搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针对典型分离流动数值模拟的自适应耗散调节方法

李昊 刘伟 王圣业

引用本文:
Citation:

针对典型分离流动数值模拟的自适应耗散调节方法

李昊, 刘伟, 王圣业

A method of adaptively adjusting dissipation for the simulation of separated flow

Li Hao, Liu Wei, Wang Sheng-Ye
PDF
HTML
导出引用
  • 分离流动是一种复杂湍流现象, 其中微小尺度结构的发展演化有着重要的影响, 但是湍流数值模拟中数值方法的固有耗散会抑制小尺度流动结构的发展. 因此, 本文结合延迟分离涡模拟方法, 基于五阶耗散紧致格式, 通过引入流场相关的调节因子, 构造自适应耗散调节方法, 使其在大涡模拟区域降低耗散影响以提高对小尺度流动结构的辨识能力, 在雷诺平均区域恢复正常耗散水平以保持稳定求解. 本文首先通过近似色散关系和涡输运算例说明该方法可有效降低数值耗散影响, 同时具有更高分辨率的涡保持能力; 随后通过各向同性衰减湍流和平板槽道流动展示了该方法可有效提高对微小流动结构的辨识能力, 同时在存在大梯度的流场中可保持求解稳定性; 最后求解Re = 3900 亚临界状态下的圆柱绕流, 通过对比流场云图、时均速度和雷诺应力分布曲线, 说明了该方法通过减小分离区耗散影响, 可有效提高对典型分离流动求解的准确性.
    Separate flow is a typical complex turbulent phenomenon. The full development of small-scaled structures is of great importance for accurate numerical simulation. However, these small-scaled structures can be easily damped by the inherent dissipation of numerical method. Therefore, based on the 5th-order dissipative compact scheme (DCS), we propose an adaptive dissipative compact scheme (ADCS), which can adjust the numerical dissipation with self-adaptive capability by incorporating a flow related adjusting parameter. Combining with the delay detached eddy simulation (DDES), the ADCS can reduce the influence of numerical dissipation in LES region to enhance the ability to discern small-scaled structures, and restore the normal dissipation level in the RANS region to keep numerical stability. In the process of numerical simulation, firstly, the approximate dispersion relation (ADR) is obtained, it shows that the ADCS method can effectively reduce the influence of dissipation in the high wave number region, without contaminating the dispersive performance, which is conducive to enhancing the resolution of turbulent structures. Secondly, the advection of vortical structure is simulated. Compared with DCS, the ADCS can reach the theoretical accuracy in an efficient way and acquire more advanced resolution of vortical structure even on a relatively coarse mesh scale, which proves that the ADCS reduces the negative influence of dissipation on vortical structure. The third case is the decay of isotropic turbulence. The energy spectral curves stay close to the reference before cut-off number, showing that more small-scaled structures can be distinguished by the ADCS method, and most of the vortical dominated regions are solved at a near-minimum level. The forth case is the plate channel turbulent flow. Both of DCS method and ADCS method give acceptable results. The ADCS method is performed with optimal dissipation in the near-wall region and reduces the dissipative level in the vortex dominated region, and it is also exhibited that the ADCS method can maintain the stability for flow with high gradient and avoid divergence. Finally, the sub-critical Re = 3900circular cylinder is simulated, and the fully separate flow is developed in the wake. The turbulent fluctuation near the wall is sensitive to the effect of numerical dissipation. The contour of flow field shows that the ADCS method obtains more small-scale structures. As for the pressure coefficient and mean velocity, the ADCS method shows an acceptable accuracy. Considering the Reynolds stress profile, which can be easily affected by the dissipation, the ADCS exhibits more accurate results than the traditional DCS method. Generally, the ADCS method can reduce the influence of dissipation and is beneficial to acquiring more accurate results in separate flow.
      通信作者: 李昊, 583259351@qq.com
    • 基金项目: 国家级-国家自然科学基金(11572348)
      Corresponding author: Li Hao, 583259351@qq.com
    [1]

    Cummingsa R M, Forsytheb J R, Mortonb S A 2003 Prog. Aerosp. Sci 39 369Google Scholar

    [2]

    Tucker P 2016 Appl. Math. Comput. 272 582

    [3]

    王光学, 王圣业, 葛明明, 邓小刚 2018 物理学报 67 194701Google Scholar

    Wang G X, Wang S Y, Ge M M, Deng X G 2018 Acta Phys. Sin. 67 194701Google Scholar

    [4]

