搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

互易波导模式耦合理论

陈云天 王经纬 陈伟锦 徐竞

引用本文:
Citation:

互易波导模式耦合理论

陈云天, 王经纬, 陈伟锦, 徐竞

Reciprocal waveguide coupled mode theory

Chen Yun-Tian, Wang Jing-Wei, Chen Wei-Jin, Xu Jing
PDF
HTML
导出引用
  • 波导中模式耦合是一种普遍的现象. 在光纤通信中不同导模之间的耦合会引起串扰, 导模和辐射模的耦合会降低导模的功率. 另一方面, 利用模式耦合现象能设计出具有特定功能的耦合器和分束器等光学器件. 模式耦合在光纤通信和光纤传感中也具有广泛应用. 因此, 分析研究波导模式如何耦合具有重要的应用价值. 模式耦合理论是研究波导中模式耦合的常用方法, 不仅提供了一种直观的物理图景来描述光学模式如何杂化, 而且还对相关模式如何杂化给出定量评估. 近年来, 以宇称时间对称性结构为代表的非厄米波导成为研究热点, 但传统模式耦合理论在这种情况下不再适用. 本文简述了模式耦合理论的发展历史, 详细介绍了构造互易波导模式耦合理论的关键概念和方法, 进一步回顾了在波导模式耦合理论方面的一系列代表性工作, 尤其是手征对称模式耦合理论以及广义模式耦合理论, 总结了这些模式耦合理论和传统模式耦合理论之间的联系, 最后简单介绍了它们在宇称时间对称波导及各向异性波导中的应用.
    Mode coupling is a common phenomenon in waveguides. The mode coupling among different guided modes in fiber-optic communication can cause crosstalk, and the mode coupling of guided mode and radiated mode can reduce the power of the guided mode. Application of mode coupling can guide the design of optical devices such as couplers and beam splitters with specific functions, which have been widely used in fiber optic communication and fiber sensing. So it is important to analyze how waveguide modes are coupled. The coupled-mode theory is a common method of studying mode coupling in waveguides. It provides not only an intuitive picture of how the photonic modes are hybridized, but also a quantitative assessment of how the hybridization among those relevant modes evolves. In recent years, non-Hermitian waveguides, represented by parity-time symmetrical structures, have become a research hotspot. However the conventional coupled-mode theory no longer works in this case. In this review, we briefly summarize the development history of coupled-mode theory and introduce the representative work in reciprocal waveguide coupled-mode theory in detail. Then the relationship among several coupled-mode theories is analyzed and their applications are briefly introduced.
      通信作者: 徐竞, jing_xu@hust.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11874026,61775063, 61735006)
      Corresponding author: Xu Jing, jing_xu@hust.edu.cn
    [1]

    Pierce J R 1954 J. Appl. Phys. 25 179Google Scholar

    [2]

    Gould R W 1955 IRE Trans. Electron Devices PGED-2 37Google Scholar

    [3]

    Louisell W H 1960 Coupled-Mode and Parametric Electronics (New York: Wiley) pp148–225

    [4]

    Miller S E 1954 Bell Syst. Tech. J. 33 661Google Scholar

    [5]

    Miller S E 1968 Bell Syst. Tech. J. 47 1801Google Scholar

    [6]

    Miller S E 1969 Bell Syst. Tech. J. 48 2189Google Scholar

    [7]

    Tang C C H 1969 Advances in Microwaves 4 301Google Scholar

    [8]

    Schelkunoff S A 1955 Bell Syst. Tech. J. 34 995Google Scholar

    [9]

    Haus H A 1958 Electron Beam Waves in Microwave Tubes (Massachusetts Institute of Technology, Research Laboratory of Electronics) pp115−130

    [10]

    Marcuse D 1971 Bell Syst. Tech. J. 50 1791Google Scholar

    [11]

    Marcuse D 1973 Bell Syst. Tech. J. 52 817Google Scholar

    [12]

