搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网络分析仪的3D Transmon相干测量方法

吴小宇 赵虎 李智

引用本文:
Citation:

基于网络分析仪的3D Transmon相干测量方法

吴小宇, 赵虎, 李智

Three-dimensional transmon coherence measurement method based on network analyser

Wu Xiao-Yu, Zhao Hu, Li Zhi
PDF
HTML
导出引用
  • 3D Transmon是目前已知退相干时间较长的一种超导量子比特, 在超导量子计算、量子光学、腔量子电动力学等方面具有重要的应用. 拉比振荡是表征量子系统退相干时间的重要方法, 也是体现量子系统能够进行能级演化的基本实验. 对3D Transmon进行拉比振荡测试, 需要进行严格的时序控制, 测试调试的过程较为繁琐. 本文制备了3D Transmon样品, 对其基本参数进行了测试表征, 创新性地提出了一种基于网络分析仪的拉比振荡测试方法, 基于该方法的测试系统搭建简单, 可作为迅速验证3D Transmon是否具备量子特性的一种手段, 该方法也可推广至其他量子系统进行时域特性的初步验证.
    Three-dimensional(3D) transmon is a kind of superconducting qubit with long decoherence time, which has important applications in superconducting quantum computation, quantum optics, cavity quantum electrodynamics, et al. Rabi oscillation is a vital method to characterize the decoherence time of quantum system, and it is also a basic experiment to demonstrate the energy level evolution of quantum system. In order to test the Rabi oscillation of 3D transmon, strict timing control is necessary, and the process of testing and debugging is complicated. In this paper, 3D transmon samples are fabricated and their basic parameters EC = 348.74 MHz and EJ = 11.556 GHz are tested and characterized. The coupling coefficient g2/Δ between qubit and the 3D cavity is 43 MHz, which is located in the dispersive regime. The qubit’s first transition frequency f01 = 9.2709 GHz, and the second transition frequency f12 = 9.0100 GHz. The 3D resonator is fabricated by the material 6061T6 aluminum, the loaded quality factor is 4.8 × 105, and the bare frequency of the resonator is 8.108 GHz.Through comparison, it is found that the Rabi oscillation time obtained by the proposed method is shorter than by the Jaynes-Cummings method. The main reasons are as follows. First, the measurement of network analyzer is a continuous measurement, and the test signal always affects the decoherence process of 3D transmon. Second, the quantum bit is in the ground state after decoherence, and the ground state measured by the network analyzer accounts for a relatively high proportion, which causes the curve measured by the network analyzer to be one-sided attenuation oscillation. Third, the dispersive readout method is related to the quality factor of the superconducting cavity. The storage time of microwave photons in the superconducting cavity is longer than the decoherence time of 3D transmon, so the quantum information is partially decohered before leaving the superconducting cavity, which will shorten the Rabi oscillation time.An innovative Rabi oscillation test method based on network analyzer is presented. The test system based on this method is simple to build and can be used as a new way to quickly verify whether 3D transmon has quantum characteristics. This method can also be extended to other quantum systems for preliminarily verifying the time domain characteristics.
      通信作者: 李智, lizhi@scu.edu.cn
    • 基金项目: 国家级-国家重点基础研究发展计划(2011CBA00304)
      Corresponding author: Li Zhi, lizhi@scu.edu.cn
    [1]

    You J Q, Nori F 2005 Phys. Today 58 42

    [2]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [3]

    Krantz P, Kjaergaard M, Yan F, et al. 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [4]

    赵虎, 李铁夫, 刘建设, 陈炜 2012 物理学报 61 154214Google Scholar

    Zhao H, Li T F, Liu J S, Chen W 2012 Acta Phys. Sin. 61 154214Google Scholar

    [5]

    Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 6385

    [6]

    Klimov P V, Kelly J, Chen J, et al. 2018 Phys. Rev. Lett. 121 090502Google Scholar

    [7]

    Blais A, Huang R S, Wallraff A, et al. 2004 Phys. Rev. A 69 666

    [8]

    Bunyk P I, Hoskinson E M, Johnson M W, et al. 2014 IEEE Trans. Appl. Supercond. 24 4Google Scholar

    [9]

    Mooij J E, Orlando T P, Leviotv L, et al. 1999 Science 285 1036Google Scholar

    [10]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar

    [11]

    Friedman J R, Patel V, Chen W, et al. 2000 Nature 406 43Google Scholar

    [12]

    Martinis J M, Nam S, Aumentado J, Urbina C 2002 Phys. Rev. Lett. 89 117901Google Scholar

    [13]

    Wallraff A, Schuster D I, Blais A, et al. 2004 Nature 431 162Google Scholar

    [14]