    葛明明, 王圣业, 王光学, 邓小刚 2019 物理学报 68 204702Google Scholar

    Ge M M, Wang S Y, Wang G X, Deng X G 2019 Acta Phys. Sin. 68 204702Google Scholar

    [5]

    Travin A, Shur M, Strelets M, Spalart P R 2002 Adv. LES Complex. Flow 65 239

    [6]

    Jiang G S 1996 J. Comput. Phys. 126 202Google Scholar

    [7]

    Henrick A K, Aslam T D, Powers J M 2005 J. Comput. Phys. 207 542Google Scholar

    [8]

    Borges R, Carmona M, Costa B, Don W S 2008 J. Comput. Phys. 227 3191Google Scholar

    [9]

    Martín M P, Taylor E M, Wu M, Weirs V G 2006 J. Comput. Phys. 220 270Google Scholar

    [10]

    Hu X Y, Wang Q, Adams N A 2010 J. Comput. Phys. 229 8952Google Scholar

    [11]

    Wong M L, Lele S K 2017 J. Comput. Phys. 339 179Google Scholar

    [12]

    Adams N A, Shariff K 1996 J. Comput. Phys. 127 27Google Scholar

    [13]

    Pirozzoli S 2002 J. Comput. Phys. 178 81Google Scholar

    [14]

    Shahbazi K, Nathan A, Oscar P B, Jan S H 2011 J. Comput. Phys. 230 8779Google Scholar

    [15]

    Meitz H L, Fasel H F 2000 J. Comput. Phys. 157 371Google Scholar

    [16]

    Lele S K 1992 J. Comput. Phys. 103 16Google Scholar

    [17]

    Deng X, Shen C 1996 AIAA 27th Fluid Dynamics Conference, New Orleans, USA, June 17–20, 1996

    [18]

    Chaouat, Bruno 2017 Flow Turbul. Combust. 99 279Google Scholar

    [19]

    Xiao Z, Fu S 2009 Acta Mech. Sin. 25 471Google Scholar

    [20]

    Mary I, Sagaut P 2002 AIAA 40 1139Google Scholar

    [21]

    Anderson N, Eriksson L E, Davidson L 2005 AIAA 43 1899Google Scholar

    [22]

    Bui T T 2000 Comput. Fluids 29 877Google Scholar

    [23]

    Qin N, Xia H 2008 Proc. Inst. Mech. Eng. I 222 373

    [24]

    Yoon S, Barnhardt M, Candler G 48th AIAA Aerospace Science Meeting, Orlando, USA, January 4–7, 2010 p1573

    [25]

    Mockett C 2009 Ph. D. Dissertation (Berlin: Technische Universitat Berlin)

    [26]

    Tajallipour N, Babaee Owlam B, Paraschivoiu M 2009 J. Aircraft 46 915Google Scholar

    [27]

    Xiao Z, Jian L, Huang J, Song F 2012 AIAA 50 1119Google Scholar

    [28]

    Spalart P R, Jou W H, Strelets M, Allmaras S R 1997 Adv. In DNS/LES (Columbus: Greyden Press) pp137–149

    [29]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 8–11, 2001 pA01-16694

    [30]

    Spalart P R, Deck S, Shur M L, Squires K D, Strelets M K, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181Google Scholar

    [31]

    Pirozzoli S 2006 J. Comput. Phys. 219 489Google Scholar

    [32]

    Wang Z J, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H T 2013 Int. J. Numer. Methods Fluids 72 811Google Scholar

    [33]

    Kroll N, Bieler H, Deconinck H, Couaillier V, Ven H v d, Sorensen K 2010 ADIGMA A European Initiative on the Development of Adaptive Higher-order Variational Methods for Aerospace Applications (Berlin: Springer) pp1–10

    [34]

    Comte-Bellot G, Corrsin S 1971 J. Fluid. Mech. 48 273Google Scholar

    [35]

    Bunge U, Mockett C, Thiele F 2007 Aerosp. Sci. Technol. 11 376Google Scholar

    [36]

    Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press) pp264–288

    [37]

    Kravchenko, P M 2000 Phys. Fluids 12 403Google Scholar

    [38]

