搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

β-Ga2O3纳米材料的尺寸调控与光致发光特性

马腾宇 李万俊 何先旺 胡慧 黄利娟 张红 熊元强 李泓霖 叶利娟 孔春阳

引用本文:
Citation:

β-Ga2O3纳米材料的尺寸调控与光致发光特性

马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳

Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials

Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang
PDF
HTML
导出引用
  • 氧化镓(Ga2O3)纳米材料在紫外透明电极、高温气体传感器、日盲紫外探测器和功率器件等领域具有巨大的应用潜力, 而实现高结晶质量和尺寸形貌可控的Ga2O3纳米材料是关键. 本文通过水热法制备了不同尺寸的羟基氧化镓(GaOOH)纳米棒、纳米棒束和纺锤体, 经后期高温煅烧均成功转变为高质量单晶β-Ga2O3纳米材料并较好地保留了原始GaOOH的形态特征. 利用X射线衍射(XRD)、拉曼散射光谱(Raman)和场发射扫描电子显微镜(FE-SEM)等表征手段系统研究了前驱液的pH值大小和阴离子表面活性剂浓度对GaOOH和β-Ga2O3纳米材料晶体结构和表面形貌的影响, 并深入探讨了不同条件下GaOOH纳米材料的生长机制. 此外, 室温光致发光谱(PL)测试发现不同形貌的β-Ga2O3纳米材料均展现出典型的蓝绿色发射峰和尖锐的红光发射峰, 与纳米材料中本征缺陷的存在密切相关. 上述研究结果为未来实现高质量β-Ga2O3纳米材料的可控制备提供了有益参考.
    Gallium oxide (Ga2O3) nanomaterials have great potential in the fields of ultraviolet transparent electrodes, high-temperature gas sensors, solar blind ultraviolet detectors and power devices, while achieving Ga2O3 nanomaterials with high crystalline quality and controllable size and morphology still remains challenge. Herein, size-controllable Gallium oxide hydroxide (GaOOH) nanorods, nanorod bundles, and spindles were prepared by hydrothermal method. After high temperature calcination, GaOOH nanomaterials were successfully transformed into higher-quality single-crystal β-Ga2O3 nanomaterials which well retained the morphological characteristics of the pristine GaOOH.With the help of X-ray diffraction (XRD), Raman scattering spectroscopy (Raman) and field emission scanning electron microscope (FE-SEM), we systematically studied the influence of the pH value and the concentration of anionic surfactants in the precursor solution on the crystal structure and surface morphology of GaOOH and β-Ga2O3 nanomaterials, and explored the different growth mechanism of GaOOH nanomaterials under different conditions. Simultaneously, room temperature photoluminescence (PL) tests revealed that β-Ga2O3 nanomaterials with different morphologies exhibit typical broad blue-green emission and sharp red emission, which are closely related to the existence of intrinsic defects in nanomaterials.The above research results provide valuable information for the controllable preparation of high-quality β-Ga2O3 nanomaterials.
      通信作者: 李万俊, liwj@cqnu.edu.cn ; 张红, zhh_2016@163.com
    • 基金项目: 国家级-国家自然科学基金(11904041)
      Corresponding author: Li Wan-Jun, liwj@cqnu.edu.cn ; Zhang Hong, zhh_2016@163.com
    [1]

    Pearton S J, Yang J C, CaryP H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [2]

    Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M, Simmons J A 2018 Adv. Electron. Mater. 4 1600501Google Scholar

    [3]

    Mastro M A, KuramataA, Calkins J, Kim J, Ren F, Pearton S J 2017 ECS J. Solid State Sci. Technol. 6 356Google Scholar

    [4]

    Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157Google Scholar

    [5]

    Kumar M, Kuma S, Kumar V, Singh R 2019 Gallium Oxide (1st Ed.) (Amsterdam: Elsevier) pp91–115

    [6]

    Muruganandham M, Amutha R, Wahed M S M A, Ahmmad B, Kuroda Y, Suri R P S, Wu J J, Sillanpää M E T 2012 J. Phys. Chem. C 116 44Google Scholar

    [7]

    Lin H J, Gao H Y, Gao P X 2017 Appl. Phys. Lett. 110 043101Google Scholar

    [8]

    Xia Z B, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y W, Brenner M, Lodha S, Rajan S 2018 IEEE Electron Device Lett. 39 568Google Scholar

    [9]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [10]

    马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322Google Scholar

    Ma L H, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322Google Scholar

    [11]

    Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao HY, Dong JJ, Zheng Z Y, Gao H 2016 J. Phys. D: Appl. Phys. 49 425105Google Scholar

    [12]

    Xie C, Lu X T, Ma M R, Tong X W, Zhang Z X, Wang L, Wu C Y, Yang W H, Luo L B 2019 Adv. Opt. Mater. 7 1901257Google Scholar

