搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“嫦娥5号”登陆候选地Mons Rümker的光照与温度特征分析

钟振 张腾 张杰 陈世国

引用本文:
Citation:

“嫦娥5号”登陆候选地Mons Rümker的光照与温度特征分析

钟振, 张腾, 张杰, 陈世国

Illumination and temperature analysis for CE-5 candidate landing site Mons Rümker

Zhong Zhen, Zhang Teng, Zhang Jie, Chen Shi-Guo
PDF
HTML
导出引用
  • 即将开展的“嫦娥5号”探月任务, 将使我国在月球上首次实现无人钻井取样. 考虑到实际探测活动与探测区域的光照和温度有关, 有必要对研究区域的光照和温度特征进行分析, 为此, 本文利用SPICE系统对“嫦娥5号”候选登陆区Mons Rümker高原的实时光照进行计算. 发现求解的相对光强度分布与日本SELENE卫星提供的早晨光照影像一致, 验证了光照算法及计算程序的合理性. 以此为基础, 利用1维热传导模型, 对候选登陆区风化层不同深度的温度进行仿真分析. 结果表明风化层温度在近表面区域受光照的影响较大, 随着深度的增加, 光照影响逐渐减弱. 到达0.57 m深度时, 风化层温度不再变化. 为确保钻井任务的开展, 实际钻井作业应考虑风化层内外温度差异引起的应力不均. 考虑“嫦娥5号”的实际钻井深度远大于0.57 m, 应能测量到常温层的热流值, 后续探月任务可考虑搭载热流探测设备, 以促进月球科学研究的发展.
    The forthcoming lunar exploration of Chang’e-5 (CE-5) mission will be the first sampling return project of China. The actual drilling needs the information about real-time illumination and corresponding temperature. To give a support for the project, in this paper the SPICE software system is first used to calculate the real-time illumination at the CE-5 candidate landing site Mons Rümker. It is found that our synthetic map of illumination is consistent with the morning map of illumination provided by the Japan’s SELENE satellite. This result verifies the rationality of our algorithm and the corresponding code. According to the calculated illumination and considering a one-dimensional heat conduction model, we study the temperature distribution over Mons Rümker. It is found that the regolith temperature near the surface is greatly related to the illumination, but varies a little with the depth increasing. It is also discovered that the regolith temperature beneath a depth of 0.57 m will not change any more. To give a support for the actual drilling program, it is recommended to consider the temperature difference between the outside and inside of the regolith, especially their stresses caused by such a temperature difference. Moreover, considering the drilling depth of CE-5 larger than 0.57 m, it is likely to measure the heat flow for the constant-temperature layer. We propose that for the next lunar exploration following CE-5 the measurement of heat flow is considered. This will promote the research of lunar science.
      通信作者: 钟振, zzhong@gznu.edu.cn
    • 基金项目: 国家级-基于高分辨率重力地形数据的火星和月球物理参数反演研究(41864001)
      Corresponding author: Zhong Zhen, zzhong@gznu.edu.cn
    [1]

    欧阳自远, 李春来, 邹永廖等 2010 中国科学·地球科学 40 261

    Ouyang Z Y, Li C L, Zou Y L, et al. 2010 Sci. China Earth Sci. 40 261

    [2]

    于登云, 吴学英, 吴伟仁 2016 深空探测学报 3 307

    Yu D Y, Wu X Y, Wu W R 2016 J. Deep Space Explor. 3 307

    [3]

    赵健楠, 肖龙, 乔乐, Glotch T D, 黄倩 2017 矿物岩石地球化学通报 36 1156

    Zhao J N, Xiao L, Qiao L, Glotch T D, Huang Q 2017 Bull. Miner. Petrol. Geochem. 36 1156

    [4]

    Zhang T, Ding X 2017 Acta Astronaut. 131 190Google Scholar

    [5]