    Snyder A W 1972 J. Opt. Soc. Am. 62 1267Google Scholar

    [13]

    Snyder A W 1970 IEEE Trans. Microwave Theory Tech. 18 383Google Scholar

    [14]

    Yariv A 1973 IEEE J. Quantum Electron. 9 919Google Scholar

    [15]

    Taylor H F, Yariv A 1974 Proc. IEEE 62 1044Google Scholar

    [16]

    Kogelnik H 1969 Bell Syst. Tech. J. 48 2909Google Scholar

    [17]

    McIntyre P D, Snyder A W 1973 J. Opt. Soc. Am. 63 1518Google Scholar

    [18]

    Yeh C, Manshadi F, Casey K F, Johnston A 1978 J. Opt. Soc. Am. 68 1079Google Scholar

    [19]

    Dionnet M J F, Shaw H J 1982 IEEE Trans. Microwave Theory Tech. 30 592Google Scholar

    [20]

    Thyagarajan K, Tewari R 1985 J. Lightwave Technol. 3 59Google Scholar

    [21]

    Zhang M, Garmire E 1987 J. Lightwave Technol. 5 260Google Scholar

    [22]

    Elechi C, Yeh C 1973 Opt. Commun. 7 201Google Scholar

    [23]

    Stoll H, Yariv A 1973 Opt. Commun. 8 5Google Scholar

    [24]

    Yeh P, Taylor H F 1980 Appl. Opt. 19 2848Google Scholar

    [25]

    Syms R R A 1985 Appl. Opt. 24 717Google Scholar

    [26]

    Marcuse D 1987 J. Lightwave Technol. 5 268Google Scholar

    [27]

    Hardy A, Streifer W 1985 J. Lightwave Technol. 3 1135Google Scholar

    [28]

    Haus H A, Huang W P, Kawakami S, Whitaker N A 1987 J. Lightwave Technol. 5 16Google Scholar

    [29]

    Chuang S L 1987 J. Lightwave Technol. 5 5Google Scholar

    [30]

    El-Ganainy R, Makris K G, Christodoulides D N, Musslimani Z H 2007 Opt. Lett. 32 2632Google Scholar

    [31]

    Golshani M, Weimann S, Jafari Kh, Khazaei Nezhad M, Langari A, Bahrampour A R, Eichelkraut T, Mahdavi S M, Szameit A 2014 Phys. Rev. Lett. 113 123903Google Scholar

    [32]

    Klaiman S, Gunther U, Moiseyev N 2008 Phys. Rev. Lett. 101 080402Google Scholar

    [33]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [34]

    Zhu X, Ramezani H, Shi C, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042Google Scholar

    [35]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [36]

    Shi Y, Yu Z F, Fan S H 2015 Nat. Photonics 9 388Google Scholar

    [37]

    Wang X Z 2018 Opt. Lett. 43 5623Google Scholar

    [38]

    Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [39]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [40]

    Alaeian H, Dionne J A 2014 Phys. Rev. B 89 075136Google Scholar

    [41]

    Alaeian H, Dionne J A 2014 Phys. Rev. A 89 033829Google Scholar

    [42]

    Shen Y, Deng X H, Chen L 2014 Opt. Express 22 19440Google Scholar

    [43]

    Liu Z Z, Zhang Q, Liu X L, Yao Y, Xiao J J 2016 Sci. Rep. 6 22711Google Scholar

    [44]

    Ke S L, Zhao D, Liu J X, Liu Q J, Liao Q, Wang B, Lu P X 2019 Opt. Express 27 13858Google Scholar

    [45]

    Peng B, Őzdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, M.Bender C, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [46]

    Xu J, Chen Y 2015 Opt. Express 23 22619Google Scholar

    [47]

    Wu B, Xu J, Xiao J, Chen Y 2016 Opt. Express 24 16566Google Scholar

    [48]

