搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝缘体上铌酸锂薄膜片上光子学器件的研究进展

李庚霖 贾曰辰 陈峰

引用本文:
Citation:

绝缘体上铌酸锂薄膜片上光子学器件的研究进展

李庚霖, 贾曰辰, 陈峰

Research progress of photonics devices on lithium-niobate-on-insulator thin films

Li Geng-Lin, Jia Yue-Chen, Chen Feng
PDF
HTML
导出引用
  • 铌酸锂晶体具有卓越的电光和非线性光学性质, 一直以来都被认为是最有前景的集成光子学基质材料之一. 也正是由于铌酸锂晶体多方面优良的光学性能, 近年来新兴的铌酸锂薄膜技术在集成光子学的研究中受到了极大的关注. 借助于先进的微纳加工技术, 许多高性能的铌酸锂集成光子学器件已经得以实现. 本文总结了几种微纳加工技术在基于铌酸锂薄膜的片上光子学器件制备中的应用, 介绍了铌酸锂薄膜片上光子学器件的最新进展, 并展望了其在集成光子学研究中的潜在应用.
    Lithium niobate (LiNbO3, LN) crystals have excellent electro-optical and nonlinear optical properties, and they have been regarded as one of the most promising materials for constructing the multifunctional photonic integrated systems. Due to the excellent optical properties of LN crystal, the emerging LN thin film technology has received great attention in the research of integrated photonics in recent years. With the help of advanced micro-nano fabrication technologies, many high-performance lithium niobate integrated photonic devices have been realized. Integrated photonic platform can incorporate high-density, multi-functional optical components, micro-nano photonics structures, and optical materials on a monolithic substrate, which can flexibly implement a variety of photonic functions. At the same time, it also provides a low-cost, small-size, and scalable solution for miniaturizing and integrating the free-space optical systems. Photonic chips based on LN have been widely used in fast electro-optic modulation, nonlinear optical frequency conversion and frequency comb generation. In particular, periodically poled lithium niobate (PPLN) based on quasi-phase matching has gradually become a mature integrated photonic platform and has been widely used in the field of nonlinear optics. As wafer bonding technology is matured, the lithium-niobate-on-insulator (LNOI) thin films made by the “smart-cut” process have been commercialized. The thickness of the LN film on a Si or SiO2 substrate can reach several hundred nanometers, and good uniformity in film thickness at a larger size (3 inches) can be ensured. With the development of micro-nano fabrication technologies, the quality and functions of photonic devices on LNOI chips have been significantly improved in recent years, and research on integrated photonic devices based on LNOI has also been developed rapidly in recent years. In this article we briefly review the development of LNOI technology, introducing the applications of several advanced micro-nano fabrication techniques and summarizing their applications in the micro-/nano-fabrication of on-chip photonic devices based on LNOI wafers. In addition, in this article we also summarize the latest advances in the functionality of LNOI on-chip photonic devices and give a short prospective on their future applications in integrated photonics.
      通信作者: 贾曰辰, yuechen.jia@sdu.edu.cn ; 陈峰, drfchen@sdu.edu.cn
    • 基金项目: 国家级-科技部国家重点研发计划项目(2019YFA0705000)
    [1]

    Desiatov B, Shams A A, Zhang M, Wang C, Lončar M 2019 Optica 6 380Google Scholar

    [2]

    He L Y, Zhang M, Shams A A, Zhu R R, Wang C, Lončar M 2019 Opt. Lett. 44 2314Google Scholar

    [3]

    Nikogosyan D N 2005 Nonlinear Optical Crystals: A Complete Survey (New York: Springer Science + Business Media) pp35–53

    [4]

    Poberaj G, Hu H, Sohler W, Günter P 2012 Laser Photonics Rev. 6 488Google Scholar

    [5]

    Boes A, Corcoran B, Chang L, Bowers J, Mitchell A 2018 Laser Photonics Rev. 12 1700256Google Scholar

    [6]

    Stepanenko O, Quillier E, Tronche H, Baldi P, Micheli M D 2014 IEEE Photonics Technol. Lett. 26 1557Google Scholar

    [7]

    Bruel M 1995 Electron. Lett. 31 1201Google Scholar

    [8]

    Ramadan A T, Levy M, Osgood J R M 2000 Appl. Phys. Lett. 76 1407Google Scholar

    [9]

    Roth R M, Djukic D, Lee Y S, Jr R M O, Bakhru S, Laulicht B, Dunn K, Bakhru H, Wu L Q, Huang M B 2006 Appl. Phys. Lett. 89 112906Google Scholar

    [10]