    Parnaudeau P, Carlier J, Heitz D, Lamballais E 2008 Phys. Fluids 20 261

  • 图 1  耗散色散特性分析 (a) 耗散特性; (b) 色散特性

    Fig. 1.  Analysis of dissipation and dispersion: (a) Dissipation; (b) dispersion

    图 2  $ L_2 $误差变化曲线 (a)随网格尺度$ h $; (b)随CPU 时间

    Fig. 2.  The curve of $ L_2 $ error (a) vs. mesh scale $ h $; (b) vs. CPU time

    图 3  $ 64^2 $网格下涡结构等值线图 (a) DCS; (b) ADCS

    Fig. 3.  Vorticity magnitude contour of $ 64^2 $ grid: (a) DCS; (b) ADCS

    图 4  $ 128^2 $网格下涡结构等值线图 (a) DCS; (b) ADCS

    Fig. 4.  Vorticity magnitude contour of $ 128^2 $ grid: (a) DCS; (b) ADCS

    图 5  中心线处水平速度型比较 (a) $ 64^2 $网格; (b) $ 128^2 $网格

    Fig. 5.  Comparison of u velocity profile at centerline: (a) 642; (b) $ 128^2 $

    图 6  不同时刻能量谱曲线 (a) $ U_0 t/L = 98 $; (b) $ U_0 t/L = $171

    Fig. 6.  Comparison of energy-spectral: (a) $ U_0 t/L = 98 $; (b) $ U_0 t/L = 171 $

    图 7  $ U_0 t/L = 98 $$ Q $等值面云图 (a) ADCS$ (\alpha_{\rm {min}}) $; (b) ADCS; (c) DCS

    Fig. 7.  $ Q $-criterion iso-surface at $ U_0 t/L = 98 $: (a) ADCS$ (\alpha_{\rm {min}}) $; (b) ADCS; (c) DCS

    图 8  $ U_0 t/L = 171 $$ Q $等值面云图 (a) ADCS$ (\alpha_{\rm {min}}) $; (b) ADCS; (c) DCS

    Fig. 8.  $ Q $- criterion iso-surface at $ U_0 t/L = 171 $: (a) ADCS$ (\alpha_{\rm {min}}) $; (b) ADCS; (c) DCS

    图 9  $ Re_\tau = 180 $条件下$ u^+ $$ 20 f_{\rm d} $分布曲线

    Fig. 9.  $ u^+ $ and $ 20 f_{\rm d} $ curves at $ Re_\tau = 180 $

    图 10  $ Re_\tau = 180 $条件下$ Q $ 等值面 (a) DCS; (b) ADCS

    Fig. 10.  $ Q $ criterion iso-surface at $ Re_\tau = 180 $: (a) DCS; (b) ADCS

    图 11  $ Re_\tau = 180 $条件下ADCS $ f_{\rm d}$$ \alpha $分布 (a) $ f_{\rm d} $; (b) $ \alpha $

    Fig. 11.  The contour of $ f_{\rm d} $ and $ \alpha $ of ADCS at $ Re_\tau = 180 $: (a) $ f_{\rm d} $; (b) $ \alpha $

    图 12  $ y = 0.1 H $$ y $方向涡量分布云图 (a) DCS; (b) ADCS

    Fig. 12.  The contour of vorticity y at $ y = 0.1 H $: (a) DCS; (b) ADCS

    图 13  圆柱尾流$ Q $等值面云图 (a) DCS; (b) ADCS

    Fig. 13.  $ Q $ criterion at the wake of circular cylinder: (a) DCS; (b) ADCS

    图 14  圆柱表面压力系数分布曲线

    Fig. 14.  $ C_{\rm p} $ around the circular cylinder

    图 15  $ y = 0 $处水平速度分布曲线

    Fig. 15.  u velocity profile at $ y = 0 $

    图 16  $ x/D = 1.06, 1.54, 2.02 $三个站位时均速度分布 (a) $ u $; (b) $ v $

    Fig. 16.  Mean velocity profile at $ x/D = 1.06, 1.54, 2.02 $: (a) $ u $; (b) $ v $

    图 19  $ x/D = 4.0, 7.0, 10.0 $三个站位雷诺应力分布 (a) $ u'u' $; (b) $ u'v' $; (c) $ v'v' $

    Fig. 19.  Reynolds stress profile at $ x/D = 4.0, 7.0, 10.0 $: (a) $ u'u' $; (b) $ u'v' $; (c) $ v'v' $

    图 17  $ x/D = 1.06, 1.54, 2.02 $三个站位雷诺应力分布 (a) $ u'u' $; (b) $ u'v' $; (c) $ v'v' $

    Fig. 17.  Reynolds stress profile at $ x/D = 1.06, 1.54, 2.02 $: (a) $ u'u' $; (b) $ u'v' $; (c) $ v'v' $