    Liu Z Z, Zhang Q, Chen Y, Xiao J J 2017 Photonics Res. 5 57Google Scholar

    [49]

    Wu B, Wang J, Xiao M, Xu J, Chen Y 2017 Opt. Express 25 1040Google Scholar

    [50]

    Xiong Z F, Chen W J, Wang P, Chen Y T 2017 Opt. Express 25 29822Google Scholar

    [51]

    Chen W, Xiong Z, Xu J, Chen Y 2019 Phys. Rev. B 99 195307Google Scholar

    [52]

    Zhang X Q, Chen R S, Zhou Y, Ming H, Wang A T 2016 Chin. Phys. Lett. 33 084201Google Scholar

    [53]

    黎磊, 刘桂强, 陈元浩 2013 光学学报 33 0123002Google Scholar

    Li L, Liu G Q, Chen Y H 2013 Acta Opt. Sin. 33 0123002Google Scholar

    [54]

    吴立恒, 王明红 2015 光学学报 35 0923003Google Scholar

    Wu L H, Wang M H 2015 Acta Opt. Sin. 35 0923003Google Scholar

    [55]

    Cai Y J, Li M, Xiong X, Yu L, Ren X F, Guo G P, Guo G C 2015 Chin. Phys. Lett. 32 107305Google Scholar

    [56]

    张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 物理学报 61 187301Google Scholar

    Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar

    [57]

    王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫 2012 物理学报 61 154207Google Scholar

    Wang L W, Lou S Q, Chen W G, Lu W L, Wang X 2012 Acta Phys. Sin. 61 154207Google Scholar

    [58]

    Xu J, Wu B, Chen Y T 2015 Opt. Express 23 11566Google Scholar

    [59]

    Sakurai J J, Tuan S F 1994 Modern Quantum Mechanics (Rev. Ed.) (Reading, Mass.: Addison-Wesley Pub. Co.) pp71–73

    [60]

    Rumsey V H 1954 Phys. Rev. 94 1483Google Scholar

    [61]

    Moiseyev N 2011 Non-Hermitian Quantum Mechanics (New York: Cambridge University Press) pp174–210

    [62]

    Collin R E 1960 Field Theory of Guided Waves (New York: The Maple Press) p231

    [63]

    McIsaac P R 1991 IEEE Trans. Microwave Theory Tech. 39 1808Google Scholar

    [64]

    Villeneuve A T 1959 IEEE Trans. Microwave Theory Tech. 7 441Google Scholar

    [65]

    Silvestre E, Abián M A, Gimeno B, Ferrando A, Andrés M V, Boria V E 2000 IEEE Trans. Microwave Theory Tech. 48 589Google Scholar

    [66]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (New York: Springer Science & Business Media) pp214–216

    [67]

    Zhu Y, Cangellaris A C 2006 Multigrid Finite Element Methods for Electromagnetic Field Modeling (Hoboken, N.J.: Wiley-IEEE Press) pp244–249

    [68]

    钱景仁 2009 光学学报 29 1188

    Qian J R 2009 Acta Opt. Sin. 29 1188

    [69]

    Liu H, Lalanne P 2008 Nature 452 728Google Scholar

    [70]

    Chen Y T, Zhang R Y, Xiong Z F, Hang Z H, Li J S, Shen J Q, Chan C T 2019 Nat. Commun. 10 3125Google Scholar

    [71]

    Shi H K, Xiong Z F, Chen W J, Xu J, Wang S B, Chen Y T 2019 Opt. Express 27 28114Google Scholar

    [72]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [73]

    Bernevig B A, Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press) pp30–40

  • 图 1  前向和后向传播模式之间对称关系 (a) 手征对称; (b) 时间反演对称; (c) 宇称对称

    Fig. 1.  Symmetry relations between the forward and backward propagating modes: (a) Chiral symmetry; (b) time reversal symmetry; (c) parity symmetry.