    Rabiei P, Gunter P 2004 Appl. Phys. Lett. 85 4603Google Scholar

    [11]

    Djukic D, Cerda P G, Roth R M, Jr R M O, Bakhru S, Bakhru H 2007 Appl. Phys. Lett. 90 171116Google Scholar

    [12]

    Wang J, Zhu B W, Hao Z Z, Bo F, Wang X L, Gao F, Li Y G, Zhang G Q, Xu J J 2016 Opt. Express 24 21869Google Scholar

    [13]

    Wang L, Wang C, Wang J, Bo F, Zhang M, Gong Q H, Lončar M, Xiao Y F 2018 Opt. Lett. 43 2917Google Scholar

    [14]

    Liang H X, Luo R, He Y, Jiang H W, Lin Q 2017 Optica 4 1251Google Scholar

    [15]

    Wang M, Xu Y X, Fang Z W, Liao Y, Wang P, Chu W, Qiao L L, Lin J T, Fang W, Cheng Y 2017 Opt. Express 25 124Google Scholar

    [16]

    Fang Z W, Lin J T, Wang M, Liu Z M, Yao J P, Qiao L L, Cheng Y 2015 Opt. Express 23 27941Google Scholar

    [17]

    Song J X, Lin J T, Tang J L, Liao Y, He F, Wang Z H, Qiao L L, Sugioka K, Cheng Y 2014 Opt. Express 22 14792Google Scholar

    [18]

    Jia Y C, Chen F 2019 Chin. Opt. Lett. 17 012302Google Scholar

    [19]

    Chen F, Vázquez de Aldana J R 2014 Laser Photonics Rev. 8 251Google Scholar

    [20]

    Wu R B, Zhang J H, Yao N, Fang W, Qiao L L, Fang C, Lin J T, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar

    [21]

    Zheng Y L, Fang Z W, Liu S J, Cheng Y, Chen X F 2019 Phys. Rev. Lett. 122 253902Google Scholar

    [22]

    Fang Z W, Xu Y X, Wang M, Qiao L L, Lin J T, Fang W, Cheng Y 2017 Sci. Rep. 7 45610Google Scholar

    [23]

    Rao A, Fathpour S 2018 IEEE J. Sel. Top. Quantum Electron. 24 8200912Google Scholar

    [24]

    Rao A, Fathpour S 2018 IEEE J. Sel. Top. Quantum Electron. 24 3400114Google Scholar

    [25]

    Honardoost A, Gonzalez G F C, Khan S, Malinowski M, Rao A, Tremblay J E, Yadav A, Richardson K, Wu M C, Fathpour S 2018 IEEE Photonics J. 10 4500909Google Scholar

    [26]

    Gonzalez G F C, Malinowski M, Honardoost A, Fathpour S 2019 Appl. Opt. 58 D1Google Scholar

    [27]

    Rao A, Abdelsalam K, Sjaardema T, Honardoost A, Camacho G G F, Fathpour S 2019 Opt. Express 27 25920Google Scholar

    [28]

    Wang T, Ng D K T, Ng S K, Toh Y T, Chee A K L, Chen G F R, Wang Q, Tan D T H 2015 Laser Photonics Rev. 9 498Google Scholar

    [29]

    Honardoost A, Juneghani F A, Safian R, Fathpour S 2019 Opt. Express 27 6495Google Scholar

    [30]

    Rao A, Chiles J, Khan S, Toroghi S, Malinowski M, Camacho G G F, Fathpour S 2017 Appl. Phys. Lett. 110 111109Google Scholar

    [31]

    Rao A, Patil A, Chiles J, Malinowski M, Novak S, Richardson K, Rabiei P, Fathpour S 2015 Opt. Express 23 22746Google Scholar

    [32]

    Luo R, He Y, Liang H X, Li M X, Lin Q 2018 Optica 5 1006Google Scholar

    [33]

    He Y, Liang H X, Luo R, Li M X, Lin Q 2018 Opt. Express 26 16315Google Scholar

    [34]

    Chen J Y, Sua Y M, Fan H, Huang Y P 2018 OSA Continuum 1 229Google Scholar

    [35]

    Chen J Y, Sua Y M, Ma Z H, Tang C, Li Z, Huang Y P 2019 OSA Continuum 2 2914Google Scholar

    [36]

    Reich M, Korte F, Fallnich C, Welling H, Tünnermann A 1998 Opt. Lett. 23 1817Google Scholar

    [37]

    Wolf R, Breunig I, Zappe H, Buse K 2018 Opt. Express 26 19815Google Scholar

    [38]