    [13]

    Liu J, Lu W, Zhong Q, Wu H Z, Li Y L, Li L L, Wang Z L 2018 J. Colloid Interface Sci. 519 255Google Scholar

    [14]

    Zacherle T, Schmidt P C, Martin M 2013 Phys. Rev. B 87 235206Google Scholar

    [15]

    Ho Q D, Frauenheim T, Deák P 2018 Phys. Rev. B 97 115163Google Scholar

    [16]

    Qian H S, Gunawan P, Zhang Y X, Lin G F, Zheng J W, Xu R 2008 Cryst. Growth Des. 8 1282Google Scholar

    [17]

    Song Y P, Zhang H Z, Lin C, Zhu Y W, Li G H, Yang F H, Yu D P 2004 Phys. Rev. B 69 075304Google Scholar

    [18]

    Pilliadugula R, Krishnan N G 2018 Mater. Res. Express 6 025027Google Scholar

    [19]

    Yao Y Z, Ishikawa Y, Sugawara Y 2019 J. Appl. Phys. 126 205106Google Scholar

    [20]

    Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312Google Scholar

    [21]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C Y, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [22]

    Namba Y, Heidarpour E, Nakayama M 1992 J. Appl. Phys. 72 1748Google Scholar

    [23]

    Zhao Y Y, Frost R L, Yang J, Martens W N 2008 J. Phys. Chem. C 112 3568

    [24]

    Shan J J, Li C H, Wu J M, Liu J A, Shi Y S 2017 Ceram. Int. 43 6430Google Scholar

    [25]

    Dulda A 2016 Adv. Mater. Sci. Eng. 2016 1

    [26]

    Bae H J, Yoo T H, Yoon Y, Lee I G, Kim J P, Cho B J, Hwang W S 2018 Nanomaterials 8 594Google Scholar

    [27]

    Krehula S, Ristić M, Kubuki S, Iida Y, Fabián M, Musić S 2015 J. Alloys Compd. 620 217Google Scholar

    [28]

    Quan Y, Fang D, Zhang X Y, Liu S Q, Huang K L 2010 Mater. Chem. Phys. 121 142Google Scholar

    [29]

    Sun Z Z, Feng X M, Hou W H 2007 Nanotechnology 18 455607Google Scholar

    [30]

    Qi X F, Song Y H, ShengY, Zhang H G, Zhao H, Shi Z, Zou H F 2014 Opt. Mater. 38 193Google Scholar

    [31]

    Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar

    [32]

    Yan S C, Wan L J, Li Z S, Zhou Y, Zou Z G 2010 Chem. Commun. 46 6388Google Scholar

    [33]

    Yang H Q, Shi R Y, Yu J, Liu R N, Zhang R G, Zhao H, Zhang L H, Zheng H R 2009 J. Phys. Chem. C 113 21548Google Scholar

    [34]

    Cao L, Li M K, Yang Z, Wei Q, Zhang W 2008 Appl. Phys. A 91 415

    [35]

    Tien L C, Chen W T, Ho C H 2011 J. Am. Ceram. Soc. 94 3117Google Scholar

    [36]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001Google Scholar

    [37]

    Jiang J L, Zhang J 2020 Ceram. Int. 46 2409Google Scholar

    [38]

    Zhang T T, Lin J, Zhang X H, Huang Y, Xu X W, Xue Y M, Zou J, Tang C C 2013 J. Lumin. 140 30Google Scholar

    [39]

    Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar

    [40]

    Nogales E, Méndez B, Piqueras J 2005 Appl. Phys. Lett. 86 113112Google Scholar

  • 图 1  不同pH值和SDBS浓度下样品的XRD图谱 (a) GaOOH; (b) β-Ga2O3

    Fig. 1.  XRD patterns of samples under different pH values and SDBS concentrations: (a) GaOOH; (b) β-Ga2O3.

    图 2  不同pH值和SDBS浓度下β-Ga2O3样品的Raman图谱

    Fig. 2.  Raman spectra of β-Ga2O3samples at different pH values and SDBS concentrations.

    图 3  不同pH值下β-Ga2O3样品的SEM (a), (d) pH = 5; (b), (e) pH = 7; (c), (f) pH = 9; (g)—(i)长度分布图

    Fig. 3.  Typical SEM images of β-Ga2O3 at different pH values of (a), (d) pH = 5, (b), (e) pH = 7 and (c), (f) pH = 9; (g)—(i) length distribution.

    图 4  在pH = 5时加入SDBS后β-Ga2O3样品的SEM图像 (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L; (g)−(i)长度分布图

    Fig. 4.  Typical SEM images of β-Ga2O3 added with SDBS at pH = 5: (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L; (g)−(i) length distribution.