    图 2  有效折射率$n_{\rm{eff}}$实部与$\Delta {{\varepsilon}} $ (a) 纤芯1 相对介电常数为${{\varepsilon}}= {{\varepsilon}}_0 + \Delta {{\varepsilon}} $, 纤芯2 相对介电常数为${{\varepsilon}}= {{\varepsilon}}_0 + \Delta {{\varepsilon}} $; (b) 纤芯1 相对介电常数为${{\varepsilon}}= {{\varepsilon}}_0 + \Delta {{\varepsilon}} $, 纤芯2 相对介电常数为${{\varepsilon}}= {{\varepsilon}}_0 - \Delta {{\varepsilon}} $

    Fig. 2.  Real part of effective mode indices $n_{\rm{eff}}$ versus $\Delta {{\varepsilon}} $: (a) ${{\varepsilon}}= {{\varepsilon}}_0 + \Delta {{\varepsilon}} $ in core layer 1 and ${{\varepsilon}}= {{\varepsilon}}_0 + \Delta {{\varepsilon}} $ in core layer 2; (b) ${{\varepsilon}}= {{\varepsilon}}_0 + \Delta {{\varepsilon}} $ in core layer 1 and ${{\varepsilon}}= {{\varepsilon}}_0 - \Delta {{\varepsilon}} $ in core layer 2.

    图 3  有效折射率$n_{\rm{eff}}$实部与虚部及$\Delta {{\varepsilon}} $ (a), (c) 有效折射率$n_{\rm{eff}}$实部; (b), (d) 有效折射率$n_{\rm{eff}}$虚部

    Fig. 3.  Real part and imaginary part of effective mode indices $n_{\rm{eff}}$ versus $\Delta {{\varepsilon}} $: (a), (c) Real part of effective mode indices $n_{\rm{eff}}$; (b), (d) imaginary part of effective mode indices $n_{\rm{eff}}$.

    图 4  各向异性波导 (a) 椭圆波导示意图; (b) 使用有限元法进行全波计算得到的有效折射率$n_{\rm{eff}}$实部(红线)和虚部(黑线)与${{\varepsilon}}_{\rm{r}}$函数关系; (c)有效折射率$n_{\rm{eff}}$ 实部; (d) 有效折射率$n_{\rm{eff}}$ 虚部; (e)—(h) 图(b)中黑色实心圆标记点前向/后向传播模式$\phi$$E_x$分量的实部/虚部

    Fig. 4.  Anisotropic waveguide: (a) The schematic of elliptical waveguide; (b) the real (red line) and imaginary (black line) part of effective modal indices, calculated from fullwave simulation using finite element method, as a function of ${{\varepsilon}}_{\rm{r}}$; (c) real part of effective mode indices $n_{\rm{eff}}$; (d) imaginary part of effective mode indices $n_{\rm{eff}}$; (e)−(h) the real/imaginary part of $E_x$ obtained from fullwave simulation is shown for the modes $\phi$

    表 1  $\beta_i > 0$时, 互易波导中原始场和伴随场之间的对称关系

    Table 1.  Symmetric relation of original field and adjoint field in the reciprocal waveguides with $\beta_i > 0$

    $\beta_i$对应的模式$-\beta_i$对应的模式
    $({\bar{{L}}}, {\bar{{B}}})$$\left[\beta_i, {{\phi}}_i\right]$$\left[-\beta_i, {{\psi}}_i\right]$
    $({\bar{{L}}}^{\rm{a}}, {\bar{{B}}}^{\rm{a}})$$\left[\beta_i, {{\psi}}_i\right]$$\left[-\beta_i, {{\phi}}_i\right]$
    下载: 导出CSV

    表 2  互易波导中原始场和伴随场之间的对称关系

    Table 2.  Symmetry relations of original field and adjoint field in the reciprocal waveguides.

