搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响

杨如霞 卢玉明 曾丽竹 张禄佳 李冠男

引用本文:
Citation:

钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响

杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男

Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics

Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan
PDF
HTML
导出引用
  • 采用固相烧结法制备了不同Gd掺杂含量的0.7Bi1-xGdxFe0.95Ga0.05O3-0.3BaTiO3 (BGxFG-BT, x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷, 系统研究了Gd掺杂对BGxFG-BT陶瓷的晶体结构、微观形貌、介电性能以及多铁性能的影响. 通过X射线衍射图谱分析、扫描电镜形貌分析、X射线光电子能谱分析等工具表明, Gd掺杂会使BGxFG-BT陶瓷由菱面体(R3c)结构转变为赝立方(P4mm)结构, 晶粒尺寸会明显减小, 从未掺入Gd时的6.2 μm降低到约3.2 μm左右, 同时发现少量的Gd掺杂能够抑制BFG-BT陶瓷中Fe2+离子的产生, 减少氧空位的存在. 最终导致, 在适量的Gd掺杂下, 陶瓷的介电性能和铁电性能均得到明显改善. 适量的Gd掺杂可使介电常数增加、介电损耗减少、电滞回线形状改善、剩余电极化强度增加(最高达9.06 μC/cm2). 同时, 在磁性能方面, Gd掺杂陶瓷均表现铁磁性, 剩余磁极化强度与饱和磁化强度均有显著提高.
    The 0.7Bi1–xGdxFe0.95Ga0.05O3-0.3BaTiO3 (BGxFG-BT, x = 0, 0.05, 0.1, 0.15, 0.2) ceramics were successfully synthesized via the conventional solid-state reaction method. The effects of Gd doping on crystal structure, microstructure, dielectric, ferroelectric and magnetic properties were systematically investigated. X-ray diffraction analysis indicates that Gd doping induce a structural transition from rhombohedral (R3c) to pseudo-cubic (P4mm) in BGxFG-BT ceramics. Scanning electron microscopy results show a decrease of grain size with doping Gd in BFG-BT. The average grain sizes of the ceramics range from 3.2 μm to 6.2 μm. The dielectric constant and loss tangent are drastically increased and reduced respectively with introducing Gd into the ceramics. Temperature dependent dielectric constant presents a broad peak in the vicinity of Néel temperature (TN) for all the samples, signifying strong magnetoelectric coupling. An increment in TN is also observed as a result of Gd-doping in the temperature regions of 230 to 340 ℃. The leakage current density is reduced by about two orders of magnitude under the electric field of 20 kV/cm. This can be ascribed to the reduction of the oxygen vacancy concentration, which is confirmed by the X-ray photoelectron spectroscopy result. The ferroelectricity and ferromagnetism are also improved after the addition of Gd seen from the polarization hysteresis (P-E ) loops and the magnetization hysteresis (M-H) loops. The greatly enhanced magnetism with Mr = 0.0186 emu/g and Ms = 1.084 emu/g is obtained in the ceramic with x = 0.2, almost three point six times larger than that of the undoped ceramic.
      通信作者: 卢玉明, ymlu@swu.edu.cn ; 李冠男, liguannan@swu.edu.cn
    • 基金项目: 国家级-国家自然科学基金青年科学基金(51802270)
      Corresponding author: Lu Yu-Ming, ymlu@swu.edu.cn ; Li Guan-Nan, liguannan@swu.edu.cn
    [1]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [2]

    Hur N, Park S, Sharma P A, A hn, J S, Guha S, Cheong S W 2004 Nature 429 392Google Scholar

    [3]

    Fina I, Dix N, Fàbrega L, Sánchez F, Fontcuberta J 2010 Thin Solid films 518 4634Google Scholar

    [4]

    Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B, Ramesh R 2006 Nat. Mater. 5 823Google Scholar

    [5]

    Patankar K K, Patil S A, Sivakumar K V, Mahajan R P, Kolekar Y D, Kothale M B 2000 Mater. Chem. Phys. 65 97Google Scholar