    图 5  在pH = 9时加入SDBS后β-Ga2O3样品的SEM图像 (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L; (g)−(i)长度分布图

    Fig. 5.  Typical SEM images of β-Ga2O3 added with SDBS at pH = 9: (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L; (g)−(i) length distribution.

    图 6  不同pH值和SDBS浓度下GaOOH的生长机理

    Fig. 6.  Growth mechanism of GaOOH at different pH and SDBS concentrations.

    图 A1  不同pH值下GaOOH纳米材料的SEM (a), (d) pH = 5; (b), (e) pH = 7; (c), (f) pH = 9

    Fig. A1.  Typical SEM images of GaOOH at different pH values: (a), (d) pH = 5; (b), (e) pH = 7; (c), (f) pH = 9.

    图 A3  在pH = 9时加入SDBS后GaOOH纳米材料的SEM图像 (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L

    Fig. A3.  Typical SEM images of GaOOH added with SDBS at pH = 9: (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L.

    图 7  不同生长条件下β-Ga2O3的室温光致发光谱 (a) 不同pH; (b) pH = 5加入SDBS; (c) pH = 9加入SDBS

    Fig. 7.  Room temperature PL of β-Ga2O3: (a) Different pH values without SDBS; (b) with different concentrations of SDBS at pH = 5; (c) with different concentrations of SDBS at pH = 9.

    图 A2  在pH = 5时加入SDBS后GaOOH纳米材料的SEM图像 (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L

    Fig. A2.  Typical SEM images of GaOOH added with SDBS at pH = 5: (a), (d) 0 mmol/L; (b), (e) 0.4 mmol/L; (c), (f) 0.8 mmol/L.

  • [1]

    Pearton S J, Yang J C, CaryP H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [2]

    Tsao J Y, Chowdhury S, Hollis M A, Jena D, Johnson N M, Jones K A, Kaplar R J, Rajan S, Van de Walle C G, Bellotti E, Chua C L, Collazo R, Coltrin M E, Cooper J A, Evans K R, Graham S, Grotjohn T A, Heller E R, Higashiwaki M, Islam M S, Juodawlkis P W, Khan M A, Koehler A D, Leach J H, Mishra U K, Nemanich R J, Pilawa-Podgurski R C N, Shealy J B, Sitar Z, Tadjer M J, Witulski A F, Wraback M, Simmons J A 2018 Adv. Electron. Mater. 4 1600501Google Scholar

    [3]

    Mastro M A, KuramataA, Calkins J, Kim J, Ren F, Pearton S J 2017 ECS J. Solid State Sci. Technol. 6 356Google Scholar

    [4]

    Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157Google Scholar

    [5]

    Kumar M, Kuma S, Kumar V, Singh R 2019 Gallium Oxide (1st Ed.) (Amsterdam: Elsevier) pp91–115

    [6]

    Muruganandham M, Amutha R, Wahed M S M A, Ahmmad B, Kuroda Y, Suri R P S, Wu J J, Sillanpää M E T 2012 J. Phys. Chem. C 116 44Google Scholar

    [7]

    Lin H J, Gao H Y, Gao P X 2017 Appl. Phys. Lett. 110 043101Google Scholar

    [8]

    Xia Z B, Joishi C, Krishnamoorthy S, Bajaj S, Zhang Y W, Brenner M, Lodha S, Rajan S 2018 IEEE Electron Device Lett. 39 568Google Scholar

    [9]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [10]

    马海林, 苏庆, 兰伟, 刘雪芹 2008 物理学报 57 7322Google Scholar

    Ma L H, Su Q, Lan W, Liu X Q 2008 Acta Phys. Sin. 57 7322Google Scholar

    [11]

    Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao HY, Dong JJ, Zheng Z Y, Gao H 2016 J. Phys. D: Appl. Phys. 49 425105Google Scholar

    [12]

    Xie C, Lu X T, Ma M R, Tong X W, Zhang Z X, Wang L, Wu C Y, Yang W H, Luo L B 2019 Adv. Opt. Mater. 7 1901257Google Scholar

    [13]

    Liu J, Lu W, Zhong Q, Wu H Z, Li Y L, Li L L, Wang Z L 2018 J. Colloid Interface Sci. 519 255Google Scholar

    [14]

    Zacherle T, Schmidt P C, Martin M 2013 Phys. Rev. B 87 235206Google Scholar

    [15]

    Ho Q D, Frauenheim T, Deák P 2018 Phys. Rev. B 97 115163Google Scholar

    [16]

    Qian H S, Gunawan P, Zhang Y X, Lin G F, Zheng J W, Xu R 2008 Cryst. Growth Des. 8 1282Google Scholar

    [17]

    Song Y P, Zhang H Z, Lin C, Zhu Y W, Li G H, Yang F H, Yu D P 2004 Phys. Rev. B 69 075304Google Scholar

    [18]

    Pilliadugula R, Krishnan N G 2018 Mater. Res. Express 6 025027Google Scholar

    [19]