    对称关系算符对称性关系约束条件
    手征对称${\sigma}$${{{\psi}}}_i({{r}}) = {\bar{\sigma}}{{{\phi}}}_i({{r}})$${{{\varepsilon}}}_{\rm r}^{zt} = {{{\varepsilon}}}_{\rm r}^{tz} = 0$, ${{{\mu}}}_{\rm r}^{zt} = {{{\mu}}}_{\rm r}^{tz} = 0$和${\bar{ \chi}} = 0$
    时间反演对称${\cal{T}}$${{{\psi}}}_i({{r}}) = {\bar{\sigma}}({{{\phi}}}_i({{r}}))^*$${\bar{{{\varepsilon}}}}_{\rm r}$, ${\bar{{{\mu}}}}_{\rm r}$和${\bar{ \chi}}$是实数
    宇称对称${\cal{P}}$${{{\psi}}}_i({{r}}) = {\bar{\sigma}}{{{\phi}}}_i(-{{r}})$${\bar{{{\varepsilon}}}}_{\rm r}({{r}}) = {\bar{{{\varepsilon}}}}_{\rm r}(-{{r}})$, ${\bar{{{\mu}}}}_{\rm r}({{r}}) = {\bar{{{\mu}}}}_{\rm r}(-{{r}})$和 ${\bar{ \chi}}({{r}}) = -{\bar{ \chi}}(-{{r}})$
    下载: 导出CSV

    表 3  CCMT, GCMT和GCMF之间比较

    Table 3.  Comparison between CCMT, GCMT and GCMF.

    模式耦合理论传统模式耦合理论(CCMT)手征对称模式耦合理论(GCMT)广义模式耦合理论(GCMF)
    耦合模式展开式形式$\varPhi =\displaystyle \sum a_i\phi _i$$\varPhi = \displaystyle\sum a_i\phi _i$$\varPhi = \displaystyle\sum a_i\phi _i ^+ +b_i \psi _i ^-$
    守恒量光功率守恒
    $\nabla \left({{{{E}}} _1 \times {{{H}}} _2 ^{\ast}} + {{{E}}} _2 ^{\ast} \times {{{H}}}_1\right) = 0$
    作用量守恒
    $\nabla \left({{{{E}}} _1 \times {{{H}}} _2 } + {{{E}}} _2 \times {{{H}}}_1\right) = 0$
    作用量守恒
    $\nabla \left({{{{E}}} _1 \times {{{H}}} _2 } + {{{E}}} _2 \times {{{H}}}_1\right) = 0$
    测试函数$\phi _j ^{\ast} $$\sigma \phi _j$$ \psi _j ^+$, $\psi _j ^-$
    本征方程${\bar{{L}}}{{\phi}}_i = \beta_i {\bar{{B}}}{{\phi}}_i $${\bar{{L}}}{{\phi}}_i = \beta_i {\bar{{B}}}{{\phi}}_i $${\bar{{L}}}{{\phi}}_i = \beta_i {\bar{{B}}}{{\phi}}_i$
    测试函数进行测试$\displaystyle\iiint \phi _j ^{\ast} [{\bar{{L} } }{{\phi} }_i-\beta_i {\bar{{B} } }{{\phi} }_i]{\rm{d} }v \!=\! 0$$\displaystyle\iiint \sigma \phi _j [{\bar{{L} } }{{\phi} }_i-\beta_i {\bar{{B} } }{{\phi} }_i]{\rm{d} }v \!=\! 0$$\displaystyle\iiint \psi _j \cdot [{\bar{{L} } }{{\phi} }_i \!-\! \beta_i {\bar{{B} } }{{\phi} }_i]{\rm{d} }v \!=\! 0$
    下载: 导出CSV
  • [1]

    Pierce J R 1954 J. Appl. Phys. 25 179Google Scholar

    [2]

    Gould R W 1955 IRE Trans. Electron Devices PGED-2 37Google Scholar

    [3]

    Louisell W H 1960 Coupled-Mode and Parametric Electronics (New York: Wiley) pp148–225