    Paik H, Schuster D I, Bishop L S, et al. 2011 Phys. Rev. Lett. 107 240501Google Scholar

    [15]

    Chiorescu I, Nakamura Y, Harmans C J P M, et al. 2003 Science 299 1869Google Scholar

    [16]

    Vion D, Aassime A, Cottet A, et al. 2002 Science 296 886Google Scholar

    [17]

    Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [18]

    Yan F, Gustavsson S, Kamal A, et al. 2016 Nat. Commun. 7 12964Google Scholar

    [19]

    You J Q, Hu X, Ashhab S, et al. 2006 Phys. Rev. B 75 140551

    [20]

    Wallraff A, Schuster D I, Blais A, et al. 2005 Phys. Rev. Lett. 95 060501Google Scholar

    [21]

    Reed M D, DiCarlo L, Johnson B R, et al. 2010 Phys. Rev. Lett. 105 173601Google Scholar

    [22]

    Koch J, Yu T M, Gambetta J, et al. 2007 Phys. Rev. A 76 042319Google Scholar

    [23]

    Zhao H, Li T F, Liu Q C, et al. 2014 Chin. Phys. Lett. 31 102101Google Scholar

    [24]

    赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜 2014 物理学报 63 220305Google Scholar

    Zhao H, Li T F, Liu Q C, Zhang Y S, Liu J S, Chen W 2014 Acta Phys. Sin. 63 220305Google Scholar

  • 图 1  3D Transmon的S21变功率扫描结果 (a) S21强度图; (b)部分S21曲线

    Fig. 1.  The power change scan S21 of 3D Transmon: (a) Intensity graph of S21; (b) partial S21 curve.

    图 2  3D Transmon测试系统

    Fig. 2.  3D Transmon measurement system.

    图 3  微波信号连续激励量子比特时的S21曲线

    Fig. 3.  The S21 curve for the qubits excited by continuously microwave.

    图 4  网络分析仪测量相干振荡时序图

    Fig. 4.  Time sequence diagram of coherent oscillation measured by network analyzer.

    图 5  网络分析仪测量3D Transmon相干振荡幅度与相位图

    Fig. 5.  Amplitude and phase diagram of 3D transmon coherent oscillation measured by network analyzer

    图 6  (a) 不同微波功率下的相干振荡强度图; (b) 相干振荡与微波激励幅度关系

    Fig. 6.  (a) Intensity diagram of coherent oscillation at different microwave power; (b) relationship between coherent oscillation and microwave excitation amplitude.

    图 7  数据采集卡Jaynes-Cummings方法测试拉比振荡

    Fig. 7.  Rabi oscillation by Jaynes-Cummings method based on data acquisition card.

  • [1]

    You J Q, Nori F 2005 Phys. Today 58 42

    [2]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [3]

    Krantz P, Kjaergaard M, Yan F, et al. 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [4]

    赵虎, 李铁夫, 刘建设, 陈炜 2012 物理学报 61 154214Google Scholar

    Zhao H, Li T F, Liu J S, Chen W 2012 Acta Phys. Sin. 61 154214Google Scholar

    [5]

    Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 6385

    [6]

    Klimov P V, Kelly J, Chen J, et al. 2018 Phys. Rev. Lett. 121 090502Google Scholar

    [7]

    Blais A, Huang R S, Wallraff A, et al. 2004 Phys. Rev. A 69 666

    [8]

    Bunyk P I, Hoskinson E M, Johnson M W, et al. 2014 IEEE Trans. Appl. Supercond. 24 4Google Scholar

    [9]

    Mooij J E, Orlando T P, Leviotv L, et al. 1999 Science 285 1036Google Scholar

    [10]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar

    [11]

    Friedman J R, Patel V, Chen W, et al. 2000 Nature 406 43Google Scholar

    [12]

    Martinis J M, Nam S, Aumentado J, Urbina C 2002 Phys. Rev. Lett. 89 117901Google Scholar

    [13]

    Wallraff A, Schuster D I, Blais A, et al. 2004 Nature 431 162Google Scholar

    [14]

    Paik H, Schuster D I, Bishop L S, et al. 2011 Phys. Rev. Lett. 107 240501Google Scholar

    [15]

    Chiorescu I, Nakamura Y, Harmans C J P M, et al. 2003 Science 299 1869Google Scholar

    [16]

    Vion D, Aassime A, Cottet A, et al. 2002 Science 296 886Google Scholar

    [17]

    Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502Google Scholar

    [18]

    Yan F, Gustavsson S, Kamal A, et al. 2016 Nat. Commun. 7 12964Google Scholar

    [19]

    You J Q, Hu X, Ashhab S, et al. 2006 Phys. Rev. B 75 140551

    [20]

