Acad. Sci. 99 6163Google Scholar

    [68]

    Timme M 2007 Phys. Rev. Lett. 98 224101Google Scholar

    [69]

    Yu D C 2010 Automatica 46 2035Google Scholar

    [70]

    Yu D C, Parlitz U 2010 Phys. Rev. E 82 026108Google Scholar

    [71]

    Ren J, Wang W X, Li B W, Lai Y C 2010 Phys. Rev. Lett. 104 058701Google Scholar

    [72]

    Wang W X, Ren J, Lai Y C, Li B W 2012 Chaos 22 33131Google Scholar

    [73]

    Zhang Z Y, Chen Y, Mi Y Y, Hu G 2019 Phys. Rev. E 99 042311Google Scholar

    [74]

    Zhang Z Y, Zheng Z G, Niu H J, Mi Y Y, Wu S, Hu G 2015 Phys. Rev. E 91 012814Google Scholar

    [75]

    马闯 2019 博士学位论文 (合肥: 安徽大学)

    Ma C 2019 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese)

    [76]

    Ma C, Chen H S, Li X, Lai Y C, Zhang H F 2020 SIAM J. Appl. Dyn. 19 124Google Scholar

    [77]

    Xiang B B, Ma C, Chen H S, Zhang H F 2018 Chaos 28 123117Google Scholar

    [78]

    Liu Q M, Ma C, Xiang B B, Chen H S, Zhang H F 2019 IEEE Trans. Syst. Man Cybern. Syst.Google Scholar

    [79]

    Ma C, Chen H S, Lai Y C, Zhang H F 2018 Phys. Rev. E 97 22301

    [80]

    Zhang H F, Xu F, Bao Z K, Ma C 2019 IEEE Trans Circuits Syst. Regul Pap. 66 1608Google Scholar

    [81]

    Ma C, Zhang H F, Lai Y C 2017 Phys. Rev. E 96 022320

    [82]

    Wu X Q, Wang W H, Zheng W X 2012 Phys. Rev. E 86 046106Google Scholar

    [83]

    Wu X Q, Zhou C S, Chen G R, Lu J A 2011 Chaos 21 43129Google Scholar

    [84]

    Li X, Li X 2017 Nat. Commun. 8 15729

    [85]

    Casadiego J, Nitzan M, Hallerberg S, Timme M 2017 Nat. Commun. 8 2192Google Scholar

  • 图 1  网络重构示意图 (a)通过离散的数据; (b)连续的数据; (c)推断网络结构

    Fig. 1.  Illustration of network reconstruction: (a) By using the discrete data; (b) the continuous data; (c) reconstruct network.

    图 2  基于压缩感知方法重构Karate网络中4号节点的邻居(重构方法见2.4节)

    Fig. 2.  Reconstructing of node 4 in the Karate network based on compressive sensing framework (the reconstruction method is introduced in Subsec. 2.4).

    图 3  驱动-响应实验示意图. 对稳态系统施加(稳态是一个稳定点(a), 或者一个周期轨道(b))一个持续驱动I, 系统达到另外一个稳态. 两个稳态的差异v包含了网络的拓扑结构

    Fig. 3.  Driving-response experiments. System is shifted from one stable state (the stable state is a fixed point (a), or a periodical trajectory (b)) to another position by input a driving signal I. The difference of the trajectories contains information about the topology.

    图 4  EM算法推断Karate网络33号节点的结构 (a)网络结构; (b)二进制数据; (c)EM算法推断出节点33的结构; (d)真实网络33号节点的结构

    Fig. 4.  Reconstructing the neighbors of node 33 in Karate network: (a) The real structure of the Karate network; (b) the binary state data; (c) inferring the neighbors of node 33 based on EM algorithm; (d) the real neighbors of node 33.

  • [1]

    Prigogine I, Hiebert E N 1982 Phys. Today 35 69

    [2]

    Haken H 2006 Information and Self-organization: A Macroscopic Approach to Complex Systems (Berlin: Springer)

    [3]

    Schrödinger E 1944 What is Life? The Physical Aspect of the Living Cell and Mind (Cambridge: Cambridge University Press)

    [4]

    Wilson E O 1992 The Diversity of Life (Boston: Belknap Press)

    [5]

    Wilson E O 2016 Half Earth: Our Planet’s Fight for Life (London: Liveright)

    [6]

    Lorenz E N 1963 J. Atmos. Sci. 20 130Google Scholar

    [7]

    Conway J H 2000 On Numbers and Games (Boca Raton: AK Peters/CRC Press)

    [8]

    Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University Press)

    [9]

    Barabási A L 2012 Nat. Phys. 8 14Google Scholar

    [10]