    [4]

    Miller S E 1954 Bell Syst. Tech. J. 33 661Google Scholar

    [5]

    Miller S E 1968 Bell Syst. Tech. J. 47 1801Google Scholar

    [6]

    Miller S E 1969 Bell Syst. Tech. J. 48 2189Google Scholar

    [7]

    Tang C C H 1969 Advances in Microwaves 4 301Google Scholar

    [8]

    Schelkunoff S A 1955 Bell Syst. Tech. J. 34 995Google Scholar

    [9]

    Haus H A 1958 Electron Beam Waves in Microwave Tubes (Massachusetts Institute of Technology, Research Laboratory of Electronics) pp115−130

    [10]

    Marcuse D 1971 Bell Syst. Tech. J. 50 1791Google Scholar

    [11]

    Marcuse D 1973 Bell Syst. Tech. J. 52 817Google Scholar

    [12]

    Snyder A W 1972 J. Opt. Soc. Am. 62 1267Google Scholar

    [13]

    Snyder A W 1970 IEEE Trans. Microwave Theory Tech. 18 383Google Scholar

    [14]

    Yariv A 1973 IEEE J. Quantum Electron. 9 919Google Scholar

    [15]

    Taylor H F, Yariv A 1974 Proc. IEEE 62 1044Google Scholar

    [16]

    Kogelnik H 1969 Bell Syst. Tech. J. 48 2909Google Scholar

    [17]

    McIntyre P D, Snyder A W 1973 J. Opt. Soc. Am. 63 1518Google Scholar

    [18]

    Yeh C, Manshadi F, Casey K F, Johnston A 1978 J. Opt. Soc. Am. 68 1079Google Scholar

    [19]

    Dionnet M J F, Shaw H J 1982 IEEE Trans. Microwave Theory Tech. 30 592Google Scholar

    [20]

    Thyagarajan K, Tewari R 1985 J. Lightwave Technol. 3 59Google Scholar

    [21]

    Zhang M, Garmire E 1987 J. Lightwave Technol. 5 260Google Scholar

    [22]

    Elechi C, Yeh C 1973 Opt. Commun. 7 201Google Scholar

    [23]

    Stoll H, Yariv A 1973 Opt. Commun. 8 5Google Scholar

    [24]

    Yeh P, Taylor H F 1980 Appl. Opt. 19 2848Google Scholar

    [25]

    Syms R R A 1985 Appl. Opt. 24 717Google Scholar

    [26]

    Marcuse D 1987 J. Lightwave Technol. 5 268Google Scholar

    [27]

    Hardy A, Streifer W 1985 J. Lightwave Technol. 3 1135Google Scholar

    [28]

    Haus H A, Huang W P, Kawakami S, Whitaker N A 1987 J. Lightwave Technol. 5 16Google Scholar

    [29]

    Chuang S L 1987 J. Lightwave Technol. 5 5Google Scholar

    [30]

    El-Ganainy R, Makris K G, Christodoulides D N, Musslimani Z H 2007 Opt. Lett. 32 2632Google Scholar

    [31]

    Golshani M, Weimann S, Jafari Kh, Khazaei Nezhad M, Langari A, Bahrampour A R, Eichelkraut T, Mahdavi S M, Szameit A 2014 Phys. Rev. Lett. 113 123903Google Scholar

    [32]

    Klaiman S, Gunther U, Moiseyev N 2008 Phys. Rev. Lett. 101 080402Google Scholar

    [33]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108Google Scholar

    [34]

    Zhu X, Ramezani H, Shi C, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042Google Scholar

    [35]

    Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, Christodoulides D N 2011 Phys. Rev. Lett. 106 213901Google Scholar

    [36]

    Shi Y, Yu Z F, Fan S H 2015 Nat. Photonics 9 388Google Scholar

    [37]

    Wang X Z 2018 Opt. Lett. 43 5623Google Scholar

    [38]

    Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192Google Scholar

    [39]

    Hodaei H, Miri M A, Heinrich M, Christodoulides D N, Khajavikhan M 2014 Science 346 975Google Scholar

    [40]

    Alaeian H, Dionne J A 2014 Phys. Rev. B 89 075136Google Scholar

    [41]

    Alaeian H, Dionne J A 2014 Phys. Rev. A 89 033829Google Scholar

    [42]

    Shen Y, Deng X H, Chen L 2014 Opt. Express 22 19440Google Scholar

    [43]

    Liu Z Z, Zhang Q, Liu X L, Yao Y, Xiao J J 2016 Sci. Rep. 6 22711Google Scholar

    [44]

    Ke S L, Zhao D, Liu J X, Liu Q J, Liao Q, Wang B, Lu P X 2019 Opt. Express 27 13858Google Scholar

    [45]

    Peng B, Őzdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, M.Bender C, Yang L 2014 Nat. Phys. 10 394Google Scholar

    [46]

    Xu J, Chen Y 2015 Opt. Express 23 22619Google Scholar

    [47]

    Wu B, Xu J, Xiao J, Chen Y 2016 Opt. Express 24 16566Google Scholar

    [48]

    Liu Z Z, Zhang Q, Chen Y, Xiao J J 2017 Photonics Res. 5 57Google Scholar

    [49]

    Wu B, Wang J, Xiao M, Xu J, Chen Y 2017 Opt. Express 25 1040Google Scholar

    [50]

    Xiong Z F, Chen W J, Wang P, Chen Y T 2017 Opt. Express 25 29822Google Scholar

    [51]

    Chen W, Xiong Z, Xu J, Chen Y 2019 Phys. Rev. B 99 195307Google Scholar

    [52]

    Zhang X Q, Chen R S, Zhou Y, Ming H, Wang A T 2016 Chin. Phys. Lett. 33 084201Google Scholar

    [53]

    黎磊, 刘桂强, 陈元浩 2013 光学学报 33 0123002Google Scholar

    Li L, Liu G Q, Chen Y H 2013 Acta Opt. Sin. 33 0123002Google Scholar

    [54]

    吴立恒, 王明红 2015 光学学报 35 0923003Google Scholar

    Wu L H, Wang M H 2015 Acta Opt. Sin. 35 0923003Google Scholar

    [55]

    Cai Y J, Li M, Xiong X, Yu L, Ren X F, Guo G P, Guo G C 2015 Chin. Phys. Lett. 32 107305Google Scholar

    [56]

    张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 物理学报 61 187301Google Scholar

    Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar

    [57]

    王立文, 娄淑琴, 陈卫国, 鹿文亮, 王鑫 2012 物理学报 61 154207Google Scholar

    Wang L W, Lou S Q, Chen W G, Lu W L, Wang X 2012 Acta Phys. Sin. 61 154207Google Scholar

    [58]

    Xu J, Wu B, Chen Y T 2015 Opt. Express 23 11566Google Scholar

    [59]

    Sakurai J J, Tuan S F 1994 Modern Quantum Mechanics (Rev. Ed.) (Reading, Mass.: Addison-Wesley Pub. Co.) pp71–73

    [60]

    Rumsey V H 1954 Phys. Rev. 94 1483Google Scholar

    [61]

    Moiseyev N 2011 Non-Hermitian Quantum Mechanics (New York: Cambridge University Press) pp174–210

    [62]

    Collin R E 1960 Field Theory of Guided Waves (New York: The Maple Press) p231

    [63]

    McIsaac P R 1991 IEEE Trans. Microwave Theory Tech. 39 1808Google Scholar

    [64]

    Villeneuve A T 1959 IEEE Trans. Microwave Theory Tech. 7 441Google Scholar

    [65]

    Silvestre E, Abián M A, Gimeno B, Ferrando A, Andrés M V, Boria V E 2000 IEEE Trans. Microwave Theory Tech. 48 589Google Scholar