    [6]

    宋骁, 高兴森, 刘俊明 2018 物理学报 67 157512Google Scholar

    Song X, Gao X S, Liu J M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [7]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G 2003 Science 299 1719Google Scholar

    [8]

    Cheng J R, Li N, Cross L E 2003 J. Appl. Phys. 94 5153Google Scholar

    [9]

    Pradhan S K, Roul B K 2011 J. Phys. Chem. Solids 72 1180Google Scholar

    [10]

    Kumar A, Sharma P, Yang W B, Shen J D, Varshney D, Li Q 2016 Ceram. Int. 42 14805Google Scholar

    [11]

    Wang T, Song S H, Ma Q, Tan M L, Chen J J 2019 J. Alloys Comp. 795 60Google Scholar

    [12]

    Thakur S, Rai R, Tiwari A 2014 Solid State Commun. 197 1Google Scholar

    [13]

    Makoed I I, Amirov A A, Liedienov N A, Pashchenko A V, Yanushkevich K I, Yakimchuk D V, Kaniukov E Y 2019 J. Magn. Magn. Mater. 489 165379Google Scholar

    [14]

    Wang K, Si N, Zhang Y L, Zhang F, Guo A B, Jiang W 2019 Vacuum 165 105Google Scholar

    [15]

    Ivanova T L, Gagulin V V 2002 Ferroelectrics 265 241Google Scholar

    [16]

    Kumar M M, Srinath S, Kumar G S, Suryanarayana S V 1998 J. Magn. Magn. Mater. 188 203Google Scholar

    [17]

    Sharma S, Siqueiros J M, Srinet G, Kumar S 2018 J. Alloys Comp. 732 666Google Scholar

    [18]

    Hang Q M, Xing Z B, Zhu X H, Yu M, Song Y, Zhu J M, Liu Z G 2012 Ceram. Int. 3 8Google Scholar

    [19]

    Wei Y X, Wang X T, Jia J J, Wang X L 2012 Ceram. Int. 38 3499Google Scholar

    [20]

    Yang H B, Zhou C G, Liu X Y, Zhou Q, Chen G H, Wang H, Li W Z 2012 Mater. Res. Bull. 47 4233Google Scholar

    [21]

    Buscaglia M T, Mitoseriu L, Buscaglia V, Pallecchi I, Viviani M, Nanni P, Siri A S 2006 J. Eur. Ceram. Soc. 26 3027Google Scholar

    [22]

    Zhou Y N, Guo T T, Chen J, Liu X Q, Chen X M 2020 J. Alloys Comp. 819 153031Google Scholar

    [23]

    Zhao H T, Yang R X, Li Y, Liu G, Lu Y M, Tang J F, Zhang S, Li G N 2020 J. Magn. Magn. Mater. 494 165779Google Scholar

    [24]

    Liu X H, Xu Z, Qu S B, Wei X Y, Chen J L 2007 Chin. Sci. Bull. 52 2747Google Scholar

    [25]

    Pradhan S K, Das J, Rout P P, Das S K, Mishra D K, Sahu D R, Pradhan A K, Srinivasu V V, Nayak B B, Verma s, Roul V K 2010 J. Magn. Magn. Mater. 322 3614Google Scholar

    [26]

    Mukherjee A, Basu S, Manna P K, Yusuf S M, Pal M 2014 J. Alloys Comp. 598 142Google Scholar

    [27]

    Kumar M M, Srinivas A, Suryanarayana S V 2000 J. Appl. Phys. 87 855Google Scholar

    [28]

    Kumar M, Yadav K L 2007 Appl. Phys. Lett. 91 242901Google Scholar

    [29]

    Kumar K S, Venkateswaran C, Kannan D, Tiwari B, Rao M S R 2012 J. Phys. D: Appl. Phys. 45 415302Google Scholar

    [30]

    Deng X Z, Zhang J, Zhang S T 2017 J. Mater. Sci: Mater. Electron. 28 2435Google Scholar

    [31]