    图 18  $ x/D = 4.0, 7.0, 10.0 $三个站位时均速度分布 (a) $ u $; (b) $ v $

    Fig. 18.  Mean velocity profile at $ x/D = 4.0, 7.0, 10.0 $: (a) $ u $; (b) $ v $

    表 1  $ L_2 $ 误差和计算精度比较

    Table 1.  Comparison of $ L_2 $ error and accuracy of order

    网格 ADCS DCS
    $ L_2 $误差 精度 $ L_2 $误差 精度
    $ 32^2 $ 5.91520$ \times 10^{-9} $ 5.49050$ \times 10^{-9} $
    $ 48^2 $ 4.14450$ \times 10^{-9} $ 0.87 3.84780$ \times 10^{-9} $ 0.88
    $ 64^2 $ 2.33030$ \times 10^{-9} $ 2.01 2.06870$ \times 10^{-9} $ 2.16
    $ 96^2 $ 2.59250$ \times 10^{-10} $ 5.42 5.15010$ \times 10^{-10} $ 3.43
    $ 128^2 $ 5.39380$ \times 10^{-11} $ 5.46 1.26630$\times 10^{-10}$ 4.88
    下载: 导出CSV
  • [1]

    Cummingsa R M, Forsytheb J R, Mortonb S A 2003 Prog. Aerosp. Sci 39 369Google Scholar

    [2]

    Tucker P 2016 Appl. Math. Comput. 272 582

    [3]

    王光学, 王圣业, 葛明明, 邓小刚 2018 物理学报 67 194701Google Scholar

    Wang G X, Wang S Y, Ge M M, Deng X G 2018 Acta Phys. Sin. 67 194701Google Scholar

    [4]

    葛明明, 王圣业, 王光学, 邓小刚 2019 物理学报 68 204702Google Scholar

    Ge M M, Wang S Y, Wang G X, Deng X G 2019 Acta Phys. Sin. 68 204702Google Scholar

    [5]

    Travin A, Shur M, Strelets M, Spalart P R 2002 Adv. LES Complex. Flow 65 239

    [6]

    Jiang G S 1996 J. Comput. Phys. 126 202Google Scholar

    [7]

    Henrick A K, Aslam T D, Powers J M 2005 J. Comput. Phys. 207 542Google Scholar

    [8]

    Borges R, Carmona M, Costa B, Don W S 2008 J. Comput. Phys. 227 3191Google Scholar

    [9]

    Martín M P, Taylor E M, Wu M, Weirs V G 2006 J. Comput. Phys. 220 270Google Scholar

    [10]

    Hu X Y, Wang Q, Adams N A 2010 J. Comput. Phys. 229 8952Google Scholar

    [11]

    Wong M L, Lele S K 2017 J. Comput. Phys. 339 179Google Scholar

    [12]

    Adams N A, Shariff K 1996 J. Comput. Phys. 127 27Google Scholar

    [13]

    Pirozzoli S 2002 J. Comput. Phys. 178 81Google Scholar

    [14]

    Shahbazi K, Nathan A, Oscar P B, Jan S H 2011 J. Comput. Phys. 230 8779Google Scholar

    [15]

    Meitz H L, Fasel H F 2000 J. Comput. Phys. 157 371Google Scholar

    [16]

    Lele S K 1992 J. Comput. Phys. 103 16Google Scholar

    [17]

    Deng X, Shen C 1996 AIAA 27th Fluid Dynamics Conference, New Orleans, USA, June 17–20, 1996

    [18]

    Chaouat, Bruno 2017 Flow Turbul. Combust. 99 279Google Scholar

    [19]

    Xiao Z, Fu S 2009 Acta Mech. Sin. 25 471Google Scholar

    [20]

    Mary I, Sagaut P 2002 AIAA 40 1139Google Scholar

    [21]

    Anderson N, Eriksson L E, Davidson L 2005 AIAA 43 1899Google Scholar

    [22]

    Bui T T 2000 Comput. Fluids 29 877Google Scholar

    [23]

    Qin N, Xia H 2008 Proc. Inst. Mech. Eng. I 222 373

    [24]

    Yoon S, Barnhardt M, Candler G 48th AIAA Aerospace Science Meeting, Orlando, USA, January 4–7, 2010 p1573

    [25]

    Mockett C 2009 Ph. D. Dissertation (Berlin: Technische Universitat Berlin)

    [26]

    Tajallipour N, Babaee Owlam B, Paraschivoiu M 2009 J. Aircraft 46 915Google Scholar