    [66]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (New York: Springer Science & Business Media) pp214–216

    [67]

    Zhu Y, Cangellaris A C 2006 Multigrid Finite Element Methods for Electromagnetic Field Modeling (Hoboken, N.J.: Wiley-IEEE Press) pp244–249

    [68]

    钱景仁 2009 光学学报 29 1188

    Qian J R 2009 Acta Opt. Sin. 29 1188

    [69]

    Liu H, Lalanne P 2008 Nature 452 728Google Scholar

    [70]

    Chen Y T, Zhang R Y, Xiong Z F, Hang Z H, Li J S, Shen J Q, Chan C T 2019 Nat. Commun. 10 3125Google Scholar

    [71]

    Shi H K, Xiong Z F, Chen W J, Xu J, Wang S B, Chen Y T 2019 Opt. Express 27 28114Google Scholar

    [72]

    Bender C M, Boettcher S, Meisinger P N 1999 J. Math. Phys. 40 2201Google Scholar

    [73]

    Bernevig B A, Hughes T L 2013 Topological Insulators and Topological Superconductors (Princeton: Princeton University Press) pp30–40

  • [1] 李慧慧, 薛文瑞, 李宁, 杜易达, 李昌勇. 涂覆石墨烯的嵌套偏心空心圆柱的椭圆形电介质波导的模式特性. 物理学报, 2022, 71(10): 108101. doi: 10.7498/aps.71.20212321
    [2] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [3] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [4] 康达, 罗斌, 闫连山, 潘炜, 邹喜华. 含间隔层的增益导引-折射率反导引平面波导激光器中高阶模式抑制研究. 物理学报, 2018, 67(10): 104204. doi: 10.7498/aps.67.20180138
    [5] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [6] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [7] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [8] 乔海亮, 王玥, 陈再高, 张殿辉. 全矢量有限差分法分析任意截面波导模式. 物理学报, 2013, 62(7): 070204. doi: 10.7498/aps.62.070204
    [9] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [10] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [11] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为. 物理学报, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [12] 刘启能. 矩形掺杂光子晶体中电磁波的模式和缺陷模. 物理学报, 2010, 59(4): 2551-2555. doi: 10.7498/aps.59.2551
    [13] 刘勇. 耦合系统的混沌相位同步. 物理学报, 2009, 58(2): 749-755. doi: 10.7498/aps.58.749
    [14] 廖 旭, 任学藻, 周自刚. 耦合孔对微波腔的影响研究. 物理学报, 2008, 57(7): 3949-3953. doi: 10.7498/aps.57.3949
    [15] 张绘蓝, 张光勇, 王 程, 刘时雄, 刘劲松. 全息明孤子的波导特性. 物理学报, 2007, 56(1): 236-239. doi: 10.7498/aps.56.236
    [16] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析. 物理学报, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [17] 张高明, 彭景翠, 翦知渐, 黄小益. 左手材料薄板波导中模式之间的正交关系. 物理学报, 2006, 55(4): 1846-1850. doi: 10.7498/aps.55.1846
    [18] 刘敬伟, 陈少武, 余金中. 一种分析三维楔脊形光波导与光纤耦合的方法. 物理学报, 2005, 54(1): 6-11. doi: 10.7498/aps.54.6
    [19] 任国斌, 王 智, 娄淑琴, 简水生. 光子晶体光纤模式的简并特性研究. 物理学报, 2004, 53(6): 1856-1861. doi: 10.7498/aps.53.1856
    [20] 任国斌, 王 智, 简水生, 娄淑琴. 双芯光子晶体光纤中的模式干涉. 物理学报, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
计量
  • 文章访问数:  16215
  • PDF下载量:  635
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-09
  • 修回日期:  2020-04-22
  • 上网日期:  2020-05-15
  • 刊出日期:  2020-08-05

/

返回文章
返回