    Deng X L, Wang W, Gao R L, Cai W, Chen G, Fu C L 2018 J. Mater. Sci: Mater. Electron. 29 6870Google Scholar

    [32]

    Godara S, Sinha N, Kumar B 2016 Ceram. Int. 42 1782Google Scholar

    [33]

    Gowrishankar M, Babu D R, Madeswaran S 2016 J. Magn. Magn. Mater. 418 54Google Scholar

    [34]

    Cai W, Fu C L, Gao J C, Chen H Q 2009 J. Alloys Comp. 480 870Google Scholar

    [35]

    Chakrabarti C, Fu X H, Qiu Y, Yuan S L, Li C L 2020 Ceram. Int. 46 212Google Scholar

    [36]

    Qian G Y, Zhu C M, Wang LG, Tian Z M, Yin C Y, Yuan S L 2017 J. Electron. Mater. 46 6717Google Scholar

    [37]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloys Comp. 696 503Google Scholar

    [38]

    Vashisth B K, Bangruwa J S, Beniwal A, Gairola S P, Kumar A, Singh N, Verma V 2017 J. Alloys Comp. 698 699Google Scholar

    [39]

    Wei J, Liu Y, Bai X F, Li C, Liu Y L, Xu Z, Gemeiner P, Haumont R, Infante I C, Dkhil B 2016 Ceram. Int. 42 13395Google Scholar

    [40]

    Scott J F 2008 J. Phys: Condens. Matter 20 021001Google Scholar

    [41]

    Upadhyay S K, Reddy V R, Lakshmi N 2013 J. Asian Ceram. Soc. 1 346Google Scholar

    [42]

    Damerdji N O, Amrani B, Khodja K D, Aubert P 2018 J. Supercond. Novel Magn. 31 2935Google Scholar

    [43]

    Cao L Z, Cheng B L, Wang S Y, Fu W Y, Ding S, Sun Z H, Yuan H T, Zhou Y L, Chen Z H, Yang G Z 2006 J. Phys. D: Appl. Phys. 39 2819Google Scholar

    [44]

    Yu J, Chu J 2008 Sci. Bull. 53 2097Google Scholar

    [45]

    Hasan M, Basith M A, Zubair M A, Hossain M S, Mahbub R, Hakim M A, Islam M F 2016 J. Alloys Comp. 687 701Google Scholar

    [46]

    Xing Q, Han Z, Zhao S 2017 J. Mater. Sci: Mater. Electron. 28 295Google Scholar

  • 图 1  (a) BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的XRD图谱; 样品在(b) 32°, (c) 39.5°和(d) 45.7°附近局部放大图

    Fig. 1.  (a) XRD patterns of BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2) ceramics. Enlarged view of peaks at (b) 32°, (c) 39.5° and (d) 45.7°.

    图 2  BGxFG - BT陶瓷样品的XRD精修图谱 (a) x = 0; (b) x = 0.1. 红色线、蓝色线和绿色线表示实验值、计算值及二者差值, 短竖线表示布拉格位置

    Fig. 2.  XRD refinement of the BGxFG - BT ceramics: (a) x = 0, (b) x = 0.1. The red, blue, and green indicatethe experimental, calculated and difference value, respectively. The short bars indicate the positions of Bragg positions.

    图 3  BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的SEM图像 (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2; (f)平均晶粒尺寸随掺杂量变化的关系

    Fig. 3.  The SEM images of BGxFG - BT ceramics: (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2; (f) the composition dependence of average grain size.

    图 4  BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的XPS图谱 (a) Bi 4f; (b) Fe 2p

    Fig. 4.  XPS spectra of the (a) Bi 4f and (b) Fe 2p lines of BGxFG - BT (x = 0, 0.05, 0.1, 0.15 and 0.2) ceramics.

    图 5  BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷样品在频率10 kHz, 100 kHz和1 MHz下的εr和tan δ随温度的变化 (a) x = 0; (b) x = 0.05; (c) x = 0.1; (d) x = 0.15; (e) x = 0.2

    Fig. 5.  Variation of εr and tan δ with temperature at frequencies 10 kHz, 100 kHz and 1 MHz for BGxFG - BT: (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.15, (e) x = 0.2.