    [27]

    Xiao Z, Jian L, Huang J, Song F 2012 AIAA 50 1119Google Scholar

    [28]

    Spalart P R, Jou W H, Strelets M, Allmaras S R 1997 Adv. In DNS/LES (Columbus: Greyden Press) pp137–149

    [29]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 8–11, 2001 pA01-16694

    [30]

    Spalart P R, Deck S, Shur M L, Squires K D, Strelets M K, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181Google Scholar

    [31]

    Pirozzoli S 2006 J. Comput. Phys. 219 489Google Scholar

    [32]

    Wang Z J, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H T 2013 Int. J. Numer. Methods Fluids 72 811Google Scholar

    [33]

    Kroll N, Bieler H, Deconinck H, Couaillier V, Ven H v d, Sorensen K 2010 ADIGMA A European Initiative on the Development of Adaptive Higher-order Variational Methods for Aerospace Applications (Berlin: Springer) pp1–10

    [34]

    Comte-Bellot G, Corrsin S 1971 J. Fluid. Mech. 48 273Google Scholar

    [35]

    Bunge U, Mockett C, Thiele F 2007 Aerosp. Sci. Technol. 11 376Google Scholar

    [36]

    Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press) pp264–288

    [37]

    Kravchenko, P M 2000 Phys. Fluids 12 403Google Scholar

    [38]

    Parnaudeau P, Carlier J, Heitz D, Lamballais E 2008 Phys. Fluids 20 261

  • [1] 鲁维, 陈硕, 于致远, 赵嘉毅, 张凯旋. 基于能量守恒耗散粒子动力学方法的自然对流模拟改进研究. 物理学报, 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [2] 陈彦君, 王圣业, 符翔, 刘伟. 基于νt尺度方程的雷诺应力模型初步研究. 物理学报, 2022, 71(16): 164701. doi: 10.7498/aps.71.20220417
    [3] 王前进, 孙鹏帅, 张志荣, 张乐文, 杨曦, 吴边, 庞涛, 夏滑, 李启勇. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法. 物理学报, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [4] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟. 物理学报, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [5] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [6] 葛明明, 王圣业, 王光学, 邓小刚. 基于混合雷诺平均/高精度隐式大涡模拟方法的高升力体气动噪声模拟. 物理学报, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [7] 王光学, 王圣业, 葛明明, 邓小刚. 基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟. 物理学报, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [8] 宋文华, 王宁, 高大治, 王好忠, 屈科. 波导不变量谱值及其分离方法. 物理学报, 2017, 66(11): 114301. doi: 10.7498/aps.66.114301
    [9] 王圣业, 王光学, 董义道, 邓小刚. 基于雷诺应力模型的高精度分离涡模拟方法. 物理学报, 2017, 66(18): 184701. doi: 10.7498/aps.66.184701
    [10] 谢文佳, 李桦, 潘沙, 田正雨. 一类新型激波捕捉格式的耗散性与稳定性分析. 物理学报, 2015, 64(2): 024702. doi: 10.7498/aps.64.024702
    [11] 朱航, 张淑宁, 赵惠昌. 基于改进自适应分解法的单通道雷达引信混合信号分离. 物理学报, 2014, 63(5): 058401. doi: 10.7498/aps.63.058401
    [12] 毕传兴, 胡定玉, 张永斌, 徐亮. 基于等效源法和双面质点振速测量的声场分离方法. 物理学报, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [13] 夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫. 基于离散变分原理的耗散动力学模拟方法:模拟三维囊泡形状. 物理学报, 2013, 62(24): 248701. doi: 10.7498/aps.62.248701
    [14] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟. 物理学报, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [15] 王世元, 冯久超. 一种新的参数估计方法及其在混沌信号盲分离中的应用. 物理学报, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [16] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [17] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [18] 胡春红, 李辉, 罗述谦, 王雪艳, 张璐. 衍射增强成像信息分离方法研究. 物理学报, 2009, 58(4): 2423-2429. doi: 10.7498/aps.58.2423
    [19] 李雪霞, 冯久超. 一种混沌信号的盲分离方法. 物理学报, 2007, 56(2): 701-706. doi: 10.7498/aps.56.701
    [20] 钦 佩, 娄豫皖, 杨传铮, 夏保佳. 分离X射线衍射线多重宽化效应的新方法和计算程序. 物理学报, 2006, 55(3): 1325-1335. doi: 10.7498/aps.55.1325
计量
  • 文章访问数:  5985
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 修回日期:  2020-04-12
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回