    Downey A 2018 Think Complexity: Complexity Science and Computational Modeling (Sebastopol: O'Reilly Media)

    [11]

    Johnson N 2009 Simply Complexity: A Clear Guide to Complexity Theory (Oxford: Oneworld Publications)

    [12]

    Alberts B, Bray D, Hopkin K, Johnson A D, Lewis J, Raff M, Roberts K, Walter P 2013 Essential Cell Biology (New York: Garland Science)

    [13]

    Cartwright E 2018 Behavioral Economics (London: Routledge)

    [14]

    Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press)

    [15]

    Newman M E J 2003 SIAM Rev. 45 167Google Scholar

    [16]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [17]

    Pastor-Satorras R, Castellano C, van Mieghem P, Vespignani A 2015 Rev. Mod. Phys. 87 925Google Scholar

    [18]

    Liu Y Y, Barabási A L 2016 Rev. Mod. Phys. 88 035006Google Scholar

    [19]

    Stankovski T, Pereira T, McClintock P V E, Stefanovska A 2017 Rev. Mod. Phys. 89 045001Google Scholar

    [20]

    Timme M, Casadiego J 2014 J. Phys. A: Math. Theor. 47 343001Google Scholar

    [21]

    Wang W X, Lai Y C, Grebogi C 2016 Phys. Rep. 644 1Google Scholar

    [22]

    陆君安, 吕金虎, 刘慧, 陈娟 2010 复杂系统与复杂性科学 7 63Google Scholar

    Lu J A, Lu J H, Liu H, Chen J 2010 Complex Systems and Complexity Science 7 63Google Scholar

    [23]

    王文旭 2013 电子科技大学学报 42 3

    Wang W X 2013 Journal of Electronic Science and Technology 42 3

    [24]

    Qin S J 2012 Annu. Rev. Control 36 2

    [25]

    张朝阳, 陈阳, 弭元元, 胡岗 2020 中国科学: 物理学 力学 天文学 1 3

    Zhang Z Y, Chen Y, Mi Y Y, Hu G 2020 Sci. Sin.-Phys. Mech. Astron. 1 3

    [26]

    Candes E J, Tao T 2006 IEEE Trans. Inf. Theory 52 5406Google Scholar

    [27]

    Romberg J 2008 IEEE Signal Process. Mag. 25 14

    [28]

    Candes E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21Google Scholar

    [29]

    Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489Google Scholar

    [30]

    Baraniuk R G 2007 IEEE Signal Process. Mag. 24 118

    [31]

    Wang W X, Yang R, Lai Y C, Kovanis V, Harrison M A F 2011 EPL 94 48006Google Scholar

    [32]

    Su R Q, Ni X, Wang W X, Lai Y C 2012 Phys. Rev. E 85 056220Google Scholar

    [33]

    Szabó G, Fáth G 2007 Phys. Rep. 446 97Google Scholar

    [34]

    Nowak M A, May R M 1992 Nature 359 826Google Scholar

    [35]

    Wang W X, Lai Y C, Grebogi C, Ye J P 2011 Phys. Rev. X 1 290

    [36]

    Ma L, Han X, Shen Z S, Wang W X, Di Z R 2015 PLoS ONE 10 0142837

    [37]

    Han X, Shen Z S, Wang W X, Lai Y C, Grebogi C 2016 Sci. Rep. 6 30241Google Scholar

    [38]

    Dorogovtsev S N, Goltsev A V, Mendes J F F 2002 Phy. Rev. E 66 16104Google Scholar

    [39]

    Pastor-Satorras R, Vespignani A 2001 Phys. Rev. E 63 066117Google Scholar

    [40]

    Nowak M A, May R M 1993 Int. J. Bifurcation Chaos 3 35Google Scholar

    [41]

    Wang Y, Xiao G, Liu J 2012 New J. Phys. 14 13015Google Scholar

    [42]

    Shen Z S, Wang W X, Fan Y, Di Z R, Lai Y C 2014 Nat. Commun. 5 4323Google Scholar

    [43]

    Li J, Shen Z S, Wang W X, Grebogi C, Lai Y C 2017 Phys. Rev. E 95 032303

    [44]

    Wang W X, Yang R, Lai Y C, Kovanis V, Grebogi C 2011 Phys. Rev. Lett. 106 154101Google Scholar

    [45]

    Su R Q, Wang W X, Wang X, Lai Y C 2016 R. Soc. Open Sci. 3 150577Google Scholar

    [46]

    Su R Q, Wang W X, Lai Y C 2012 Phys. Rev. E 85 065201Google Scholar

    [47]