    Wang M, Wu R B, Lin J T, Zhang J H, Fang Z W, Chai Z F, Cheng Y 2019 Quantum Eng. 1 1Google Scholar

    [39]

    Fang Z W, Haque S, Lin J T, Wu R B, Zhang J H, Wang M, Zhou J X, Rafa M, Tao L, Cheng Y 2019 Opt. Lett. 44 1214Google Scholar

    [40]

    Luo R, Jiang H W, Liang H X, Chen Y P, Lin Q 2017 Opt. Lett. 42 1281Google Scholar

    [41]

    Jiang H W, Luo R, Liang H X, Chen X F, Chen Y P, Lin Q 2017 Opt. Lett. 42 3267Google Scholar

    [42]

    Zhang M, Wang C, Cheng R, Shams A A, Lončar M 2017 Optica 4 1536Google Scholar

    [43]

    Fang Z W, Yao N, Wang M, Lin J T, Zhang J H, Wu R B, Qiao L L, Fang W, Lu T, Cheng Y 2017 Int. J. Optomechatronics 11 47Google Scholar

    [44]

    Guarino A, Poberaj G, Rezzonico D, Riccardo D, Günter P 2007 Nat. Photonics 1 407Google Scholar

    [45]

    Ren T, Zhang M, Wang C, Shao L B, Reimer C, Zhang Y, King O, Esman R, Cullen T, Lončar M 2019 IEEE Photonics Technol. Lett. 31 889Google Scholar

    [46]

    Jin M W, Chen J Y, Sua Y M, Huang Y P 2019 Opt. Lett. 44 1265Google Scholar

    [47]

    Wang C, Zhang M, Stern B, Lipson M, Lončar M 2018 Opt. Express 26 1547Google Scholar

    [48]

    Wang C, Zhang M, Chen X, Bertrand M, Shams A A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [49]

    He M B, Xu M Y, Ren Y X, Jian J, Ruan Z L, Xu Y S, Gao S Q, Sun S H, Wen X Q, Zhou L D, Liu L, Guo C J, Chen H, Yu S Y, Liu L, Cai X L 2019 Nat. Photonics 13 359Google Scholar

    [50]

    Ahmed A N R, Nelan S, Shi S Y, Yao P, Mercante A, Prather D W 2020 Opt. Lett. 45 1112Google Scholar

    [51]

    Thomaschewski M, Zenin V A, Wolff C, Bozhevolnyi S I 2020 Nat. Commun. 11 748Google Scholar

    [52]

    Luo R, He Y, Liang H X, Li M X, Ling J W, Lin Q 2019 Phys. Rev. Appl. 11 034026Google Scholar

    [53]

    Luo R, Jiang H W, Rogers S, Liang H X, He Y, Lin Q 2017 Opt. Express 25 24531Google Scholar

    [54]

    Lin J T, Yao N, Hao Z Z, Zhang J h, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar

    [55]

    Liu S J, Zheng Y L, Fang Z W, Ye X N, Cheng Y, Chen X F 2019 Opt. Lett. 44 1456Google Scholar

    [56]

    Ye X N, Liu S J, Chen Y P, Zheng Y L, Chen X F 2020 Opt. Lett. 45 523Google Scholar

    [57]

    Wolf R, Jia Y C, Bonaus S, Werner C S, Herr S J, Breunig I, Buse K, Zappe H 2018 Optica 5 872Google Scholar

    [58]

    Chen J Y, Ma Z H, Sua Y M, Li Z, Tang C, Huang Y P 2019 Optica 6 1244Google Scholar

    [59]

    Lu J J, Surya J B, Liu X W, Bruch A W, Gong Z, Xu Y T, Tang H X 2019 Optica 6 1455Google Scholar

    [60]

    Hao Z Z, Zhang L, Gao A, Mao W B, Lyu X D, Gao X M, Bo F, Gao F, Zhang G Q, Xu J J 2018 Sci. China, Ser. G 61 114211Google Scholar

    [61]

    Hao Z Z, Zhang L, Mao W B, Gao A, Gao X M, Gao F, Bo F, Zhang G Q, Xu J J 2020 Photonics Res. 8 311Google Scholar

    [62]

    Sua Y M, Chen J Y, Huang Y P 2018 Opt. Lett. 43 2965Google Scholar

    [63]

    Niu Y F, Lin C, Liu X Y, Chen Y, Hu X P, Zhang Y, Cai X L, Gong Y X, Xie Z D, Zhu S N 2020 Appl. Phys. Lett. 116Google Scholar

    [64]

    Zhang M, Buscaino B, Wang C, Shams A A, Reimer C, Zhu R R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [65]