    Yao Y Z, Ishikawa Y, Sugawara Y 2019 J. Appl. Phys. 126 205106Google Scholar

    [20]

    Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312Google Scholar

    [21]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C Y, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [22]

    Namba Y, Heidarpour E, Nakayama M 1992 J. Appl. Phys. 72 1748Google Scholar

    [23]

    Zhao Y Y, Frost R L, Yang J, Martens W N 2008 J. Phys. Chem. C 112 3568

    [24]

    Shan J J, Li C H, Wu J M, Liu J A, Shi Y S 2017 Ceram. Int. 43 6430Google Scholar

    [25]

    Dulda A 2016 Adv. Mater. Sci. Eng. 2016 1

    [26]

    Bae H J, Yoo T H, Yoon Y, Lee I G, Kim J P, Cho B J, Hwang W S 2018 Nanomaterials 8 594Google Scholar

    [27]

    Krehula S, Ristić M, Kubuki S, Iida Y, Fabián M, Musić S 2015 J. Alloys Compd. 620 217Google Scholar

    [28]

    Quan Y, Fang D, Zhang X Y, Liu S Q, Huang K L 2010 Mater. Chem. Phys. 121 142Google Scholar

    [29]

    Sun Z Z, Feng X M, Hou W H 2007 Nanotechnology 18 455607Google Scholar

    [30]

    Qi X F, Song Y H, ShengY, Zhang H G, Zhao H, Shi Z, Zou H F 2014 Opt. Mater. 38 193Google Scholar

    [31]

    Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar

    [32]

    Yan S C, Wan L J, Li Z S, Zhou Y, Zou Z G 2010 Chem. Commun. 46 6388Google Scholar

    [33]

    Yang H Q, Shi R Y, Yu J, Liu R N, Zhang R G, Zhao H, Zhang L H, Zheng H R 2009 J. Phys. Chem. C 113 21548Google Scholar

    [34]

    Cao L, Li M K, Yang Z, Wei Q, Zhang W 2008 Appl. Phys. A 91 415

    [35]

    Tien L C, Chen W T, Ho C H 2011 J. Am. Ceram. Soc. 94 3117Google Scholar

    [36]

    Park S Y, Lee S Y, Seo S H, Noh D Y, Kang H C 2013 Appl. Phys. Express 6 105001Google Scholar

    [37]

    Jiang J L, Zhang J 2020 Ceram. Int. 46 2409Google Scholar

    [38]

    Zhang T T, Lin J, Zhang X H, Huang Y, Xu X W, Xue Y M, Zou J, Tang C C 2013 J. Lumin. 140 30Google Scholar

    [39]

    Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar

    [40]

    Nogales E, Méndez B, Piqueras J 2005 Appl. Phys. Lett. 86 113112Google Scholar

  • [1] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能. 物理学报, 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [2] 王强, 杨立学, 刘北云, 闫胤洲, 陈飞, 蒋毅坚. 本征富受主型ZnO微米管光致发光的温度调控机制. 物理学报, 2020, 69(19): 197701. doi: 10.7498/aps.69.20200655
    [3] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [4] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [5] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [6] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [7] 章建辉, 韩季刚. 控制纳米结构以调控氧化锌的发光、磁性和细胞毒性. 物理学报, 2015, 64(9): 097702. doi: 10.7498/aps.64.097702
    [8] 刘军, 周伟昌, 张建福. CdS:Cu一维纳米结构及其光子学特性研究. 物理学报, 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [9] 任艳东, 吕树臣. 发光二极管用SrWO4:Eu3+红光荧光粉激发谱强度的调控. 物理学报, 2011, 60(8): 087804. doi: 10.7498/aps.60.087804
    [10] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [11] 李会亮, 袁军林, 王小军, 赵景泰, 张志军, 杨昕昕. MBiO2Cl(M=Ca,Sr,Ba)材料的合成、能带计算及发光性能研究. 物理学报, 2008, 57(12): 7878-7884. doi: 10.7498/aps.57.7878
    [12] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [13] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [14] 彭智伟, 王玲玲, 刘晃清, 黄维清, 邹炳锁. Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质. 物理学报, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [15] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [16] 羊新胜, 王 豫, 董 亮, 张 锋, 齐立桢. 纳米WO3块体材料的电致变色效应. 物理学报, 2004, 53(8): 2724-2727. doi: 10.7498/aps.53.2724
    [17] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [18] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [19] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
    [20] 许秀来, 徐 征, 侯延冰, 苏艳梅, 徐 叙. Gd3Ga5O12:Ag薄膜电致发光材料的制备及其发光性质. 物理学报, 2000, 49(7): 1390-1393. doi: 10.7498/aps.49.1390
计量
  • 文章访问数:  11771
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-24
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-05-20

/

返回文章
返回