    Qian Y Q, Xiao L, Zhao S Y, Huang J, Flahaut J, Martinot M, Head J W, Hiesinger H, Wang G X 2018 J. Geophys. Res. Planet. 123 1407

    [6]

    Geologic map of the Rumker quadrangle of the Moon, Scott D H, Eggleton R E https://pubs.er.usgs.gov/publication/i805/[2020-02-18]

    [7]

    Smith E I 1973 Moon 6 3Google Scholar

    [8]

    Smith E I 1974 Moon 10 175Google Scholar

    [9]

    Spudis P D, McGovern P J, Kiefer W S 2013 J. Geophys. Res. Planet. 118 1063Google Scholar

    [10]

    Zhao J N, Xiao L, Qiao L, Glotch T D, Huang Q 2017 J. Geophys. Res. Planet. 122 1419Google Scholar

    [11]

    Hao W F, Zhu C, Li F, Yan J G, Ye M, Barriot J P 2019 Planet. Space Sci. 168 73Google Scholar

    [12]

    Paige D A, Siegler M A, Zhang J A, et al. 2010 Science 330 479Google Scholar

    [13]

    Vasavada A R, Bandfield J L, Greenhagen B T, Hayne P O, Siegler M A, Williams J P, Paige D A 2012 J. Geophys. Res. 117 E00H18-1

    [14]

    Hayne P O, Bandfield J L, Siegler M A, Vasavada A R, Ghent R R, Williams J P, Greenhagen B T, Aharonson O, Elder C M, Lucey P G, Paige D A 2017 J. Geophys. Res. Planet. 122 2371Google Scholar

    [15]

    Woods-Robinson R, Siegler M A, Paige D A 2019 J. Geophys. Res. Planet. 124 1989Google Scholar

    [16]

    Acton Jr C H A 1996 Planet. Space Sci. 44 65Google Scholar

    [17]

    Smith D E, Zuber M T, Neumann G A, et al. 2010 Geophys. Res. Lett. 37 L18204-1

    [18]

    Smith D E, Zuber M T, Neumann G A, et al. 2017 Icarus 283 70Google Scholar

    [19]

    Mitchell D L, and De Pater I 1994 Icarus 110 2Google Scholar

    [20]

    Ledlow M J, Burns J O, Gisler G R, Zhao J H, Zeilik M, Baker D N 1992 Astrophys. J. 384 640Google Scholar

    [21]

    Hemingway B S, Krupka K M, Robie R A 1981 Am. Mineral. 66 1202

    [22]

    Langseth M G, Keihm S J, Peters K 1976 Proceedings of the 7 th International Symposium on Lunar and Planetary Science Texas, United States of America, March 15–19, 1976 p3143

    [23]

    Bandfield J L, Hayne P O, Williams J P, Greenhagen B T, Paige D A 2015 Icarus 248 357Google Scholar

    [24]

    Keihm S J 1984 Icarus 60 568Google Scholar

    [25]

    Kopp G, Lean J L 2011 Geophys. Res. Lett. 38 541

    [26]

    Braun J E, Mitchell J C 1983 Sol. Energy 31 439Google Scholar

    [27]

    Warren P H, Rasmussen 1987 J. Geophys. Res. Space Phys. 92 3453Google Scholar

  • 图 1  Mons Rümker区域地形图, 如白色方框所示, 其中黑色方块表示文献[10]建议的“嫦娥5号”登陆点(303.34ºE, 40.11ºN)

    Fig. 1.  Topography around Mons Rümker region, which is figured out with a white box. The black box indicates the candidate landing site of CE-5 proposed by reference [10], and this site is centered at (303.34ºE, 40.11ºN)

    图 2  太阳光照条件示意图

    Fig. 2.  Schematic of illumination condition

    图 3  Mons Rümker区域早晨光照图, 对应月球地方时tm = 06:30:30 (a)日本SELENE卫星提供的早晨光照图; (b)本文计算的与图3(a)相同时刻的实时光照图