    Wang C, Zhang M, Yu M J, Zhu R R, Hu H, Lončar M 2019 Nat. Commun. 10 1Google Scholar

    [66]

    Yu M J, Desiatov B, Okawachi Y, Gaeta A L, Lončar M 2019 Opt. Lett. 44 1222Google Scholar

    [67]

    Jiang W C, Lin Q 2016 Sci. Rep. 6 36920Google Scholar

    [68]

    Cai L T, Mahmoud A, Khan M, Mahmoud M, Mukherjee T, Bain J, Piazza G 2019 Photonics Res. 7 1003Google Scholar

    [69]

    Yao N, Zhou J X, Gao R H, Lin J T, Wang M, Cheng Y, Fang W, Tong L M 2020 Opt. Express 28 12416Google Scholar

    [70]

    Mahmoud M, Ghosh S, Piazza G 2015 CLEO: Science and Innovations San Jose, USA, May 10–15, 2015 pSW41.7

    [71]

    Chen Z H, Peng R H, Wang Y w, Zhu H B, Hu H 2017 Opt. Mater. Express 7 4010Google Scholar

    [72]

    Krasnokutska I, Chapman R J, Tambasco J L J, Peruzzo A 2019 Opt. Express 27 17681Google Scholar

    [73]

    Khan M, Bain J A, Piazza G 2019 Opt. Lett. 44 4558Google Scholar

  • 图 1  晶片直接键合制备单晶LN薄膜流程图

    Fig. 1.  Flow chart of preparation of single crystal lithium niobate films by direct bonding of wafers.

    图 2  使用飞秒激光微加工制备LN片上微盘谐振腔的过程 (a) 在LN样品表面沉积Cr; (b) 飞秒激光加工将微盘图形转移到Cr膜上; (c) CMP过程将微盘图形转移到LN薄膜上; (d) 湿法刻蚀去除Cr膜和SiO2[20]

    Fig. 2.  Flow chart of fabricating LN microdisk using femtosecond laser micromachining: (a) Depositing metallic chromium on LN sample surface; (b) transferring microdisk graphics onto chrome layer by femtosecond laser micromachining; (c) transferring microdisk pattern onto LN film by CMP; (d) wet etching removes chromium film and SiO2[20].

    图 3  PPLN薄膜片上脊形波导的制备流程 (a) 待加工的x切LN薄膜样品; (b) 沉积梳状金属极化电极; (c) 对金属电极施加极化电压; (d) 制作完成的PPLN脊形波导; (e) PPLN脊形波导俯视图, 深色部分为铁电畴反转区域; (f) 经过CMP或FIB技术处理之后的PPLN片上脊形波导侧壁[35]

    Fig. 3.  Preparation process of PPLN ridge waveguide: (a) The x-cut LN thin film sample to be processed; (b) deposition of comb-shaped metal polarized electrode; (c) application of polarization voltage to metal electrode; (d) the fabricated PPLN ridge waveguide; (e) top view of the PPLN ridge waveguide, the dark area is the domain inversion area; (f) PPLN ridge waveguide sidewall after CMP or FIB fabricating[35].

    图 4  (a) 抛光后的微环谐振腔的扫描电子显微镜(scanning electron microscope, SEM)着色图像(LN标记为黄色, SiO2为灰色); (b)−(d) 不同抛光参数对最终抛光效果的影响[37]

    Fig. 4.  (a) A SEM coloring image of polished micro-ring resonator (LN is yellow; SiO2 is gray); (b)−(d) influences of different polishing parameters on the final sidewall roughness[37].

    图 5  CMP技术制备LNOI片上光子学器件流程图 (a) 磁控溅射沉积Cr薄膜; (b) 飞秒激光微加工制备待加工图案; (c) CMP过程去除多余的LN; (d) 使用Cr腐蚀剂去除刻蚀掩模以及二次CMP过程; (e) CMP仪器示意图[38]

    Fig. 5.  Schematic of using CMP technology to prepare LNOI on-chip optics: (a) Depositing Cr film on LNOI by magnetron sputtering; (b) femtosecond laser processing defines the pattern to be processed; (c) CMP process to remove excess LN; (d) use Cr etchant to remove the etching mask and secondary CMP process; (e) schematic diagram of CMP instrument[38].

    图 6  (a), (b) LNOI片上电光调制器的SEM图像; (c) 赛道型电光调制器耦合区域的放大图; (d) 电极与光波导的放大图; (e) M-Z型电光调制器的透射光谱; (f)赛道型电光调制器的电光调制带宽(9 V, 1480−1580 nm)[47]

    Fig. 6.  (a), (b) SEM images of the LNOI modulator; (c) enlarged view of the coupling area of the track modulator; (d) enlarged view of the electrode and optical waveguide; (e) transmission spectrum of MZI modulator; (f) electro-optical bandwidth of racetrack modulator (9 V, 1480−1580 nm)[47].