    图 6  室温下BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷样品 (a) 漏电流J随电场E的变化和(b) log J随log E的变化

    Fig. 6.  Leakage current density J of the BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2) ceramic samples as a function of the electric field E at room temperature: (a) J vs E; (b) log J vs log E

    图 7  BGxFG - BT陶瓷在室温下的电滞回线 (a) x = 0; (b) x = 0.05—0.2

    Fig. 7.  Polarization versus electric field hysteresis loops of BGxFG - BT ceramics at room temperature: (a) x = 0, (b) x = 0.05–0.2.

    图 8  BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷在室温下的磁滞回线

    Fig. 8.  The room temperature M-H loops of the BGxFG - BT (x = 0, 0.05, 0.1, 0.15, 0.2) ceramics.

    表 1  Rietveld精修获得的BGxFG-BT (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷的晶胞参数

    Table 1.  The lattice parameters obtained by Rietveld refinement for BGxFG-BT (x = 0, 0.05, 0.1, 0.15, 0.2).

    xabcV3ρ/g·cm–3Rwp/%d/%
    0 5.6428(5) 5.6428(5) 13.8896(16) 303.01(6) 7.601(8) 11.2 96.41
    0.05 3.9886(4) 3.9886(4) 3.9923(11) 63.51(3) 7.508(4) 10.8 99.28
    0.1 3.9879(3) 3.9879(3) 3.9902(15) 63.46(3) 7.454(3) 12.3 98.91
    0.15 3.9875(4) 3.9875(4) 3.9899(8) 63.44(2) 7.421(4) 13.8 98.68
    0.2 3.9872(6) 3.9872(6) 3.9890(11) 63.41(2) 7.377(3) 15.6 98.63
    下载: 导出CSV
  • [1]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13Google Scholar

    [2]

    Hur N, Park S, Sharma P A, A hn, J S, Guha S, Cheong S W 2004 Nature 429 392Google Scholar

    [3]

    Fina I, Dix N, Fàbrega L, Sánchez F, Fontcuberta J 2010 Thin Solid films 518 4634Google Scholar

    [4]

    Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B, Ramesh R 2006 Nat. Mater. 5 823Google Scholar

    [5]

    Patankar K K, Patil S A, Sivakumar K V, Mahajan R P, Kolekar Y D, Kothale M B 2000 Mater. Chem. Phys. 65 97Google Scholar

    [6]

    宋骁, 高兴森, 刘俊明 2018 物理学报 67 157512Google Scholar

    Song X, Gao X S, Liu J M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [7]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G 2003 Science 299 1719Google Scholar

    [8]

    Cheng J R, Li N, Cross L E 2003 J. Appl. Phys. 94 5153Google Scholar

    [9]

    Pradhan S K, Roul B K 2011 J. Phys. Chem. Solids 72 1180Google Scholar

    [10]

    Kumar A, Sharma P, Yang W B, Shen J D, Varshney D, Li Q 2016 Ceram. Int. 42 14805Google Scholar

    [11]

    Wang T, Song S H, Ma Q, Tan M L, Chen J J 2019 J. Alloys Comp. 795 60Google Scholar

    [12]

    Thakur S, Rai R, Tiwari A 2014 Solid State Commun. 197 1Google Scholar

    [13]

    Makoed I I, Amirov A A, Liedienov N A, Pashchenko A V, Yanushkevich K I, Yakimchuk D V, Kaniukov E Y 2019 J. Magn. Magn. Mater. 489 165379Google Scholar

    [14]

    Wang K, Si N, Zhang Y L, Zhang F, Guo A B, Jiang W 2019 Vacuum 165 105Google Scholar

    [15]

    Ivanova T L, Gagulin V V 2002 Ferroelectrics 265 241Google Scholar

    [16]

    Kumar M M, Srinath S, Kumar G S, Suryanarayana S V 1998 J. Magn. Magn. Mater. 188 203Google Scholar

    [17]