    Fig. 3.  Morning map of illumination over Mons Rümker at the lunar local time tm = 06:30:30: (a) Japan’s SELENE morning map of illumination; (b) our estimated relative intensity of illumination at the same time of Fig. 3(a)

    图 4  Mons Rümker区域表面温度分布图 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00

    Fig. 4.  Surface temperature distribution with time over Mons Rümker plateau: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00

    图 5  Mons Rümker区域底部5 cm深度的温度分布图 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00

    Fig. 5.  Subsurface temperature distribution at the depth of 5 cm over Mons Rümker plateau: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00

    图 6  剖面温度沿图1所示经度方向的分布 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00. 图6(d)所示黑色曲线表示图1蓝线方向的表面地形轮廓

    Fig. 6.  Temperature variation along the longitude direction shown in Fig.1: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00. The black carves in Fig. 6(d) represents the surface topography along the same blue line direction displayed in Fig. 1

    图 7  底部温度随时间的变化 (a)“嫦娥5号”候选登陆点的底部分温度变化; (b)图1中黑色五角星所示参考点的底部温度变化

    Fig. 7.  Subsurface temperature variations: (a) Variations for the point of CE-5 candidate landing site; (b) variations for the black star in Fig. 1

    图 8  参考点(图1中黑色五角星)温度随深度的变化 (a)对应月球地方时tm = 06:30:30; (b)对应月球地方时tm = 12:30:30; (c)对应月球地方时tm = 18:30:30

    Fig. 8.  Subsurface temperature variations with depth for the point of black star in Fig. 1: (a) Temperature variations at the lunar local time tm = 06:30:30; (b) temperature variations at the lunar local time tm = 12:30:30; (c) temperature variations at the lunar local time tm = 18:30:30

    表 1  相关参数取值

    Table 1.  Values of parameters used in study

    序号参数取值
    1密度ρsρd [14]ρs = 1100 kg·m–3, ρd = 1800 kg·m–3
    2热传导系数kskd [14]ks = 7.4 × 10–4 W·m–1·K–1, kd = 3.4 × 10–3 W·m–1·K–1
    3比热容拟合系数[14] c0, c1, c2, c3, c4c0 = –3.6125 J·kg–1·K–1, c1 = 2.7431 J·kg–1·K–2,
    c2 = 2.3616 × 10–3 J·kg–1·K–3,
    c3 = –1.234 × 10–5 J·kg–1·K–4,
    c4 = 8.9093 × 10–9 J·kg–1·K–5
    4参数Hx [13,14]H = 0.06 m, x = 2.7
    下载: 导出CSV

    表 2  参考点(图1中黑色五角星)温度(单位为K)在不同时刻随深度的变化

    Table 2.  Temperature (in K) variations with depth for the point of black star in Fig. 1 at various lunar local time

    深度/mtm = 06:30:30tm = 12:30:30tm = 18:30:30
    H = 0.02 mH = 0.09 mQ = 0.012 W·m–2Q = 0.021 W·m–2H = 0.02 mH = 0.09 mQ = 0.012 W·m–2Q = 0.021 W·m–2H = 0.02 mH = 0.09 mQ = 0.012 W·m–2Q = 0.021 W·m–2
    0170.0169.6169.7169.7348.1351.7350.9350.9122.3110.7112.9112.9
    0.0136158.5149.4152.3152.3322.5325.7324.4324.4213.6205.6207.1207.1
    0.0526192.4194.5194.4194.4270.6261.1263.2263.2260.9260.7260.1260.1
    0.1000221.3223.8223.2223.2237.9231.9233.6233.6260.3253.9255.3255.3
    0.1822239.3239.6239.5239.5234.0235.1234.7234.7243.0239.5240.4240.4
    0.3240241.2241.2241.2241.2240.8240.9240.8240.8240.0240.2240.1240.1
    0.4721241.2241.2241.2241.2241.3241.3241.3241.3241.2241.3241.3241.3
    0.8250242.4242.4242.4242.4242.4242.4242.4242.4242.4242.4242.4242.4
    1.0000242.9242.9242.7243.1242.9242.9242.7243.1242.9242.9242.7243.1
    下载: 导出CSV
  • [1]