    图 7  LNOI片上等离子体电光定向耦合器的SEM图像[51]

    Fig. 7.  False-colored SEM image of LNOI plasma electro-optic directional coupler[51].

    图 8  (a) 级联过程光谱, 其中抽运波长固定在1534.9 nm, 信号光波长分别位于1541.8 和1548.9 nm; (b) LN微盘中有效的FWM过程, FW闲频光功率依赖性和理论拟合, 信号光功率保持在5 mW[55]

    Fig. 8.  (a) Spectrum of the cascade process: the pump wavelength is fixed at 1534.9 nm, and the signal wavelength is at 1541.8 and 1548.9 nm. (b) Effective FWM process in LN microdisk, FW idler power dependence and theoretical fitting, the signal power is maintained at 5 mW[55].

    图 9  (a) LN微环谐振腔的显微照片, 黑线是蚀刻的光波导, 黄色区域是金电极; (b) 从微环谐振腔产生的EO频率梳的输出频谱, 左插图显示了几条梳齿的放大图, 梳齿之间的功率变化约为0.1 dB, 右插图显示了几个不同调制指数(β)的透射光谱[64]

    Fig. 9.  (a) Photograph of the LN microring resonator, the black line is an etched optical waveguide, and the yellow area is a gold electrode. (b) The output spectrum of the EO frequency comb generated from the micro-ring resonator. The left illustration shows an enlarged view of several comb teeth. The power variation between the comb teeth is about 0.1 dB. The right inset shows the transmission spectra of several different modulation indices (β)[64].

    图 10  (a), (b)宽带频率梳的产生, 即当抽运功率为300 mW且输入信号与(a) TM模和(b) TE模共振时, 产生的频率梳频谱; (c) LN片上纳米光子学回路的SEM图像[65]

    Fig. 10.  (a), (b) Generation of a broadband frequency comb: The frequency comb spectrum is generated when the pump power is 300 mW and the input signal resonates with the (a) TM mode and the (b) TE mode; (c) SEM image of nanophotonic circuit on LN film[65].

    图 11  (a) M-Z干涉仪型和(b) 谐振腔型声光调制器的显微镜照片; (c) 光波导的SEM图像; (d) IDT区域的SEM图像[68]

    Fig. 11.  (a) Micrograph of M-Z interferometer type and (b) resonator type acousto-optic modulator; (c) SEM image of the optical waveguide; (d) SEM image of the IDT region[68].

    图 12  (a) 锥形单模光纤的SEM图像[69]; (b) 双层锥形模式转换器的SEM图像[2]

    Fig. 12.  (a) SEM image of single mode tapered fiber[69]; (b) SEM image of bilayer tapered mode converter[2].

    表 1  不同加工手段制备的LN片上光子学器件的主要性能参数

    Table 1.  Main performance parameters of LN on-chip photonic devices fabricated by different fabrication techniques.

    加工图案微纳加工技术尺寸损耗(测量波长)品质因子(测量波长/nm)
    微盘[13]紫外光刻技术d = 50 μm1.5 × 106 (1551.4)
    微盘[12]r = 50 μm3.1 × 105 (1550)
    微盘[40]电子束曝光技术r = 25 μm2.9 × 105 (1502)
    微盘[41]r = 25 μm2.69 × 105 (1548.78)
    微环[1]r = 100 μm1.1 × 107 (637)
    微环[42]r = 80 μm~107 (1590)
    光子晶体微腔[14]w = 750 nm1.09 × 105 (1452)
    h = 250 nm
    a = 600 nm
    微盘[21]飞秒激光微加工d = 29.92 μm9.61 × 106 (1547.8)
    微盘[20]d = 140 μm1.46 × 107 (773.49)
    双微盘[43]d = 29.92 μm1.35 × 105 (1528.5)
    g = 138 nm
    脊形波导[1]电子束曝光技术W = 480 nm6 dB/m (635 nm)
    H = 120 nm
    脊形波导[42]W = 2.4 μm(2.7 ± 0.3) dB/m (1590 nm)
    H = 0.25 μm
    脊形波导[29]异质集成W = 1.3 μm0.1 dB/m (1550 nm)
    H = 0.5 μm
    脊形波导[37]化学机械抛光W = 4 μm4 dB/m (1550 nm)
    H = 3 μm
    下载: 导出CSV
  • [1]