    Sharma S, Siqueiros J M, Srinet G, Kumar S 2018 J. Alloys Comp. 732 666Google Scholar

    [18]

    Hang Q M, Xing Z B, Zhu X H, Yu M, Song Y, Zhu J M, Liu Z G 2012 Ceram. Int. 3 8Google Scholar

    [19]

    Wei Y X, Wang X T, Jia J J, Wang X L 2012 Ceram. Int. 38 3499Google Scholar

    [20]

    Yang H B, Zhou C G, Liu X Y, Zhou Q, Chen G H, Wang H, Li W Z 2012 Mater. Res. Bull. 47 4233Google Scholar

    [21]

    Buscaglia M T, Mitoseriu L, Buscaglia V, Pallecchi I, Viviani M, Nanni P, Siri A S 2006 J. Eur. Ceram. Soc. 26 3027Google Scholar

    [22]

    Zhou Y N, Guo T T, Chen J, Liu X Q, Chen X M 2020 J. Alloys Comp. 819 153031Google Scholar

    [23]

    Zhao H T, Yang R X, Li Y, Liu G, Lu Y M, Tang J F, Zhang S, Li G N 2020 J. Magn. Magn. Mater. 494 165779Google Scholar

    [24]

    Liu X H, Xu Z, Qu S B, Wei X Y, Chen J L 2007 Chin. Sci. Bull. 52 2747Google Scholar

    [25]

    Pradhan S K, Das J, Rout P P, Das S K, Mishra D K, Sahu D R, Pradhan A K, Srinivasu V V, Nayak B B, Verma s, Roul V K 2010 J. Magn. Magn. Mater. 322 3614Google Scholar

    [26]

    Mukherjee A, Basu S, Manna P K, Yusuf S M, Pal M 2014 J. Alloys Comp. 598 142Google Scholar

    [27]

    Kumar M M, Srinivas A, Suryanarayana S V 2000 J. Appl. Phys. 87 855Google Scholar

    [28]

    Kumar M, Yadav K L 2007 Appl. Phys. Lett. 91 242901Google Scholar

    [29]

    Kumar K S, Venkateswaran C, Kannan D, Tiwari B, Rao M S R 2012 J. Phys. D: Appl. Phys. 45 415302Google Scholar

    [30]

    Deng X Z, Zhang J, Zhang S T 2017 J. Mater. Sci: Mater. Electron. 28 2435Google Scholar

    [31]

    Deng X L, Wang W, Gao R L, Cai W, Chen G, Fu C L 2018 J. Mater. Sci: Mater. Electron. 29 6870Google Scholar

    [32]

    Godara S, Sinha N, Kumar B 2016 Ceram. Int. 42 1782Google Scholar

    [33]

    Gowrishankar M, Babu D R, Madeswaran S 2016 J. Magn. Magn. Mater. 418 54Google Scholar

    [34]

    Cai W, Fu C L, Gao J C, Chen H Q 2009 J. Alloys Comp. 480 870Google Scholar

    [35]

    Chakrabarti C, Fu X H, Qiu Y, Yuan S L, Li C L 2020 Ceram. Int. 46 212Google Scholar

    [36]

    Qian G Y, Zhu C M, Wang LG, Tian Z M, Yin C Y, Yuan S L 2017 J. Electron. Mater. 46 6717Google Scholar

    [37]

    Song G L, Song Y C, Su J, Song X H, Zhang N, Wang T X, Chang F G 2017 J. Alloys Comp. 696 503Google Scholar

    [38]

    Vashisth B K, Bangruwa J S, Beniwal A, Gairola S P, Kumar A, Singh N, Verma V 2017 J. Alloys Comp. 698 699Google Scholar

    [39]

    Wei J, Liu Y, Bai X F, Li C, Liu Y L, Xu Z, Gemeiner P, Haumont R, Infante I C, Dkhil B 2016 Ceram. Int. 42 13395Google Scholar

    [40]

    Scott J F 2008 J. Phys: Condens. Matter 20 021001Google Scholar

    [41]