    Tang S Q, Shen Z S, Wang W X, Di Z R 2015 Eur. Phys. J. B 88 211Google Scholar

    [48]

    Chen Y Z, Lai Y C 2018 Phys. Rev. E 97 032317

    [49]

    Li G J, Li N, Liu S H, Wu X Q 2019 Chaos 29 53117Google Scholar

    [50]

    Mei G F, Wu X Q, Wang Y F, Hu M, Lu J A, Chen G R 2018 IEEE Trans. Cybern. 48 754Google Scholar

    [51]

    Wang X, Lu J H, Wu X Q 2018 IEEE Trans. Syst. Man Cybern. Part A Syst. HumansGoogle Scholar

    [52]

    Liu J, Mei G F, Wu X Q, Lu J H 2018 IEEE Trans. Circuits Syst. I 65 2970Google Scholar

    [53]

    Shandilya S G, Timme M 2011 New J. Phys. 13 13004Google Scholar

    [54]

    Han X, Shen Z S, Wang W X, Di Z R 2015 Phys. Rev. Lett. 114 028701Google Scholar

    [55]

    Yu D, Righero M, Kocarev L 2006 Phys. Rev. Lett. 97 188701Google Scholar

    [56]

    Zhou J, Lu J A 2007 Physica A 386 481Google Scholar

    [57]

    Liu H, Lu J A, Lü J H, Hill D J 2009 Automatica 45 1799Google Scholar

    [58]

    Wu X Q, Zhao X Y, Lu J H, Tang L K, Lu J A 2016 IEEE Trans. Control Netw. Syst. 3 379Google Scholar

    [59]

    Zhao X Y, Zhou J, Zhu S B, Ma C, Lu J A 2019 IEEE Trans. Circuits Syst. II 67 290Google Scholar

    [60]

    Chen L, Lu J A, Tse C K 2009 IEEE Trans. Circuits Syst. II 56 310Google Scholar

    [61]

    Zhou J, Yu W W, Li X M, Small M, Lu J A 2009 IEEE Trans. Neural Networks 20 1679Google Scholar

    [62]

    Zhu S B, Zhou J, Chen G R, Lu J A 2019 IEEE Trans. Cybern.Google Scholar

    [63]

    Zhu S B, Zhou J, Lu J A 2018 Chaos 28 43108Google Scholar

    [64]

    杨浦, 郑志刚 2012 物理学报 61 120508Google Scholar

    Yang P, Zheng Z G 2012 Acta Phys. Sin. 61 120508Google Scholar

    [65]

    Gardner T S, Di Bernardo D, Lorenz D, Collins J J 2003 Science 301 102Google Scholar

    [66]

    Tegner J, Yeung M K S, Hasty J, Collins J J 2003 Proc. Natl. Acad. Sci. 100 5944Google Scholar

    [67]

    Yeung M K S, Tegnér J, Collins J J 2002 Proc. Natl. Acad. Sci. 99 6163Google Scholar

    [68]

    Timme M 2007 Phys. Rev. Lett. 98 224101Google Scholar

    [69]

    Yu D C 2010 Automatica 46 2035Google Scholar

    [70]

    Yu D C, Parlitz U 2010 Phys. Rev. E 82 026108Google Scholar

    [71]

    Ren J, Wang W X, Li B W, Lai Y C 2010 Phys. Rev. Lett. 104 058701Google Scholar

    [72]

    Wang W X, Ren J, Lai Y C, Li B W 2012 Chaos 22 33131Google Scholar

    [73]

    Zhang Z Y, Chen Y, Mi Y Y, Hu G 2019 Phys. Rev. E 99 042311Google Scholar

    [74]

    Zhang Z Y, Zheng Z G, Niu H J, Mi Y Y, Wu S, Hu G 2015 Phys. Rev. E 91 012814Google Scholar

    [75]

    马闯 2019 博士学位论文 (合肥: 安徽大学)

    Ma C 2019 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese)

    [76]

    Ma C, Chen H S, Li X, Lai Y C, Zhang H F 2020 SIAM J. Appl. Dyn. 19 124Google Scholar

    [77]

    Xiang B B, Ma C, Chen H S, Zhang H F 2018 Chaos 28 123117Google Scholar

    [78]

    Liu Q M, Ma C, Xiang B B, Chen H S, Zhang H F 2019 IEEE Trans. Syst. Man Cybern. Syst.Google Scholar

    [79]

    Ma C, Chen H S, Lai Y C, Zhang H F 2018 Phys. Rev. E 97 22301

    [80]

    Zhang H F, Xu F, Bao Z K, Ma C 2019 IEEE Trans Circuits Syst. Regul Pap. 66 1608Google Scholar