    Desiatov B, Shams A A, Zhang M, Wang C, Lončar M 2019 Optica 6 380Google Scholar

    [2]

    He L Y, Zhang M, Shams A A, Zhu R R, Wang C, Lončar M 2019 Opt. Lett. 44 2314Google Scholar

    [3]

    Nikogosyan D N 2005 Nonlinear Optical Crystals: A Complete Survey (New York: Springer Science + Business Media) pp35–53

    [4]

    Poberaj G, Hu H, Sohler W, Günter P 2012 Laser Photonics Rev. 6 488Google Scholar

    [5]

    Boes A, Corcoran B, Chang L, Bowers J, Mitchell A 2018 Laser Photonics Rev. 12 1700256Google Scholar

    [6]

    Stepanenko O, Quillier E, Tronche H, Baldi P, Micheli M D 2014 IEEE Photonics Technol. Lett. 26 1557Google Scholar

    [7]

    Bruel M 1995 Electron. Lett. 31 1201Google Scholar

    [8]

    Ramadan A T, Levy M, Osgood J R M 2000 Appl. Phys. Lett. 76 1407Google Scholar

    [9]

    Roth R M, Djukic D, Lee Y S, Jr R M O, Bakhru S, Laulicht B, Dunn K, Bakhru H, Wu L Q, Huang M B 2006 Appl. Phys. Lett. 89 112906Google Scholar

    [10]

    Rabiei P, Gunter P 2004 Appl. Phys. Lett. 85 4603Google Scholar

    [11]

    Djukic D, Cerda P G, Roth R M, Jr R M O, Bakhru S, Bakhru H 2007 Appl. Phys. Lett. 90 171116Google Scholar

    [12]

    Wang J, Zhu B W, Hao Z Z, Bo F, Wang X L, Gao F, Li Y G, Zhang G Q, Xu J J 2016 Opt. Express 24 21869Google Scholar

    [13]

    Wang L, Wang C, Wang J, Bo F, Zhang M, Gong Q H, Lončar M, Xiao Y F 2018 Opt. Lett. 43 2917Google Scholar

    [14]

    Liang H X, Luo R, He Y, Jiang H W, Lin Q 2017 Optica 4 1251Google Scholar

    [15]

    Wang M, Xu Y X, Fang Z W, Liao Y, Wang P, Chu W, Qiao L L, Lin J T, Fang W, Cheng Y 2017 Opt. Express 25 124Google Scholar

    [16]

    Fang Z W, Lin J T, Wang M, Liu Z M, Yao J P, Qiao L L, Cheng Y 2015 Opt. Express 23 27941Google Scholar

    [17]

    Song J X, Lin J T, Tang J L, Liao Y, He F, Wang Z H, Qiao L L, Sugioka K, Cheng Y 2014 Opt. Express 22 14792Google Scholar

    [18]

    Jia Y C, Chen F 2019 Chin. Opt. Lett. 17 012302Google Scholar

    [19]

    Chen F, Vázquez de Aldana J R 2014 Laser Photonics Rev. 8 251Google Scholar

    [20]

    Wu R B, Zhang J H, Yao N, Fang W, Qiao L L, Fang C, Lin J T, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar

    [21]

    Zheng Y L, Fang Z W, Liu S J, Cheng Y, Chen X F 2019 Phys. Rev. Lett. 122 253902Google Scholar

    [22]

    Fang Z W, Xu Y X, Wang M, Qiao L L, Lin J T, Fang W, Cheng Y 2017 Sci. Rep. 7 45610Google Scholar

    [23]

    Rao A, Fathpour S 2018 IEEE J. Sel. Top. Quantum Electron. 24 8200912Google Scholar

    [24]

    Rao A, Fathpour S 2018 IEEE J. Sel. Top. Quantum Electron. 24 3400114Google Scholar

    [25]

    Honardoost A, Gonzalez G F C, Khan S, Malinowski M, Rao A, Tremblay J E, Yadav A, Richardson K, Wu M C, Fathpour S 2018 IEEE Photonics J. 10 4500909Google Scholar

    [26]

    Gonzalez G F C, Malinowski M, Honardoost A, Fathpour S 2019 Appl. Opt. 58 D1Google Scholar

    [27]

    Rao A, Abdelsalam K, Sjaardema T, Honardoost A, Camacho G G F, Fathpour S 2019 Opt. Express 27 25920Google Scholar

    [28]

    Wang T, Ng D K T, Ng S K, Toh Y T, Chee A K L, Chen G F R, Wang Q, Tan D T H 2015 Laser Photonics Rev. 9 498Google Scholar