    Upadhyay S K, Reddy V R, Lakshmi N 2013 J. Asian Ceram. Soc. 1 346Google Scholar

    [42]

    Damerdji N O, Amrani B, Khodja K D, Aubert P 2018 J. Supercond. Novel Magn. 31 2935Google Scholar

    [43]

    Cao L Z, Cheng B L, Wang S Y, Fu W Y, Ding S, Sun Z H, Yuan H T, Zhou Y L, Chen Z H, Yang G Z 2006 J. Phys. D: Appl. Phys. 39 2819Google Scholar

    [44]

    Yu J, Chu J 2008 Sci. Bull. 53 2097Google Scholar

    [45]

    Hasan M, Basith M A, Zubair M A, Hossain M S, Mahbub R, Hakim M A, Islam M F 2016 J. Alloys Comp. 687 701Google Scholar

    [46]

    Xing Q, Han Z, Zhao S 2017 J. Mater. Sci: Mater. Electron. 28 295Google Scholar

  • [1] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [2] 张珠峰, 任银拴. 溶剂热制备铬掺杂硫化锌和硫化纳米结构和磁性能. 物理学报, 2021, 70(13): 137103. doi: 10.7498/aps.70.20201963
    [3] 李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩. 柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性. 物理学报, 2019, 68(8): 087302. doi: 10.7498/aps.68.20181967
    [4] 胡婷, 阚二军. 低维铁电材料研究进展. 物理学报, 2018, 67(15): 157701. doi: 10.7498/aps.67.20180483
    [5] 王锋, 林闻, 王丽兹, 葛永明, 张小婷, 林海容, 黄伟伟, 黄俊钦, W. Cao. Cu掺杂ZnO磁性能的实验与理论研究. 物理学报, 2014, 63(15): 157502. doi: 10.7498/aps.63.157502
    [6] 张润兰, 邢辉, 陈长乐, 段萌萌, 罗炳成, 金克新. YMnO3薄膜的铁电行为及其纳米尺度铁电畴的研究. 物理学报, 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [7] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [8] 赵庆勋, 马继奎, 耿波, 魏大勇, 关丽, 刘保亭. 氮氢混合气氛退火中氢对Bi4Ti3O12铁电性能的影响. 物理学报, 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [9] 程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. Co掺杂的ZnO室温铁磁半导体材料制备与磁性和光学特性研究. 物理学报, 2009, 58(3): 2018-2022. doi: 10.7498/aps.58.2018
    [10] 单丹, 朱珺钏, 金灿, 陈小兵. B位等价掺杂SrBi4Ti4O15铁电材料的性能研究. 物理学报, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [11] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [12] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [13] 王秀章, 刘红日. La0.3Sr0.7TiO3模板层对Pb(Zr0.5Ti0.5)O3薄膜的铁电性能增强效应的研究. 物理学报, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [14] 黄集权, 洪兰秀, 韩高荣, 翁文剑, 杜丕一. Fe-Ni-BaTiO3复合材料的介电行为及其机理研究. 物理学报, 2006, 55(7): 3664-3669. doi: 10.7498/aps.55.3664
    [15] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [16] 李正法, 钟维烈, 裘忠平, 葛洪良, 张沛霖, 王春雷. 钛酸铋钡陶瓷的介电性、铁电性及对晶格结构的依赖性. 物理学报, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [17] 刘鹏, 姚熹. La调节Pb(Zr,Sn,Ti)O_3反铁电陶瓷的相变与电学性质. 物理学报, 2002, 51(7): 1621-1627. doi: 10.7498/aps.51.1621
    [18] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [19] 张 磊, 钟维烈, 彭毅萍, 王玉国. 钛酸锶钡的铁电相变与晶胞体积的关联. 物理学报, 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
    [20] 张 磊, 钟维烈. 横场-伊辛模型中BaTiO3的铁电行为. 物理学报, 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
计量
  • 文章访问数:  8663
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-04
  • 修回日期:  2020-03-02
  • 刊出日期:  2020-05-20

/

返回文章
返回