    欧阳自远, 李春来, 邹永廖等 2010 中国科学·地球科学 40 261

    Ouyang Z Y, Li C L, Zou Y L, et al. 2010 Sci. China Earth Sci. 40 261

    [2]

    于登云, 吴学英, 吴伟仁 2016 深空探测学报 3 307

    Yu D Y, Wu X Y, Wu W R 2016 J. Deep Space Explor. 3 307

    [3]

    赵健楠, 肖龙, 乔乐, Glotch T D, 黄倩 2017 矿物岩石地球化学通报 36 1156

    Zhao J N, Xiao L, Qiao L, Glotch T D, Huang Q 2017 Bull. Miner. Petrol. Geochem. 36 1156

    [4]

    Zhang T, Ding X 2017 Acta Astronaut. 131 190Google Scholar

    [5]

    Qian Y Q, Xiao L, Zhao S Y, Huang J, Flahaut J, Martinot M, Head J W, Hiesinger H, Wang G X 2018 J. Geophys. Res. Planet. 123 1407

    [6]

    Geologic map of the Rumker quadrangle of the Moon, Scott D H, Eggleton R E https://pubs.er.usgs.gov/publication/i805/[2020-02-18]

    [7]

    Smith E I 1973 Moon 6 3Google Scholar

    [8]

    Smith E I 1974 Moon 10 175Google Scholar

    [9]

    Spudis P D, McGovern P J, Kiefer W S 2013 J. Geophys. Res. Planet. 118 1063Google Scholar

    [10]

    Zhao J N, Xiao L, Qiao L, Glotch T D, Huang Q 2017 J. Geophys. Res. Planet. 122 1419Google Scholar

    [11]

    Hao W F, Zhu C, Li F, Yan J G, Ye M, Barriot J P 2019 Planet. Space Sci. 168 73Google Scholar

    [12]

    Paige D A, Siegler M A, Zhang J A, et al. 2010 Science 330 479Google Scholar

    [13]

    Vasavada A R, Bandfield J L, Greenhagen B T, Hayne P O, Siegler M A, Williams J P, Paige D A 2012 J. Geophys. Res. 117 E00H18-1

    [14]

    Hayne P O, Bandfield J L, Siegler M A, Vasavada A R, Ghent R R, Williams J P, Greenhagen B T, Aharonson O, Elder C M, Lucey P G, Paige D A 2017 J. Geophys. Res. Planet. 122 2371Google Scholar

    [15]

    Woods-Robinson R, Siegler M A, Paige D A 2019 J. Geophys. Res. Planet. 124 1989Google Scholar

    [16]

    Acton Jr C H A 1996 Planet. Space Sci. 44 65Google Scholar

    [17]

    Smith D E, Zuber M T, Neumann G A, et al. 2010 Geophys. Res. Lett. 37 L18204-1

    [18]

    Smith D E, Zuber M T, Neumann G A, et al. 2017 Icarus 283 70Google Scholar

    [19]

    Mitchell D L, and De Pater I 1994 Icarus 110 2Google Scholar

    [20]

    Ledlow M J, Burns J O, Gisler G R, Zhao J H, Zeilik M, Baker D N 1992 Astrophys. J. 384 640Google Scholar

    [21]

    Hemingway B S, Krupka K M, Robie R A 1981 Am. Mineral. 66 1202

    [22]

    Langseth M G, Keihm S J, Peters K 1976 Proceedings of the 7 th International Symposium on Lunar and Planetary Science Texas, United States of America, March 15–19, 1976 p3143