    [29]

    Honardoost A, Juneghani F A, Safian R, Fathpour S 2019 Opt. Express 27 6495Google Scholar

    [30]

    Rao A, Chiles J, Khan S, Toroghi S, Malinowski M, Camacho G G F, Fathpour S 2017 Appl. Phys. Lett. 110 111109Google Scholar

    [31]

    Rao A, Patil A, Chiles J, Malinowski M, Novak S, Richardson K, Rabiei P, Fathpour S 2015 Opt. Express 23 22746Google Scholar

    [32]

    Luo R, He Y, Liang H X, Li M X, Lin Q 2018 Optica 5 1006Google Scholar

    [33]

    He Y, Liang H X, Luo R, Li M X, Lin Q 2018 Opt. Express 26 16315Google Scholar

    [34]

    Chen J Y, Sua Y M, Fan H, Huang Y P 2018 OSA Continuum 1 229Google Scholar

    [35]

    Chen J Y, Sua Y M, Ma Z H, Tang C, Li Z, Huang Y P 2019 OSA Continuum 2 2914Google Scholar

    [36]

    Reich M, Korte F, Fallnich C, Welling H, Tünnermann A 1998 Opt. Lett. 23 1817Google Scholar

    [37]

    Wolf R, Breunig I, Zappe H, Buse K 2018 Opt. Express 26 19815Google Scholar

    [38]

    Wang M, Wu R B, Lin J T, Zhang J H, Fang Z W, Chai Z F, Cheng Y 2019 Quantum Eng. 1 1Google Scholar

    [39]

    Fang Z W, Haque S, Lin J T, Wu R B, Zhang J H, Wang M, Zhou J X, Rafa M, Tao L, Cheng Y 2019 Opt. Lett. 44 1214Google Scholar

    [40]

    Luo R, Jiang H W, Liang H X, Chen Y P, Lin Q 2017 Opt. Lett. 42 1281Google Scholar

    [41]

    Jiang H W, Luo R, Liang H X, Chen X F, Chen Y P, Lin Q 2017 Opt. Lett. 42 3267Google Scholar

    [42]

    Zhang M, Wang C, Cheng R, Shams A A, Lončar M 2017 Optica 4 1536Google Scholar

    [43]

    Fang Z W, Yao N, Wang M, Lin J T, Zhang J H, Wu R B, Qiao L L, Fang W, Lu T, Cheng Y 2017 Int. J. Optomechatronics 11 47Google Scholar

    [44]

    Guarino A, Poberaj G, Rezzonico D, Riccardo D, Günter P 2007 Nat. Photonics 1 407Google Scholar

    [45]

    Ren T, Zhang M, Wang C, Shao L B, Reimer C, Zhang Y, King O, Esman R, Cullen T, Lončar M 2019 IEEE Photonics Technol. Lett. 31 889Google Scholar

    [46]

    Jin M W, Chen J Y, Sua Y M, Huang Y P 2019 Opt. Lett. 44 1265Google Scholar

    [47]

    Wang C, Zhang M, Stern B, Lipson M, Lončar M 2018 Opt. Express 26 1547Google Scholar

    [48]

    Wang C, Zhang M, Chen X, Bertrand M, Shams A A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [49]

    He M B, Xu M Y, Ren Y X, Jian J, Ruan Z L, Xu Y S, Gao S Q, Sun S H, Wen X Q, Zhou L D, Liu L, Guo C J, Chen H, Yu S Y, Liu L, Cai X L 2019 Nat. Photonics 13 359Google Scholar

    [50]

    Ahmed A N R, Nelan S, Shi S Y, Yao P, Mercante A, Prather D W 2020 Opt. Lett. 45 1112Google Scholar

    [51]

    Thomaschewski M, Zenin V A, Wolff C, Bozhevolnyi S I 2020 Nat. Commun. 11 748Google Scholar

    [52]

    Luo R, He Y, Liang H X, Li M X, Ling J W, Lin Q 2019 Phys. Rev. Appl. 11 034026Google Scholar

    [53]

    Luo R, Jiang H W, Rogers S, Liang H X, He Y, Lin Q 2017 Opt. Express 25 24531Google Scholar

    [54]

    Lin J T, Yao N, Hao Z Z, Zhang J h, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar

    [55]

    Liu S J, Zheng Y L, Fang Z W, Ye X N, Cheng Y, Chen X F 2019 Opt. Lett. 44 1456Google Scholar

    [56]

    Ye X N, Liu S J, Chen Y P, Zheng Y L, Chen X F 2020 Opt. Lett. 45 523Google Scholar