    Wallraff A, Schuster D I, Blais A, et al. 2005 Phys. Rev. Lett. 95 060501Google Scholar

    [21]

    Reed M D, DiCarlo L, Johnson B R, et al. 2010 Phys. Rev. Lett. 105 173601Google Scholar

    [22]

    Koch J, Yu T M, Gambetta J, et al. 2007 Phys. Rev. A 76 042319Google Scholar

    [23]

    Zhao H, Li T F, Liu Q C, et al. 2014 Chin. Phys. Lett. 31 102101Google Scholar

    [24]

    赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜 2014 物理学报 63 220305Google Scholar

    Zhao H, Li T F, Liu Q C, Zhang Y S, Liu J S, Chen W 2014 Acta Phys. Sin. 63 220305Google Scholar

  • [1] 方语萱, 夏志良, 杨涛, 周文犀, 霍宗亮. 3D NAND闪存中氟攻击问题引起的字线漏电的改进. 物理学报, 2024, 73(6): 068502. doi: 10.7498/aps.73.20231557
    [2] 温永立, 张善超, 颜辉, 朱诗亮. 无指针δ-淬火直接测量法测量量子密度矩阵. 物理学报, 2021, 70(11): 110301. doi: 10.7498/aps.70.20210269
    [3] 侯智善, 徐帅, 骆杨, 李爱武, 杨罕. 激光3D纳米打印温度敏感的微球激光器. 物理学报, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [4] 熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁. 一种基于3D打印技术的结构型宽频吸波超材料. 物理学报, 2018, 67(8): 084202. doi: 10.7498/aps.67.20172262
    [5] 王延娜, 赵迪, 方爱平, 蒋臣威, 高韶燕, 李福利. 利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹. 物理学报, 2015, 64(22): 224214. doi: 10.7498/aps.64.224214
    [6] 董泽芹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于Kendall改进的同步算法癫痫脑网络分析. 物理学报, 2014, 63(20): 208705. doi: 10.7498/aps.63.208705
    [7] 赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜. 三维传输子量子比特的退相干参数表征. 物理学报, 2014, 63(22): 220305. doi: 10.7498/aps.63.220305
    [8] 王震, 李永新, 惠小健, 吕雷. 一类3D混沌系统的异宿轨道和backstepping控制. 物理学报, 2011, 60(1): 010513. doi: 10.7498/aps.60.010513
    [9] 尚家香, 喻显扬. 3d过渡金属在NiAl中的占位及对键合性质的影响. 物理学报, 2008, 57(4): 2380-2385. doi: 10.7498/aps.57.2380
    [10] 叶剑勇, 张淳民, 赵葆常, 李英才. 高层大气风场四强度测量法误差分析与计算. 物理学报, 2008, 57(1): 67-73. doi: 10.7498/aps.57.67
    [11] 方小玲, 姜宗来. 基于脑电图的大脑功能性网络分析. 物理学报, 2007, 56(12): 7330-7338. doi: 10.7498/aps.56.7330
    [12] 贺黎明, 曹 伟, 陈学谦, 朱云霞. 氦原子1snd(n=4—11)组态下1D—3D谱项分裂值的计算. 物理学报, 2005, 54(11): 5077-5081. doi: 10.7498/aps.54.5077
    [13] 刘 超, 张尚剑, 谢 亮, 祝宁华. 构建虚拟网络的网络分析仪夹具校准新方法. 物理学报, 2005, 54(6): 2606-2610. doi: 10.7498/aps.54.2606
    [14] 吕瑾, 许小红, 武海顺. 3d系列 (TM)4 团簇的结构和磁性. 物理学报, 2004, 53(4): 1050-1055. doi: 10.7498/aps.53.1050
    [15] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [16] 许静平, 羊亚平. 场频率变化时原子与场的相互作用. 物理学报, 2004, 53(7): 2139-2144. doi: 10.7498/aps.53.2139
    [17] 周一阳. 自旋三重态对3d~4/3d~6离子零场分裂参量的影响. 物理学报, 1995, 44(1): 122-127. doi: 10.7498/aps.44.122
    [18] 张强基, 陈乃群, 华中一. 3d 金属电离损失谱研究. 物理学报, 1991, 40(8): 1344-1348. doi: 10.7498/aps.40.1344
    [19] 顾一鸣, 黄明竹, 汪克林. GaAs1-xPx中3d过渡金属杂质的电子结构. 物理学报, 1988, 37(1): 11-19. doi: 10.7498/aps.37.11
    [20] 忻贤杰. 单次瞬态过程频谱分析仪. 物理学报, 1977, 26(1): 22-33. doi: 10.7498/aps.26.22
计量
  • 文章访问数:  5953
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-20
  • 修回日期:  2020-04-14
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回