    [23]

    Bandfield J L, Hayne P O, Williams J P, Greenhagen B T, Paige D A 2015 Icarus 248 357Google Scholar

    [24]

    Keihm S J 1984 Icarus 60 568Google Scholar

    [25]

    Kopp G, Lean J L 2011 Geophys. Res. Lett. 38 541

    [26]

    Braun J E, Mitchell J C 1983 Sol. Energy 31 439Google Scholar

    [27]

    Warren P H, Rasmussen 1987 J. Geophys. Res. Space Phys. 92 3453Google Scholar

  • [1] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [2] 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析. 物理学报, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [3] 肖凯博, 郑建刚, 蒋新颖, 蒋学君, 吴文龙, 严雄伟, 王振国, 郑万国. 高重复频率水冷Nd:YAG激活镜放大器的温度特性. 物理学报, 2021, 70(3): 034203. doi: 10.7498/aps.70.20201042
    [4] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应. 物理学报, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [5] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [6] 李策, 冯国英, 杨火木. 流体直接冷却薄板条介质温度及应力的解析表达. 物理学报, 2016, 65(5): 054204. doi: 10.7498/aps.65.054204
    [7] 徐军, 陈钢. 热处理温度对量子点粒度分布的影响. 物理学报, 2015, 64(12): 127302. doi: 10.7498/aps.64.127302
    [8] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究. 物理学报, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [9] 石红, 田立成, 杨生胜. 嫦娥一号卫星太阳风离子探测器数据分析. 物理学报, 2014, 63(6): 069601. doi: 10.7498/aps.63.069601
    [10] 汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼. 基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布. 物理学报, 2013, 62(15): 158201. doi: 10.7498/aps.62.158201
    [11] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [12] 王文睿, 于晋龙, 罗俊, 韩丙辰, 吴波, 郭精忠, 王菊, 杨恩泽. 基于光参量放大的高速实时光取样技术. 物理学报, 2011, 60(10): 104220. doi: 10.7498/aps.60.104220
    [13] 王增, 董刚, 杨银堂, 李建伟. 考虑温度分布效应的非对称RLC树时钟偏差研究. 物理学报, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [14] 黄生荣, 陈 朝. 纳秒级脉冲激光诱导Zn掺杂过程中GaN/Al2O3材料的温度分布及热形变解析分析. 物理学报, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [15] 田洪涛, 陈 朝. 连续激光诱导Zn/InP掺杂过程中温度分布的解析计算. 物理学报, 2003, 52(2): 367-371. doi: 10.7498/aps.52.367
    [16] 蔡炜颖, 李志锋, 陆 卫, 李守荣, 梁平治. Si微电阻桥温度分布与热传导特性的显微Raman光谱研究. 物理学报, 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [17] 郑瑞伦, 陈洪, 刘俊. 矩形激光脉冲辐照下金属板材料温度分布研究. 物理学报, 2002, 51(3): 554-558. doi: 10.7498/aps.51.554
    [18] 刘丽英, 徐 雷, 侯占佳, 徐志凌, 陈 杰, 王文澄, 李富铭. 有机/无机薄膜凝胶动态过程的实时光学二次谐波产生研究. 物理学报, 1999, 48(1): 69-73. doi: 10.7498/aps.48.69
    [19] 陆猗, 刘思敏, 舒华德, 孙骞, 张光寅, 许京军, 刘军民. LiNbO3:Fe光折变晶体实时光学相关存贮研究. 物理学报, 1994, 43(11): 1770-1775. doi: 10.7498/aps.43.1770
    [20] 吴美萍, 周太明, 蔡祖泉. 高气压钠电弧的温度分布. 物理学报, 1990, 39(10): 1583-1590. doi: 10.7498/aps.39.1583
计量
  • 文章访问数:  7500
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-03-15
  • 刊出日期:  2020-06-05

/

返回文章
返回