    [81]

    Ma C, Zhang H F, Lai Y C 2017 Phys. Rev. E 96 022320

    [82]

    Wu X Q, Wang W H, Zheng W X 2012 Phys. Rev. E 86 046106Google Scholar

    [83]

    Wu X Q, Zhou C S, Chen G R, Lu J A 2011 Chaos 21 43129Google Scholar

    [84]

    Li X, Li X 2017 Nat. Commun. 8 15729

    [85]

    Casadiego J, Nitzan M, Hallerberg S, Timme M 2017 Nat. Commun. 8 2192Google Scholar

  • [1] 陈韬, 江普庆. 揭示热反射实验中热物性参数的本征关系. 物理学报, 2024, 73(23): 230202. doi: 10.7498/aps.73.20241369
    [2] 何瑞辉, 张海峰, 王欢, 马闯. 基于高斯混合模型的无向网络重构. 物理学报, 2024, 73(17): 178901. doi: 10.7498/aps.73.20240552
    [3] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题. 物理学报, 2023, 72(10): 100202. doi: 10.7498/aps.72.20222381
    [4] 徐翔, 朱承, 朱先强. 一种基于离散数据从局部到全局的网络重构算法. 物理学报, 2021, 70(8): 088901. doi: 10.7498/aps.70.20201756
    [5] 统计物理和复杂系统专题编者按. 物理学报, 2020, 69(8): 080101. doi: 10.7498/aps.69.080101
    [6] 吴联仁, 李瑾颉, 齐佳音. 一种基于分支过程的信息流行度动力学模型. 物理学报, 2019, 68(7): 078901. doi: 10.7498/aps.68.20181948
    [7] 李菁田, 王建录, 张邦强, 荣曦明, 宁西京. 一种预测材料蠕变速率的新模型. 物理学报, 2014, 63(2): 028101. doi: 10.7498/aps.63.028101
    [8] 黄启灿, 胡淑娟, 邱春雨, 李宽, 于海鹏, 丑纪范. 基于无导数优化方法的数值模式误差估计. 物理学报, 2014, 63(14): 149203. doi: 10.7498/aps.63.149203
    [9] 于灏, 周玉成, 井元伟, 徐佳鹤, 张星梅, 马妍. 异质化带宽分配下的复杂网络数据流负载问题研究. 物理学报, 2013, 62(8): 080502. doi: 10.7498/aps.62.080502
    [10] 周漩, 杨帆, 张凤鸣, 周卫平, 邹伟. 复杂网络系统拓扑连接优化控制方法. 物理学报, 2013, 62(15): 150201. doi: 10.7498/aps.62.150201
    [11] 刘刚, 李永树. 基于引力约束的复杂网络拥塞问题研究. 物理学报, 2012, 61(10): 108901. doi: 10.7498/aps.61.108901
    [12] 司夏萌, 刘云. 虚拟社区中人际交互行为的统计分析研究. 物理学报, 2011, 60(7): 078903. doi: 10.7498/aps.60.078903
    [13] 韩小静, 王音, 林正喆, 张文献, 庄军, 宁西京. 团簇异构体生长概率的理论预测. 物理学报, 2010, 59(5): 3445-3449. doi: 10.7498/aps.59.3445
    [14] 王丹, 于灏, 井元伟, 姜囡, 张嗣瀛. 基于感知流量算法的复杂网络拥塞问题研究. 物理学报, 2009, 58(10): 6802-6808. doi: 10.7498/aps.58.6802
    [15] 高忠科, 金宁德. 两相流流型复杂网络社团结构及其统计特性. 物理学报, 2008, 57(11): 6909-6920. doi: 10.7498/aps.57.6909
    [16] 刘 冬, 王 飞, 黄群星, 严建华, 池 涌, 岑可法. 二维弥散介质温度场的快速重建. 物理学报, 2008, 57(8): 4812-4816. doi: 10.7498/aps.57.4812
    [17] 程荣军, 程玉民. 带源参数的热传导反问题的无网格方法. 物理学报, 2007, 56(10): 5569-5574. doi: 10.7498/aps.56.5569
    [18] 尤云祥, 缪国平. 三维可穿透目标远场声波反演的一种指示器样本方法. 物理学报, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [19] 尤云祥, 缪国平. 阻抗障碍物声散射的反问题. 物理学报, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [20] 尤云祥, 缪国平, 刘应中. 用近场声学测量信息可视化多个三维障碍物的一种快速算法. 物理学报, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
计量
  • 文章访问数:  11171
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-02
  • 修回日期:  2020-03-19
  • 刊出日期:  2020-04-20

/

返回文章
返回