    [57]

    Wolf R, Jia Y C, Bonaus S, Werner C S, Herr S J, Breunig I, Buse K, Zappe H 2018 Optica 5 872Google Scholar

    [58]

    Chen J Y, Ma Z H, Sua Y M, Li Z, Tang C, Huang Y P 2019 Optica 6 1244Google Scholar

    [59]

    Lu J J, Surya J B, Liu X W, Bruch A W, Gong Z, Xu Y T, Tang H X 2019 Optica 6 1455Google Scholar

    [60]

    Hao Z Z, Zhang L, Gao A, Mao W B, Lyu X D, Gao X M, Bo F, Gao F, Zhang G Q, Xu J J 2018 Sci. China, Ser. G 61 114211Google Scholar

    [61]

    Hao Z Z, Zhang L, Mao W B, Gao A, Gao X M, Gao F, Bo F, Zhang G Q, Xu J J 2020 Photonics Res. 8 311Google Scholar

    [62]

    Sua Y M, Chen J Y, Huang Y P 2018 Opt. Lett. 43 2965Google Scholar

    [63]

    Niu Y F, Lin C, Liu X Y, Chen Y, Hu X P, Zhang Y, Cai X L, Gong Y X, Xie Z D, Zhu S N 2020 Appl. Phys. Lett. 116Google Scholar

    [64]

    Zhang M, Buscaino B, Wang C, Shams A A, Reimer C, Zhu R R, Kahn J M, Lončar M 2019 Nature 568 373Google Scholar

    [65]

    Wang C, Zhang M, Yu M J, Zhu R R, Hu H, Lončar M 2019 Nat. Commun. 10 1Google Scholar

    [66]

    Yu M J, Desiatov B, Okawachi Y, Gaeta A L, Lončar M 2019 Opt. Lett. 44 1222Google Scholar

    [67]

    Jiang W C, Lin Q 2016 Sci. Rep. 6 36920Google Scholar

    [68]

    Cai L T, Mahmoud A, Khan M, Mahmoud M, Mukherjee T, Bain J, Piazza G 2019 Photonics Res. 7 1003Google Scholar

    [69]

    Yao N, Zhou J X, Gao R H, Lin J T, Wang M, Cheng Y, Fang W, Tong L M 2020 Opt. Express 28 12416Google Scholar

    [70]

    Mahmoud M, Ghosh S, Piazza G 2015 CLEO: Science and Innovations San Jose, USA, May 10–15, 2015 pSW41.7

    [71]

    Chen Z H, Peng R H, Wang Y w, Zhu H B, Hu H 2017 Opt. Mater. Express 7 4010Google Scholar

    [72]

    Krasnokutska I, Chapman R J, Tambasco J L J, Peruzzo A 2019 Opt. Express 27 17681Google Scholar

    [73]

    Khan M, Bain J A, Piazza G 2019 Opt. Lett. 44 4558Google Scholar

  • [1] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] 刘励强, 苏伟伦, 刘峻铭, 邹娱, 洪丽红, 李志远. 应用于1064 nm倍频实验的啁啾周期极化铌酸锂晶体的结构设计与角度鲁棒性测试. 物理学报, 2024, 73(17): 174204. doi: 10.7498/aps.73.20240778
    [3] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件. 物理学报, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [4] 吴波, 王爵, 王崴, 周国富. 非简并双光子吸收及其应用研究进展. 物理学报, 2023, 72(20): 204204. doi: 10.7498/aps.72.20230911
    [5] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇. 物理学报, 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [6] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟. 物理学报, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [7] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [8] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [9] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [10] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [11] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [12] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [13] 张龙, 韩海年, 侯磊, 于子蛟, 朱政, 贾玉磊, 魏志义. 基于光子晶体光纤和拉锥式单模光纤的超连续光谱产生的实验研究. 物理学报, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [14] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [15] 刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月. 刻划微棱锥抗反射层的GaP太赫兹波发射器. 物理学报, 2012, 61(4): 040703. doi: 10.7498/aps.61.040703
    [16] 孙博, 刘劲松, 凌福日, 王可嘉, 朱大庆, 姚建铨. 基于钽酸锂晶体的太赫兹波参量振荡器运转特性的研究. 物理学报, 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [17] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [18] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [20] 马瑾怡, 邱锡钧. 强光场中电子系统与多光子的相互作用. 物理学报, 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
计量
  • 文章访问数:  19545
  • PDF下载量:  1013
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-27
  • 修回日期:  2020-05-07
  • 上网日期:  2020-05-12
  • 刊出日期:  2020-08-05

/

返回文章
返回